

S. Horvat for the MPI Group

Higgs Activities at MPI

ATLAS Higgs-D Treffen • Munich • 28.-29.11.2006

Overview of the Higgs searches at MPI

(★★★ optimized; ★★ TDR-like; ★ starting; • to start)

SM Higgs:

```
*** (tt, W, VBF) H \rightarrow b\bar{b} [Sergei Kotov, Jianming Yuan] 

** VBF H \rightarrow \tau\tau \rightarrow (\ell\nu\nu) (anything) [Manfred Groh, S.H., Makis Valderanis] 

** VBF H \rightarrow WW \rightarrow (\ell\nu) (anything) [S.H., Steffen Kaiser, Oliver Kortner] 

*** H \rightarrow ZZ^{(*)} \rightarrow (\ell^+\ell^-)(\ell^+\ell^-) [S.H., Oliver Kortner]
```

MSSM Higgs:

```
*** A/H \rightarrow \mu^{+}\mu^{-} [George Dedes, S.H.] 
** A/H \rightarrow \tau^{+}\tau^{-} \rightarrow (\ell\nu\nu)(anything) [George Dedes, S.H.] 
• H^{\pm} \rightarrow \tau^{\pm}\nu [Thies Ehrich, S.H., Sergei Kotov]
```

Related software development:

- *** b-jet reconstruction, b-tagging [Sergei Kotov]
 - \star τ -identification (using TopoClusters) [Manfred Groh, S.H.]
 - * forward jet reconstruction (VBF) [Steffen Kaiser, Oliver Kortner]
 - jet reconstruction with first data (900 GeV) [F.Legger, to start in 2007]

- Neural-Network analysis on the FULLY SIM. ("Rome") data; enough statistics to train the NN on fully simulated data.
- Comparison of performances of different jet reconstruction algorithms (Cone4, Cone7, k_T).
- Comparison of analyses on ATLFAST and FULLY SIM. data.

- ATLAS Note (in addition to the CSC note) under preparation.
- Optimization of (b-)jet selection, specific to this channel (get the maximum S/\sqrt{B}).
- Reproduction/completion of the analysis on the CSC data.

Done:

ATLFAST study of the lepton-lepton channel (TDR-like).

Being Done:

• Contribution to the CSC data production (12.0.31): 8138-8141, 8150-8153, 8162: $Z \rightarrow (ee, \mu\mu, \tau\tau) + n \ jets$.

• Comparison of FULL and ATLFAST sim. $(Z + 2jets \text{ for } \ell - \ell)$:

- Lepton-lepton channel with fully simulated data (ASAP: PhD).
- Extend to the lepton-hadron channel (with the CSC data),
 make use of the improvements in the tau-reconstruction.
- Multivariate methods for the background suppression.

Being Done:

• Jet performance studies have just started.

- Perform the analysis on the CSC data, using multivariate methods.
- ATLFAST for getting enough statistics? -ATLFAST validation.
- Emphasis on the forward-jet reconstruction, influence of the pile-up effects on the jet distributions.

Done:

• Optimized analysis with ATLFAST and FULL ("Rome") data; concentrated to the high-mass region $(m_A > 200 \text{ GeV})$.

- Reproduce the analysis with the CSC data, combine with the searches in the low-mass region.
- Comparison of different generators, for the systematic uncertainties.
- ATLFAST data needed for a reliable cut optimization (most important: good description of E_T^{miss} -reconstruction).
- Main interest: influence of the changes in the muon performance due to the misalignment, pile-up and cavern background effects.

Being Done:

- First validation plots for the CSC data (leptons, τ -jets, b jets, E_T^{miss}).
- Study of the lepton isolation in the τ -jet environment.
- Cut based analysis (lepton-lepton, lepton-hadron) with the available signal and $t\bar{t}$ data \Rightarrow still some differences w.r.t. TDR.

- Take all other backgrounds, cut optimization.
- Main interest: lepton-hadron channel (make use of the optimized τ -reconstruction, study the pile-up effects on the b-jets, τ -jets).

Points of common interest?

Short-term (CSC data are just coming up):

- Available generators, known problems and solutions.
- Comparison of different reconstruction algorithms for muons***, electrons, jets*, b-jets***, τ -jets*, E_T^{miss} . (Define a systematic way to share this work.)
- ATLFAST validation against the full simulation.
 - ATLFAST with fast shower for the jet-related studies
 - fast simulation of the inner detector (FATRAS*)
 - changes in the muon parametrization due to the misalignment, pile-up and cavern background

Longer-term:

- Pile-up effects (and how to minimize them)
 jet reconstruction, central jet veto, lepton isolation...
- Complementary selection of the mass points for the analyses, comparison of the results.
- Statistics tools, common definition of the signal significance.