Suche nach dem Higgs-Boson und dem Ursprung der Massen der Elementarteilchen

Das Standardmodell der Elementarteilchen

Teilchen

Das Standardmodell

Quantenmechanik und Relativitätstheorie:

Elementarteilchen beschrieben durch Teilchenfelder,

Ausbreitung in Form vom Wellen mit Amplitude A und Phasenwinkel ø.

Alle Wechselwirkungen sind festgelegt durch ein vereinheitlichendes Symmetrieprinzip (lokale Eichsymmetrie): Physikalische Gesetzmäßigkeiten unverändert bei lokalen Phasenänderungen der Teilchenfelder, kompensiert durch Eichfeld = Wechselwirkung.

Das Standardmodell

Wechselwirkungen werden vermittelt durch den Austausch von Feldteilchen

R.Feynman

Tests des Standardmodells

Das Standardmodell Wechselwirkungen vermittelt durch den Austausch von Feldquanten:

Die Wechselwirkungen unterscheiden sich durch die Zahl der veränderlichen Phasenwinkel:

Kraft	Anzahl Winkel	wirkt auf	vermittelt durch
elektro-	1	elektrisch geladene	Photon γ
magnetische		Teilchen	(masselos)
schwache	3	Quarks, Leptonen	W^+ , W^- , Z^0
		W^{\pm} , Z^0	(massiv)
starke	8	Quarks und Gluonen	8 Gluonen
			(masselos)

1 Phasenwinkel

2 Phasenwinkel

Eichsymmetrien und Teilchenmassen

Die Eichsymmetrien verlangen masselose Austauschteilchen und langreichweitige Kräfte.

Die grossen Massen der Austauschteilchen W^{+/-}, Z⁰ sind verantwortlich für die Schwachheit und kurze Reichweite der schwachen Wechselwirkung:

 $M_W = 80 \times M_{Proton}$, $M_Z = 90 \times M_{Proton}$

Die Massen der Quarks und Leptonen verletzen die Eichsymmetrie der schwachen Wechselwirkung.

Ursprung der Teilchenmassen

PD Dr. Hubert Kroha Tests des Standardmodells

Spontane Symmetriebrechung

Ursprung der Teilchenmassen

Schwacher Phasenübergang im frühen Universum, 10⁻¹¹ Sekunden nach dem Urknall bei einer Temperatur von 10¹⁵ Grad (entspricht kinetischen Teilchenenergien von der Grösse der W-Masse).

Ursprung der Teilchenmassen

Erzeugung der Massen der Elementarteilchen durch ihre Wechselwirkung mit dem Higgs-Feld

Das Higgs-Boson

- Das letzte noch nicht gefundene Teilchen des Standardmodels.
- Notwendig f
 ür die Konsistenz der Theorie.
- Die Masse des Higgs-Bosons wird nicht vorhergesagt.

ve,e

Das Higgs- Boson

- Theoretische Grenzen für die Higgs-Masse:
- 1) Endliche Higgs-Selbstwechselwirkung
- 2) Stabilität des Higgs-Grundzustands

Experimentelle Grenzen

Higgs-Produktion in pp-Kollisionen

Nur 1 Higgs-Boson in 10¹⁰ – 10¹³ pp-Reaktionen!

