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 In this Note the model for the HEC electronics chain is presented. The

components of the chain are described by rational transfer functions in frequency
domain. The signal waveforms in time domain are obtained by using the partial
fractions expansion method. The noise is also described  both in frequency and time
domain.
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The detailed description of the electronics chain response is required for the HEC
calibration and physics data analysis. The knowledge of transfer functions of the chain components
is also needed to identify and locate possible malfunctioning parts. The scheme shown in Fig.1
represents the calibration and signal chain used in the HEC beam tests since June 1999. Almost
the same chain is foreseen for the final ATLAS setup, so the test beam experience is useful to
estimate the signal and noise characteristics for the future ATLAS conditions.

There are two possibilities to model the analog electronics, either to describe the transfer
function analytically or numerically (PSPICE simulations). The PSPICE model is very powerful
tool to study the details of the signal propagation through the chain. It is used to evaluate the
influence of various imperfections, like cables termination condition, parasitic impedances, etc.
The technological spread of  nominal values can be simulated as well. But for the calibration
procedure the PSPICE model can not be used since an analytical function to fit the signal shape is
required.

The transfer function of the chain can be easily written in frequency domain following the
schematics in Fig.1. All blocks can be described in terms of rational functions (combination of
poles and zeros). The details of the modeling are given in section 3 for the calibration chain and  in
section 4 and 5 for the signal chain. The transformation to time domain is then done by using the
partial fraction expansion method that is described in section 7.



2

z�{ |'}D~ �=�D���D� ��� �@��� � �=�D� � �D� ����� �9� ���������+� � � � � � ���D� � ��� ���D� �����$� ������� ���@� � � � �	��� �=������� ���������
�D�$��� � �'��� � ��� � � � ���D���$�D� ����� � ����� � ����� ��� � � ����� �$� ��� � � ��� ��������� ���$� � � �D��� ���@�

The analytical approach has restricted possibilities and can not describe all the details of
the chain.  It is not very easy to include the reflections in cables. The parasitic impedances could in
principal be described but the increasing of number of poles and zeros leads to dramatic rise of
computing time and loss of precision. In the model presented below only “main”  second-order
effects are taken into account, like capacitance of strip line and 4 decoupling capacitors in the
chain.

