Alignment of muon chambers with tracks

Sergey Kotov

MPI für Physik, Munich

MDT Calibration Workshop, Rome, 27.06.2006

- Alignment of the ATLAS muon spectrometer relies on an optical alignment system with several subsystems. Specifically, in barrel, sagitta corrections are calculated from readings of the projective alignment sensors
- Many muon chambers don't have projective optical alignment sensors no correction to sagitta measurement
 - small barrel chambers
 - BEE chambers
 - BIS8 chambers
 - barrel-to-endcap connection
- Tracks passing through overlaps between these chambers and optically aligned chambers must be used to obtain their relative positions

Data flow in track based alignment

Basic features of the track based alignment algorithm

- It should be an algorithm within ATHENA framework
- This algorithm should make full use of new tracking EDM (be able to run on both Mounboy and MOORe output)
 - operate with tracking EDM data objects: Track, TrackSegment, RIO_OnTrack
 - use TrackFitters, TrackExtrapolators and other common tracking tools
- a skeleton of such an algorithm has been written at MPI (MuonTrkAlign package)

Steps of the MuonTrkAlign algorithm

- select an overlap region Track with associated RIOs_OnTrack collection from standard muon reconstruction
- devide this collection into four parts: RIOs_OnTrack coming from large chambers and RIOs_OnTrack coming from small inner/middle/outer chambers
- refit the "large chambers" RIOs_OnTrack collection with TrackFitter from common tracking tools, using original track as a seed
- extrapolate this "large chambers" track into small chambers with TrackExtrapolator and get track's extrapolated parameters
- refit inner/middle/outer small chamber RIOs_OnTrack collections with TrackFitter, using extrapolated "large chambers" track parameters as seed
- differences between the refitted inner/middle/outer small chamber tracks and the extrapolated "large chambers" track are the tracking "pseudo" sensors input for ASAP

Configuration of common tracking tools for MuonTrkAlign

- release 12.0.0, sample of 20 GeV muons (simulated with 11.0.4)
- input track container "ConvertedMooreTracks" or "ConvertedMuonboyTracks"
- setup of TrackFitter and TrackExtrapolator

ConfiguredExtrapolator ToolSvc.ConfiguredExtrapolatorATLAS
Propagator 0: Trk::StraightLinePropagator (Instance: StraightLinePropagator) Propagator 1: Trk::HelikPropagator (Instance: HelikPropagator) Propagator 2: Trk::RungeKuttaPropagator (Instance: RungeKuttaPropagator) Navigator : Trk::Navigator (Instance: Navigator/VithEmptyGeometry) Updator : Trk::MaterialEffectsUpdator (Instance: MaterialEffectsUpdator)
ConfiguredKalmanFitter - Tool: Trk::KalmanFitter under instance: TrkKalmanFitter
* - Kalman ForwardFilter TrkFwKalmanFilter * - Kalman StulierLogic TrkKalmanSmoother * - Kalman SulierLogic TrkKalmanOutLogic * - RIQ_OnTrackCreator: none * - Extrapolator ConfiguredExtrapolatorATLAS * - KalmanMessUpdator: Trk:-KalmanUpdator/TrkKalmanUpdator
MuonTrkAlignment INFO Tracking tool Trk::KalmanFitter booked as instance TrkKalmanFitter INFO extrapolator Type=Trk::Extrapolator extrapolatorMame=ConfiguredExtrapolatorATLAS INFO Tracking tool ConfiguredExtrapolatorATLAS MuonTrkAlignment INFO Tracking tool ConfiguredExtrapolatorATLAS MuonTrkAlignment INFO Tracking tool ConfiguredExtrapolatorATLAS
Muon TrkAlignment INFO propagatorType=Trk::RungeKuttaPropagator propagatorName=RungeKuttaPropagator
NuonTrkAlignment INFO Tracking tool Trk::RungeKuttaPropagator booked as instance RungeKuttaPropagator

• impact parameters at original track perigee

Comparison of original Moore track with refitted large chambers track

 momentum parameters at original track perigee

Extrapolated large chambers track vs inner small chamber track

major bug just found wrong orientation of the extrapolation surface, the correct pulls should be much smaller

Extrapolated large chambers track vs middle small chamber track

Extrapolated large chambers track vs outer small chamber track

Problems

- MuonClulsterOnTrack objects (RPCs, TGCs and CSCs) returned by MooreToTrack and MuonboyToTrack tools have 2D measurement but 1D covariance matrix
- couldn't find a way to constrain a track parameter (curvature) during the track refit in common tracking tools
- frequent crashes during refitting due to scatterers in original tracks
- the current code is just a skeleton of algorithm, so it might have some major bugs

Plans

- fix covariance matrix issue for converted tracks
- get rid of crashes to be able to run on larger samples
- tune common tracking tools parameters for use in muon spectrometer code
- run on a sample of muons with pt=100 GeV