Zerfälle des Higgs Bosons

Suche nach dem Higgs- Boson ATLAS nach 4 Jahren ATLAS + CMS nach 1 Jahr nach 3 Jahren Signal significance Signal significance ■ 10 fb^{−1} • $H \rightarrow \gamma \gamma + WH$, $ttH(H \rightarrow \gamma \gamma)$ $\begin{array}{l} \mathbf{H} \rightarrow \mathcal{H} \mathbf{I} + \mathbf{W} \mathbf{H}, \mathbf{u} \mathbf{H} \\ \mathbf{t} \mathbf{H} (\mathbf{H} \rightarrow \mathbf{b} \mathbf{b}) \\ \mathbf{H} \rightarrow \mathbf{Z} \mathbf{Z}^{(*)} \rightarrow 4\mathbf{l} \\ \mathbf{H} \rightarrow \mathbf{W} \mathbf{W}^{(*)} \rightarrow \mathbf{l} \mathbf{v} \mathbf{l} \mathbf{v} \\ \end{array}$ ATLAS + CMS ■ 30 fb⁻¹ 10² 10² $H \rightarrow ZZ \rightarrow llvv$ $H \rightarrow WW \rightarrow lvii$ Total significance ▲ 100 fb⁻¹ 10 10 5σ 5σ ATLAS 100 fb⁻¹ LEP 2 LEP 2 limit 1 10² 10³ m_H (GeV) 10² 10³ m_H (GeV) $H \rightarrow \gamma \gamma$ $H \rightarrow \mu \mu \mu \mu$ 17

Suche nach dem Higgs Boson

Der Large Hadron Collider (LHC)

Overall view of the LHC experiments.

Der Large Hadron Collider

1250 supraleitende
Dipolmagnete mit
1.6 x 10⁹ km SL Kabel
(2 x Erdumlaufbahn
um die Sonne)

PD Dr. Hubert Kroha Tests des Standardmodells

EP-Tunnel

Der Large Hadron Collider

- pp Kollisionen bei höchsten Energien: E_{CMS} = 14 TeV
- Kollisionen alle 25 ns
 ⇒ schnelle Detektoren und Electronik
- Hohe Proton-Strahlintensität bis zu 20 pp Reactionen und 1000 Teilchen pro Kollision ⇒ feine Detektorsegmentierung
- Hohe Bestrahlungsdosen:
 - Innere Spurdetektoren:
 > 10¹⁴ Protonen /cm²
 - Äussere Myondetektoren:
 > 10¹¹ Neutronen/cm²
 ⇒ strahlenharte Detectoren
 - Höchste Datenraten: 300 Mbyte/s

$H \rightarrow Z^0 Z^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

ATLAS Detektor

ATLAS Detektor

ATLAS Magnete

ATLAS Spurdetektor

$pp \rightarrow b\overline{b}H \rightarrow b\overline{b}b\overline{b}$

60 m² Siliziumdetektoren 6 M Streifen, 80 M Pixel

Siliziumdetektoren

16000 Si-Streifen-Detektoren

Siliziumdetektoren

- Strahlenbelastung in 10 Jahren
 >10 MRad und >10¹⁴ Protonen/cm²
- Strahlenschäden in c-Silizium: effektive Dotierungsänderung ∕ n → p
 - Effekt verstärkt bei höherer Temperatur: Betrieb bei unter 0°C

ATLAS Kalorimetersystem

Electromagnetische Flüssig-Argon Kalorimeter: Energieauflösung 10%, Vollständige Überdeckung des Raumwinkels, feine Segmentierung

ATLAS Myonspektrometer

Max Kan I am

(RASNIK)

Toroidales Magnetfeld mit supraleitenden Luftspulen Impulsauflösung von 2 – 10% für 10 – 1000 GeV Myonen Präzisionsmyondetektoren Optisches Positionsüberwachungs-Axial lines

I ALLANAN

system mit 30 µm Genauigkeit

Projective lines (RASNIK

Präzisionsmyondetektoren Monitored Drift Tube (MDT) Kammern

- 400 Driftrohre/Kammer
- gefüllt mit Argon:CO₂ Gas mit 3 bar Druck
- Ortsauflösung/Rohr 100 µm
- Drahtpositionierung auf 20 μm
- Kammerauflösung

PD Dr. Hubert Kroha Tests des Standardmodells 40 µm

Myonkammerbau

1200 Kammern with 370000 Driftrohren (1000 km Länge), 5000 m² Fläche: 1 Fußballfeld

UX15 Jura Fri Oct 31 09:14:51 2003