Electronics noise is very important aspect of the chain performance. The model presented
in section 8 is based on the frequency domain approach. The calculations of the noise correlation
function is performed by numerical calculation of Fourier integral.
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The detector characteristics determine both the signal waveform and noise values. One
HEC φ-wedge has 88 readout cells, a part of them have identical geometry, hence the sets of model
parameters are identical. The 51 of 88 readout cells have different parameters, they are numbered
according to Fig.2. To make the numbering scheme useful also for physics simulation and
analysis, the missing η−φ bins are also numbered.
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The most important characteristics of a detector is its capacitance, that determines the
signal rise time and noise value. The HEC capacitance is a complicated function of frequency due
to the high resistive layers in the gap. A rough estimation shows that capacitance is approaching to
its high frequency asymptotic value (pure geometric capacitance of the gap) as G H�I I J K L   with typical
corner frequency of M�N O P-Q;R�S . So the effect in the working frequency range (~ T�U�VXW�Y ) is about
1%. In the model this effect is neglected. The capacitance of double gap, connected to the
preamplifier input has been calculated using simple equation for flat capacitance, neglecting the
edge effects and presence of tie rods in some cells. The result of this calculations is presented in
Tab.1.
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1 1 1,2 215.49 141.77 0.39
2 1 3,4 213.76 140.63 0.53
3 1 5,6 339.54 223.38 0.76
4 1 7,8 270.95 178.26 0.79
5 1 9,10 217.03 142.78 0.99
6 1 11,12 174.36 114.71 1.02
7 1 13,14 140.40 92.37 1.17
8 1 15,16 113.26 74.51 1.20
9 1 17,18 91.48 60.19 1.31
10 1 19,20 73.96 48.66 1.35
11 1 21 223.35 146.94 1.57
12 1 22 147.31 96.91 1.60
13 1 23 97.20 63.95 1.76
14 1 24 23.52 15.47 1.79
15 2 1,2 151.25 99.51 0.32
16 2 3,4 220.30 144.93 0.69
17 2 5,6 202.76 133.39 0.79
18 2 7,8 323.70 212.96 0.78
19 2 9,10 259.37 170.64 1.00
20 2 11,12 208.44 137.13 1.00
21 2 13,14 167.91 110.47 1.19
22 2 15,16 135.51 89.15 1.26
23 2 17,18 109.51 72.05 1.46
24 2 19,20 88.58 58.28 1.53
25 2 21 267.00 175.66 1.75
26 2 22 176.23 115.94 1.80
27 2 23 69.77 45.90 1.93
28 2 24 0.00 0.00 0.00
29 3 1,2 0.00 0.00 0.00
30 3 3,4 112.00 73.68 0.42
31 3 5,6 224.00 147.37 0.50
32 3 7,8 202.00 132.89 0.65
33 3 9,10 323.50 212.83 0.76
34 3 11,12 260.50 171.38 0.78
35 3 13,14 209.50 137.83 1.01
36 3 15,16 169.50 111.51 1.03
37 3 17,18 137.00 90.13 1.23
38 3 19,20 112.00 73.68 1.23
39 3 21 335.50 220.72 1.44
40 3 22 220.00 144.74 1.47
41 3 23 156.00 102.63 1.66
42 3 24 0.00 0.00 0.00
43 4 1,2 0.00 0.00 0.00
44 4 3,4 0.00 0.00 0.00
45 4 5,6 217.00 142.76 0.40
46 4 7,8 242.00 159.21 0.50
47 4 9,10 383.50 252.30 0.75
48 4 11,12 308.00 202.63 0.77
49 4 13,14 248.50 163.49 1.00
50 4 15,16 201.00 132.24 1.02
51 4 17,18 162.50 106.91 1.20
52 4 19,20 131.50 86.51 1.22
53 4 21 395.00 259.87 1.43
54 4 22 261.00 171.71 1.45
55 4 23 173.00 113.82 1.63
56 4 24 64.00 42.11 1.67
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The cables connecting gaps and preamplifiers have length between 0.3 and 1.9 m for
different readout channels (see Tab.1). The signal distortion in these cables is negligible and not
described in the model. But for the noise calculations these cables are taken into account since the
influence to noise is more significant.

Detector is considered as an ideal current source. The original shape of the current is
determined by the electrons drift in the liquid argon. In the case of uniform ionization and absence
of electrons caption, this shape is triangular with initial ionization current ¡ ¢ and drift time τ £�¤ :

The time of signal formation on the pad with dimension of 10-20 cm is in sub- ¥�¦  region and not
taken into account. The small inductance of lines connecting pads and cables are also not included
in the model. The nominal value of drift time is §�¨�©-ª�« , this value is typical for the beam tests and
expected for the ATLAS conditions as well. The theoretical value of ionization current for energy
deposited in LAr of ¬2¯®�°   is ± ² ³ ´�µ ¶ . This value is in good agreement (within 2-3%) with the test
beam data.

·�¸º¹2»-¼2½ ¾2¿»-À@½ Á-Âº¹Ã�»-½ Â

The calibration current to preamplifier input is formed in calibration chain (the upper part
of Fig.1). The exponential signal is produced by inductance Ä8Å  from rectangular pulse. The details
of the generator circuit can be found in paper [1]. Since the real inductance has internal resistivity
(Rg on Fig.1), the pulse shape is not pure exponential, there is a small (~7%) fraction of step. In
frequency domain the signal can be easily derived as follows:

Here Æ/Ç is the total loading impedance of generator, formed by the parallel connection of internal
resistance È2É Ê  and external termination. The value of current Ë Ì  is controlled by DAC level. The
nominal values of parameters are presented in Tab.2

Important consequence of eq.2 is that the calibration signal depends not only on the
intrinsic generator parameters but on the loading impedance as well. So the shape is different for
laboratory conditions (50 Ω termination), for the HEC chain at room temperature and for LAr
temperature (cables have temperature dependent serial resistance, see below).

