

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Sandra Horvat for the MPI Group

Higgs Activities and Plans at MPI

2nd ATLAS-D Workshop • Heidelberg • 21.-22.09.2006

OVERVIEW OF ACTIVITIES / RECENT RESULTS: $H \rightarrow bb$, $H \rightarrow \tau\tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu\mu$, $A \rightarrow \tau\tau$ / To Do

Overview of the Higgs searches at MPI

SM Higgs:

Motivation: cover the whole allowed mass region.

- $(tt, W, VBF) H \rightarrow b\bar{b}$
- VBF $H \rightarrow \tau \tau \rightarrow (\ell \nu \nu)(anything)$
- VBF $H \rightarrow WW \rightarrow (\ell \nu)(anything)$
- $H \to ZZ^{(*)} \to (\ell^+ \ell^-)(\ell^+ \ell^-)$

Neutral MSSM Higgs:

Motivation: expertise in $\mu\text{-}$ (and $\tau\text{-}) reconstruction.$

• $A/H \rightarrow \mu^+ \mu^-$ • $A/H \rightarrow \tau^+ \tau^- \rightarrow (\ell \nu \nu) (anything)$

Related software development:

- b-jet reconstruction, b-tagging: Neural-Net Tag Combiner
- τ -identification (using TopoClusters): first preliminary results
- forward jet reconstruction (VBF channels): just starting
- jet reconstruction with the first data: to start in Jan 2007

OVERVIEW OF ACTIVITIES / RECENT RESULTS: $H \rightarrow bb$, $H \rightarrow \tau \tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu \mu$, $A \rightarrow \tau \tau$ / To Do

	PROCESS	PEOPLE	STATUS	DATA USED
SM	$(tt, W, VBF)H \rightarrow b\overline{b}$	S.Kotov, J.Yuan	optimized	FULL/FAST
SM	$(VBF)H \rightarrow \tau\tau \rightarrow (\ell\nu\nu)(\ell\nu\nu)$	S.Horvat, S.M-Möck, C.Valderanis	optimized	FAST
SM	$(VBF)H \rightarrow \tau\tau \rightarrow (\ell\nu\nu)(h\nu)$	M.Groh, S.Horvat	first data	
SM	$(VBF)H \rightarrow WW \rightarrow (\ell\nu)(\ell\nu, h\nu)$	S.Horvat, S.Kaiser, O.Kortner	first data	
SM	$H \rightarrow ZZ^{(*)} \rightarrow (\ell^+ \ell^-)(\ell^+ \ell^-)$	N.Benekos, S.Horvat, O.Kortner	optimized	FULL
MSSM	$(bb)A/H ightarrow \mu^+\mu^-$	G.Dedes, S.Horvat	optimized	FULL/FAST
MSSM	$(bb)A/H \rightarrow \tau^+ \tau^-$	G.Dedes, S.Horvat	first data	

Optimized analyses:

- Cuts optimized for the low-luminosity up to $\mathcal{L}=30$ fb⁻¹.
- Using FAST (Atlfast) and/or

FULL (V10.0.4, "Rome-Layout") detector simulation.

- All data (before the CSC era) produced privately at MPI and FZK.
- Pile-up, cavern background and misalignment effects still missing, to be done with the CSC data (Dec 2006).

First data:

• Preparation for the studies on the CSC data (V11.0.42, V12.0.2).

$ttH, H \rightarrow b\bar{b}$

Performance of different jet reconstruction algorithms:

	Particlo	tīH			tītbb		
Faiticle		Cone4	Cone7	$k_T^{D=0.5}$	Cone4	Cone7	$k_T^{D=0.5}$
Boc officionay %	b-jet	52.2	42.9	49.3	47.1	41.5	45.8
Rec. efficiency, 76	light jet	72.9	54.4	68.7	76.0	62.1	73.9
Mean An /n shift %	b-jet	-10.5	0.4	-0.4	-9.6	0.9	0.6
weat $\Delta p_t / p_t$ since, 78	light jet	-8.2	3.4	2.2	-9.0	2.8	1.7

Overview of Activities / Recent Results: $H \rightarrow bb$, $H \rightarrow \tau \tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu \mu$, $A \rightarrow \tau \tau$ / To Do

$ttH, H \rightarrow b\bar{b}$: Analysis results

Recent improvement: NN training on the fully simulated data

A) using NN-training on ATLFAST data (1M $t\bar{t}H$, 1.8M $t\bar{t}b\bar{b}$)

B) using NN-training on FULLY SIM. data (50k $t\bar{t}H$, 150k $t\bar{t}b\bar{b}$)

OVERVIEW OF ACTIVITIES / RECENT RESULTS: $H \rightarrow bb$, $H \rightarrow \tau \tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu \mu$, $A \rightarrow \tau \tau$ / To Do

$(W, VBF)H, H \rightarrow b\bar{b}$

ATLFAST studies exploring the feasibility of these searches (J.Yuan).