There are two parasitic effects which are not described in the model of calibration pulse
(eq.2): injected charge and command feedthrough (see [1]). Fig.2 demonstrates the calibration
signal for DAC level 2000 measured on the generator output with 50 Ω termination. The relative
contribution of the parasitic effects becomes less with increasing the DAC value. Studies of the
calibration waveforms show that this contribution is neglectable for the DAC level grater than
~10000.

The calibration pulse (eq.2) is distorted when propagates through calibration PigTail (line
PTcal in Fig.1), Quadrant cable (line Qcal) and HEC calibration lines (Cal1, Cal2, Cal3). The Pig
Tail is a coaxial 50Ω kapton cable of 2.7 m length both in test beam setup and in ATLAS. The
Quadrant  and HEC cables are also coaxial 50Ω Habia lines. The length of Qcal is 5.6m in the test
beam setup, the longer cables of 6.5m are in production for ATLAS. The HEC calibration lines are
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as long as 3.6m both in test beam setup and in ATLAS. So the total calibration cables length is
11.9m in beam tests and 12.8m is expected for the final ATLAS setup.

In the model all 3 parts of the calibration line are described by one transfer function The
studies of the cable characteristics can be found in Note [2]. It has been shown that the impulse
response is reasonably described by 1 zero and 2 poles:

where ß/à à  is the serial resistance of central wire and á@â  is the cable termination resistor (normally
50 Ω). This function is represented in Fig.1 by Laplace object L1.

It can be seen in Fig.4 that model (3) describes the signal distortion with precision  ±1%
(bigger deviation of a few points in the signal beginning is probably due to some imperfections of
measurement. The precision of model can be improved by using a more complicated function. For
instance, 2 zeros and 3 poles give twice less residual. But it was found that function (3) is precise
enough  in terms of description of final calibration waveform.

In the case of generator connected to terminated cable, the external loading impedance of
generator ã@ä  can be estimated as follows:

All parameters in eq.3 depend on the cable length. The values placed in Tab.2 correspond to the
nominal length of HEC calibration cables. The parameters have been found from the waveform
oscilloscope measurements in laboratory conditions at room temperature and in LN2. The room
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temperature measurements have been also performed in different points of real test beam setup
during the technical run in February 2000.

Another important component of the calibration chain is the calibration distribution board
(block CDB on Fig.1). The passive splitting of signal guarantees the cables matching from both
ends. Oscilloscope measurements show that there are now reflections in lines therefore the CDB
can be described in the model simply as factor 1/3 without any shape deformation.

The calibration current to preamplifier input is formed by calibration resistors OIP , located on
the HEC strip lines (SL). It is expected that a small parasitic capacitance Q=R S connected parallel to
the resistor can appear due to the inter-electrode coupling on the SL. There were no dedicated
measurements of the SL impedances done up to now. The value of TVU W  in Tab.2 has been obtained
from the calibration waveforms analysis. Typically it is small enough to be neglected, nevertheless
it is included into the model since one additional zero in transfer function does not complicate the
transformation to time domain.

The transfer function of  SL can be presented as:

( ) /1+ s        where                                                                      (5)⋅ = ⋅τ τX Y[Z=\ X Y]Z=\_^VX Y
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Multiplying functions (2), (3) and (5) one can get the final expression of the calibration current in
frequency domain. The CDB attenuation factor 1/3 is also included

All parameters are summarized in Tab.2 for room temperature and for LAr. The values for
the ATLAS conditions  are not exactly known yet. The calibration board used in the HEC beam
tests is an intermediate version and some changes are foreseen for the final ATLAS system. The
design is not completed yet so the model for the ATLAS signal is based on the test beam
parameters. The longer calibration cables produce bigger distortions of signal. The cable
parameters for the ATLAS chain  are derived from the laboratory measurements done for different
cable length. This recalculation is not very reliable since the measurements were done for Habia
cables only, while the real setup is equipped by two types of cables connected in series.
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It will be shown in section 7 that in the case of the HEC chain it is more convenient to deal
with the derivative of calibration current 4 576 8 9 : .  In frequency domain this function is described by
expression (6) where the multiplier ; < =  is removed. The expression in time domain can be easily
obtained by symbolical inverse Laplace transform. For  > ?A@    the signal is the sum of 3 exponential
functions:

with coefficients:
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The calibration signal can be calculated as integral of eq.7. An example of signal measured
on the strip line level and prediction obtained from (7) is shown in Fig.5.
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Current from the detector is amplified in preamplifying and summing boards (block PSB in
Fig.1) . There are 3 components here relevant for the signal shaping – preamplifier, driver and
decoupling capacitors. Then PSB output is connected to patch panels by Habia cables (line Qsig in
Fig.1) of 5.6m length in test beam setup, in ATLAS it’s length is expected to be 6m. From patch
panel to the cryostat feedthrough the signals are transmitted through 2.7m Pig Tails (line PTsig in
Fig.1). There are 2 decoupling capacitors affecting the signal shape – on the driver input and driver
output. All these components are presented in the middle part of the scheme in Fig.1, they are
referred to as Cold Electronics.

The preamplifier is designed to have input impedance �A� ���� �¡ Ω at LAr temperature for
the purpose of cables matching. The first transistor is optimized for the noise performance, it
consists of 100 gates, therefore it’s capacitance ¢X£  is not negligible. This capacitance is connected
in parallel to the detector capacitance ¤X¥ ,  increasing the signal rise time. Another effect of Ca is
the reflections in HEC cables, this effect is small and not taken into account. The second element
of GaAs chip is the line driver. It has been found that this circuit introduces a small integration in
few ¦�§  range. It is described by one pole with time constant τ ¨ (Laplace object L2 on Fig.1). The
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GaAs chip transfer coefficient Ë
Ì  is determined by the internal preamplifier feedback resistor and
driver gain. So, the transfer function of PSB can be written as follows:

Nominal values of parameters are presented in Tab.3.
Two decoupling capacitors ÍAÎ�Ï  and ÐXÑ
Ò  introduce a simple differentiation of the signal.

The last capacitor is connected in series with the preshaper input capacitor Ó
Ô�Õ . The last one is
present only in the preshaper version.0 used in the test beam setup and not foreseen in the next
version (see the next section).  The  time constants are much higher then typical shaping time, so
the effect of these capacitors is not very big. Nevertheless they are included into model since it
makes the prediction of the final signal shape some ~1% better. The decoupling is described by the
following function:

The distortions in cables are modeled following [2] by using 1 zero and 2 poles, like it is
done for calibration line:

This function is represented in Fig.1 by Laplace object L3.
Multiplying (9), (10) and (11) one obtains the cold electronics transfer function:
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Parameters of the chain placed in Tab.3 are nominal, either design values or averaged over
measured samples. The preamplifiers have technological spread of about ±10% so that the
observed waveform can differ significantly from the nominal one. The PSBs currently used in the
test beam setup are the first samples of the series production for ATLAS, so the set of parameters
in ATLAS is identical to that of the test beam. The signal cable parameters are recalculated for
ATLAS conditions  on the basis of laboratory measurements. As it was mentioned in Section 3,
this prediction is not very reliable, so the set of parameters will be corrected as soon as ATLAS
data will be taken and analyzed.

�%�������������3�3���3������� ���

The final signal shape is formed in the warm electronics (lowest part of Fig.1). There are 2
important components on the front end board (FEB) – preshaper and shaper. In the test beam setup
the signal is transmitted to digitizing system through FEB driver and 3m twisted pair cables. These
last parts are only beam tests specific and will be not present in the final ATLAS chain
(highlighted objects in Fig.1). The nominal parameters of warm electronics components are shown
in Tab.4.

The goal of preshaper (block PR in Fig.1)  is to compensate the preamplifier rise time and
make an additional integration in order to reach the final peaking time of 50 ��� . This function is
represented by Laplace object L4 in the schematics. Additional gain is introduced to adapt the
shaper linearity range. There is  a decoupling capacitor on the preshaper output that introduces the
differentiation with time constant τ ��� :

The preshaper transfer function is as follows:

Details of the preshaper circuit can be found in the Review [3]. The test beam setup is equipped by
the pre-production version.0 of the preshaper hybrids. The design parameters of this version differ
from those implemented in the next generation (version.1) supposed to be produced for ATLAS.
For instance, the zero time constant τ���  has been adjusted for each HEC channel according to the
following equations:

Another difference in version.1 is that the signal distortion in cold cables have been taken into
account so that the integration time constant τ � and gain were changed significantly. The preshaper
gain ���  for the rear HEC modules is twice high than for the front ones. This is done to
compensate the difference of the calorimeter sampling ratios.

Fig.6 shows an example of the preshaper step response measured with stand alone hybrid
in the laboratory conditions. Measurement was done with preshaper adjusted for the readout
channel 1 (detector capacitance according to Tab.1). The precision of the model (14) is rather good
excluding a region in the pulse origin, where the measured points have some irregularities.
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The RC2-CR shaper (object L5 in Fig.1)  is common for all ATLAS liquid argon detectors.
It’s time constant τ ±  has bean chosen from global optimization of the signal to noise ratio of the
calorimeters. Different versions of the circuit are described in paper [4]. In the model the shaper is
considered as an ideal one with the following transfer function:

The shaper gain ²3³  is defined for the step response, that is why the multiplier of 3.69 appears in
the frequency domain. In the test beam setup the only medium gain is used while in ATLAS all 3
gains will be processed. Several measurements of the signal waveforms in laboratory conditions
and in the test beam setup demonstrate that the real circuits are described very well by the
idealized function (16).
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In the HEC beam tests the early prototype of the FEB (version –1) is used. This board
contains only analog part of the front-end electronics, the digitization is performed by a home-
made ADC modules. So there are two components of the chain, specific for the HEC test beam
setup – line driver installed on the FEB and cable connected to ADC modules. It has been found
that these parts introduce short integration and can be modeled by 1 pole each.

In the ATLAS chain model one of these poles is present aiming to describe a possible
signal integration in the analog pipeline circuit or in somewhere else. Since the value of this time
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constant is not known for ATLAS conditions, it is fixed to 1 ns without any particular
consideration. The function describing the last part of the chain is:

The transfer function of the warm electronics is the product of functions (14), (16) and
(17), resulting to:

Parameters involved in this function for the test beam setup and expected values for ATLAS are
collected in Tab.4.
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Equations (12) and (18) determine the complete chain transfer function. It consists of  2
zeros, 10 poles and 4-times differentiation. As can be seen from eq.6, the calibration pulse has
multiplier i j k . When calibration response is calculated in frequency domain, this multiplier is
cancelled with one of the multiplier l  in the chain transfer function. The resulting expression can
be interpreted as product of m9n o p q r9s p q n  of calibration pulse with the t u v wbx v t w�y9z�t v  of the chain. So,
the calculation in time domain is a convolution of function (7) with the chain step response
calculated in time domain.

The ionization signal can be calculated in the same way by convoluting the derivative of
ionization current with the chain step response. The first one can be easily obtained from
expression (1):
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and the chain step response by definition is:

The last function (20) is too complicated to be transformed analytically to time domain.
The only way to obtain it’s expression is the partial fractions expansion method, well known in
operational analysis. The idea is that any rational function (when number of poles is grater than the
number of zeros) can be presented as a sum of poles:

The coefficients ���  are determined by constants � �  and � � . They can be found in 2 steps: first, the
right-side sum is transformed to the common denominator. Then, the numerators of both left-side
and right-side functions are expressed as a power series of � . Since these two numerators have to
be identical, the polynomial coefficients are equal. This condition gives system of �  linear
equations for �  coefficients ��   . The system can be solved numerically.

As soon as coefficients are found, then the transform to time domain is very simple since
the inverse Laplace transform of a pole is exponential function:

so that the chain step response can be expressed as:

where τ¡	¢  are 14 time constants appearing in the denominator of £�¤ ¥ ¦ §   In the practice of the HEC
signals reconstruction and analysis this method of the chain description is referred to as
exponential expansion (EE) method since the step response is represented as a sum of exponents.