WH channel:

VBF H channel:

- Dominant bckgr.: *W* + *jets*
- More realistic b-tagging compared to TDR ⇒
 - TDR significance: 2.4
 - New result: 1.1

- Without the $b\bar{b}$: Significance $\approx 3-4$
- $b\bar{b}$ -contribution hard to estimate, large statistics needed

VBF $H \rightarrow \tau^+ \tau^- \rightarrow (\ell \nu \nu) (\ell \nu \nu)$: Analysis results

ATLFAST study (M.Groh, C.Valderanis):

Plans:

- extend to the lepton-hadron channel
- perform the analysis with the CSC data

OVERVIEW OF ACTIVITIES / RECENT RESULTS: $H \rightarrow bb$, $H \rightarrow \tau \tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu\mu$, $A \rightarrow \tau \tau$ / To Do

VBF $H \rightarrow \tau^+ \tau^- \rightarrow (\ell \nu \nu) (\ell \nu \nu)$: First CSC data

Contribution to the CSC data production (full sim. with 11.0.42):

- 8138-8141: $Z
 ightarrow e^+e^- + n$ jets, \sim 160k events
- 8150-8153: $Z \rightarrow \mu^+\mu^- + n$ jets, \sim 160k events
- 8162: $Z \rightarrow \tau^+ \tau^- + 2 \text{ jets}, \sim 30 \text{k events (4M ATLFAST)}$

First look at the data (8162), very preliminary:

OVERVIEW OF ACTIVITIES / RECENT RESULTS: $H \rightarrow bb$, $H \rightarrow \tau \tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu\mu$, $A \rightarrow \tau \tau$ / To Do

$H \to ZZ^{(*)} \to (\ell^+ \ell^-)(\ell^+ \ell^-)$: Analysis results

Analysis optimized with 10.0.4 data (S.Horvat, O.Kortner): (afterwards well reproduced on the 11.0.42 CSC data: 5300,5200,5176,5980).

	$m_H = 130 \text{ GeV}$	$m_H = 160 \text{ GeV}$	$m_H = 180 \text{ GeV}$	$m_H = 280 \text{ GeV}$
	$(\delta m = \pm 5 \text{ GeV})$	$(\delta m = \pm 6 \text{ GeV})$	$(\delta m = \pm 7 \text{ GeV})$	$(\delta m = \pm 20 \text{ GeV})$
N _{signal}	17.2±0.1	20±1	21.4±0.3	49.1±0.1
N _{ZZ}	8.7±0.3	8.8±0.3	21.0±0.5	31.1±0.6
N _{Zbb}	2±2	2±2	1±1	0±2
N _{tī}	0±0.4	0±0.4	0.5±0.4	0±0.4
Signif. (no K-fact)	5.0±0.3	5.5±0.5	4.5±0.2	8.7±0.4

Overview of Activities / Recent Results: $H \rightarrow bb$, $H \rightarrow \tau\tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu\mu$, $A \rightarrow \tau\tau$ / To Do

$H \rightarrow ZZ^{(*)} \rightarrow (\mu^+\mu^-)(\mu^+\mu^-)$: Pile-Up Studies

Influence of the pile-up at $L=10^{33}$ (N.Benekos in collaboration with Saclay)

• suppression of the $t\bar{t}$ and $Zb\bar{b}$ background might be affected Total number of ID-tracks

$(bb)A/H \rightarrow \mu^+\mu^-$: Analysis results

Analysis with ATLFAST and FULL SIM (10.0.4) (G.Dedes, S.Horvat):

Plans:

- CSC analysis, combined with the low-mass region ($m_A < 150$ GeV)
- extend to the $A \rightarrow \tau \tau$ channel

OVERVIEW OF ACTIVITIES / RECENT RESULTS: $H \rightarrow bb$, $H \rightarrow \tau \tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu\mu$, $A \rightarrow \tau \tau$ / To Do

FULL

26

48

ATLFAST

17

35

450 GeV

0.7

0.4

$(bb)A/H \rightarrow \tau^+ \tau^-$: First data

Performance plots, CSC samples 5352, 5200, 5149 (G.Dedes):

Discriminating variables, invariant mass $m_{\tau\tau}$:

OVERVIEW OF ACTIVITIES / RECENT RESULTS: $H \rightarrow bb$, $H \rightarrow \tau\tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu\mu$, $A \rightarrow \tau\tau$ / To Do

Related software: τ -identification

Exploring TopoClusters as the seeds for τ -reconstruction (M.Groh, S.Horvat):

work started in collaboration with Freiburg

TopoClusters: possible improvements at low p_T .

Overview of Activities / Recent Results: $H \rightarrow bb$, $H \rightarrow \tau\tau$, $H \rightarrow 4\ell$, $A \rightarrow \mu\mu$, $A \rightarrow \tau\tau$ / To Do

To Do List

Commitments to the Higgs Working Group:

Contributions to 6 Higgs CSC notes (editing of the $A/H \rightarrow \mu\mu$ note).

₩

- Validation and development of the reconstruction algorithms. (Possible field for the common work within ATLAS-D: organized, systematic evaluation of the reconstruction perform.)
- Preparation of analyses for the CSC data, CSC data prodution.
- Trigger studies.
- Include more realistic detector effects:
 - Pile-up (VBF channels): development of the handling tools.
 - Misalignment, cavern background (particularly for the muons).
- ${\scriptstyle \bullet}$ Priority: determination of the background from real data. \Longrightarrow

Extracting information from real data

Methods for evaluating the lepton and jet reconstruction performances from the data, using standard candles like $t\bar{t}$ and $Z \rightarrow ee, \mu\mu, \tau\tau, b\bar{b}$.

Measurement of background shapes by means of control samples:

- Control sample selected by relaxing the cuts on certain variables. such to obtain a large background sample
- Ideally, the background shape should not be correlated with the particular variable for which the cut was relaxed.

Calibration with related reference processes.

Example Z + jets:

- Information on the pile-up effects contained in angular and rapidity gap distributions of forward jets.
- Reference for the cross-section of the VBF Higgs production (same dependence on the p_T^{jet} -cuts). V.A.Khoze et al., hep-ph/0207365v3