Equation (21) is true only when all poles have different time constants, that is formally not
true for the HEC chain due to the triple pole of the shaper. In practice this problem is solved by
substituting the triple pole by 3 poles with slightly different time constants. This approach is useful
since it gives a possibility to model the real shaper circuit where 3 time constants can be not
identical. The similar problem appears when function (23) is used to fit measured waveform.
When during the fit iterations one of time constant approaches to another one, the method gives an
unpredictable result. A special care has to be taken to avoid this situation.

When the step response (23) is known, the expression for the calibration signal can be
obtained directly in time domain by convoluting functions (7) and (23). The convolution of two
exponents with not equal time constants is:

¨
¨9©"ª « © ª ¬ © ¨� ©®¨�

( ) ( )= ⋅ −



 < <δ

τ
τ

1
0            for                                               (19)

¯^° ± ²´³�µ ± ³�¶ ±±=
⋅( ) ( )

                                                                                    (20)

( ) ( ) ... ( )

( ) ( ) ... ( )

·¸· ¹º·¸· ¹»·¼· ¹
·¼· ½¾·¼· ½¿·¼· ½

À
·¸· ½Á

Â
Ã
ÃÃ

Â
+ ⋅ + ⋅ ⋅ +
+ ⋅ + ⋅ ⋅ +

≡
+=

∑1 2

1 2 1

                                                (21)

1
0Ä¼Ä Å Ä ÅÇÆ Æ

+
→ − ⋅ >exp( )        for                                                                 (22)

È}É Ê É
ËÌ ÌÌ( ) exp( )= ⋅ −

=
∑ τ1

14

                                                                                (23)

Í Í Í Íxp -
t

1
xp -

t

2
=

1 2

1- 2
xp -

t

1
xp -

t

2
                                (24)

τ τ
τ τ
τ τ τ τ





 ⊗ 





⋅ 



 − 













15

So the calibration signal is expressed as:

here Î�Ï  denotes the common multiplier in expression (7), Ð�Ñ  are 3 coefficients from (8) and τ Ò Ó  are
corresponding time constants of the calibration chain.

Function (25) potentially describes the real calibration signal with very high accuracy in the
full time range. The experience shows that the precision of ±1% can be reached when only 2 time
constants of the chain are free fit parameters. Normally the preshaper integration τ Ô and shaper
time constant τ Õ  are chosen for adjustment. For some problematic channels, the preamplifier rise
time τ Ö  and strip line capacitance ×	Ø Ù  has to be adjusted in addition. Fig.7 shows the calibration
waveform for one of such problematic channels measured in August 2000 beam run and fit by
function (25). The measurements done for DAC level of 2000, where the generator parasitic
effects are still not very small.
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There are two modes of calibration used in the beam tests, pulsing either all generators
simultaneously or the single one. In the last case the waveform differs from the theoretical one due
to crosstalk leakage of current to neighboring pads. Formally this waveform is not described by the
model but the function (25) still can be used to fit data. The only difference is that the values of
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adjusted parameters now do not correspond to the real values of the chain components. The typical
precision of  ±1% is also achievable in this case.

The ionization signal is the convolution of (19) and response (23). The convolution of (19)
with one exponential function is done analytically giving the following expression:

So, the ionization signal is the sum of 14 functions (26):

Model of the ionization waveform (27) reproduce the real signals with typical accuracy of
± 1% in the full time window. Fig.8 demonstrates the signal from the first longitudinal segment
produced by electrons 148 GeV measured in August 2000 run period. Chain parameters are fixed
by using calibration waveform in this readout cell. The initial ionization current [ \  and electrons
drift time τ ]!^  are fit parameters.
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As can be seen from Tab.2 – Tab.4, there are many parameters different for present test
beam setup and future ATLAS chain. It is expected that both calibration and ionization signals in
ATLAS will be shorter (peaking time ~50 ns) and gain is higher. Fig.9 shows waveforms
calculated for these two sets of parameters for readout channel 3 ( ¹�º  = 339 pF). For ionization
current » ¼  = 10 µA (visible energy of 1.40 GeV and total energy 32.8 GeV), the signal amplitude is
291 mV that gives the transfer coefficient of 29.1 KΩ or 8,9 mV/GeV. The calibration current is
also 10 µA that is achieved with DAC = 4803 for the test beam setup and 4820 for the case of
ATLAS.
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Electronics noise can be calculated on the basis of simple model shown in Fig.10 with 2
independent noise sources on the preamplifier input - serial (or voltage) noise and parallel (or
current) noise. This approach is widely used for the electronic noise description.  Physically serial
noise C D represents the thermal noise of the first transistor and possible contribution of the second
stage. Parallel source E F  describes the feedback resistor thermal noise and shot noise of all leakage
currents.  The amplifier in the diagram is noiseless with transfer coefficient G�H  and input
impedance I(J . The chain is presented by transfer function H(s) that is the product of functions
(12) and (18) without multiplier K#L .

M N O	P#Q R S#T�U#V W#X Y Z,Y W#[ \ ] Z Y9X ^B_ `�Z,Y X a�^�b�c#] `�b#X ^

Usually the fluctuations d e   and  f g    are characterized by spectral densities that are
parameterized by equivalent noise resistances h,i j  and k(l�m  as follows:

Values of n,o p  and q(r�s  are found from measured noise spectrum. It has been observed that the
parallel source of GaAs preamplifier has the flicker noise contribution with corner frequency ωs
varying significantly from chip to chip. Values of noise parameters were extracted from laboratory
measurements in liquid nitrogen. Afterwards it was found that in the test beam setup the noise
values (except of few oscillating channels) are 10 – 20% bigger than in the laboratory conditions.
Tab.6 shows 3 noise parameters for the noise model of pure GaAs chip and for the real setup. In
further calculations the last set of parameters will be used.
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Transmission line in Fig.10 represents the short HEC signal cables. This cable produces
reflections that change the shape of spectral density and, as a consequence, the shape of noise
autocorrelation function. In the model the cable is described by the well known equation of ideal
transmission line (wave impedance ρ and propagation tine Õ#Ö ) loaded by capacitor ×(Ø :

The total noise current to the preamplifier input Ù Ú  can be calculated using Ohm’s law and
taking into account that Û Ü   and Ý Þ  are independent. Using parameterization (29) one can obtain:

Where ß(à�á ωâ  is equivalent cable capacitance:

The noise on the chain output ã(ä  has spectral density calculated with transfer function as follows:

The electronics noise RMS value can be now calculated as

It can be expressed in terms of input ionization current by dividing σå  by the chain transfer
coefficient (the output amplitude for æ ç =1). The resulting value is referred to as equivalent noise
current (ENI) and frequently used as the integral noise characteristic of the chain. Another
important value needed for optimization the digital signal processing is the noise autocorrelation
function. It is defined as follows:

Integration in (33) and (34) is performed numerically. Fig.11(a) shows ENI measured in
test beam August 2000 compared to calculations with equation (33). Noise correlation function
(34) calculated for readout channel 2 is shown in Fig.11(b) in comparison with 4 corresponding
readout cells of 2 HEC modules. The agreement is quite reasonable. Calculations show that the
ENI expected for the ATLAS conditions is 20 – 25% bigger than in the beam tests, that is
demonstrated in Fig.12. This increase of noise is clearly due to the faster response of the ATLAS
chain.
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The model function for the HEC calibration and signal chain is constructed in frequency

domain. The signal waveform in time domain is calculated by applying the partial fractions
expansion method. Typically the real calibration and ionization signals are described within
precision of ±1% in full time window.

The set of parameters for the case of the test beam setup is obtained either on the basis of
laboratory measurements or oscilloscope measurements in real conditions. Some parameters are
not known yet for the final ATLAS setup since the final version of some components of the chain
is not designed. So, the set of the ATLAS chain parameters presented here is preliminary and can
be corrected in future. The nominal HEC ionization signal is calculated and the values of samples
needed for the pileup simulations are produced.

The model for the electronic noise is created and compared to the test beam data. The
expected ENI in ATLAS is ~20% bigger than in the test beam setup. The noise correlation
coefficients are produced for all HEC readout channels for the further use in the readout driver
studies.
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