

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Sandra Horvat, Nectarios Benekos, Oliver Kortner und Hubert Kroha

Untersuchungen des Kanals $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ im ATLAS-Detektor mit vollständiger Detektorsimulation

DPG Tagung • Dortmund • 28.-31. März 2006

Einleitung

Der Zerfallskanal $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ ($\ell = e, \mu$) bietet eine der klarsten Higgssignaturen im ATLAS-Detektor.

Auswertung des Entdeckungspotentials im ATLAS-Detektor anhand detailierter Detektorsimulation (niedrige Luminosität, bis 30 fb⁻¹):

⇒ bisherige Studie mit 4 Myonen im Endzustand (DPG Tagung 2005)

Erreicht man in Kombination mit Elektronen die 5σ -Signifikanz?

- ATLAS-Software hat sich entwickelt \rightarrow neue Datensätze.
- Optimierung der Schnitte zur Unterdrückung des Untergrunds.
- Ergebnisse.

Simulierte Signal- und Untergrundprozesse

Prozess	$\sigma \times BR$ (fb)	N _{30<i>fb</i>-1}	N rekonstruiert
	(nach dem 4ℓ-Filter)		
$gg ightarrow H ightarrow 4\ell$, 130 GeV	1.624	48.72	60 000
$gg ightarrow H ightarrow 4\ell$, 180 GeV	1.656	49.68	15 000
$gg ightarrow H ightarrow 4\ell$, 280 GeV	4.397	131.9	32 000
reduzierbar: $t\overline{t} ightarrow \ell u b \ell u \overline{b}$	1311	39330	442 000
reduzierbar: $Zbar{b} ightarrow \ell\ell bar{b}$	519.9	15597	53 000
irreduzierbar: $(ZZ^{(*)},Z\gamma^*) ightarrow 4\ell$	33.36	1000.8	109 000

- PYTHIA(+AcerMC)-Generatoren (4 ℓ -Filter mit $p_T > 5$ GeV/c, $|\eta| < 2.5$)
- Detailierte Simulation der Prozesse im Detektor (Athena 10.0.4).
- Myonrekonstruktion: Effizienz 92%, p_T -Auflösung 2.5% Elektronrekonstruktion: Effizienz 86%, p_T -Auflösung 4%
- Große Datensätze ermöglichen die Optimierung der Schnitte.

Analysenverlauf

Isolierte Leptonen

Stärkste Unterdrückung der $t\bar{t}$ - und $Zb\bar{b}$ - Untergründe.

(2 von 4 Leptonen umgeben von Jet-Teilchen aus b-Zerfällen).

• \Rightarrow Maximale Energie $E_T^{max}(\Delta R)$ deponiert im Kegel ΔR um den Leptonkandidaten herum, getrennt für Elektronen und Myonen:

	Signaleffizienz	Unterdrückungsfaktor
Elektronen: $E_T(\Delta R = 0.2) < 6$ GeV	0.68	320
Myonen: $E_{T}(\Delta R=0.4) < 9$ GeV	0.72	420

Normierter Stoßparameter

Leptonen aus b-Zerfällen versetzt vom primären Vertex.

- d0 rekonstruierter Abstand vom primären Vertex
- Normierter Stoßparameter $a_0^{max} = \frac{d_0}{\sqrt{Var(d_0)}}$:

	Signaleffizienz	Unterdrückungsfaktor
Elektronen: $a_0^{max} < 7$	0.90	2.0
Myonen: $a_0^{max} < 3.4$	0.95	4.5

Zusätzliche diskriminierende Variablen

 fehlende Energie, Anzahl der b-jets, invariante Masse führender und folgender Leptonpaare

Higgsmassenauflösung

• In Klammern: Werte nach dem kinematischen Fit der Z-Masse.

• Massenfenster für die Signalsignifikanz: $\Delta m = \pm 3\sigma$

Signalsignifikanz bei L = 30 fb⁻¹

	$m_{H} = 130 \text{ GeV/c}^{2}$	$m_{H} = 180 \text{ GeV/c}^{2}$	$m_{H} = 280 \text{ GeV/c}^{2}$
N _{Signal}	19.7±0.1	23.4±0.3	53.0±0.1
N _{ZZ}	12.0±0.3	31.8±0.5	35.2±0.6
N _{Zbb}	4±2	1 ± 1	0±2
$N_{t\bar{t}}$	0.7±0.4	0.5±0.4	0.4±0.4
Signifikanz	4.1±0.3	3.8±0.2	7.4±0.4
TDR-Studie	4.8	11.2	14.5

- Nach allen Schnitten dominiert der irreduzierbare ZZ-Untergrund.
- Große Abweichung von vorherigen (TDR-)Ergebnissen für $m_H \ge 180 \text{ GeV/c}^2$:

nur der ZZ^* -Untergrund betrachtet, kein ZZ-Beitrag.

• Verschlechterung der Elektronrekonstruktion spiegelt sich in der Signalsignifikanz wider:

	$H \rightarrow 4e$	$H ightarrow$ 4 μ	$H ightarrow 2e2\mu$	total
Signifikanz $m_H = 130 \text{ GeV/c}^2$	1.5	2.0	2.6	4.1
Raum für die Verbesserung der Rekonstruktion.				

Verteilung der invarianten Masse

Verteilungen nach unten skaliert,

 m_{Al} (GeV/c²)

der Anzahl der Ereignisse bei 30 fb $^{-1}$ entsprechend:

Ensembletest mit Unterdatensätzen von 30 fb⁻¹

Extraktion des Signals aus Anpassung der 4*l*-Massenverteilung:

- Test zweier Hypothesen,
 - 1.) Funktion für Untergrund allein:

$$f_b(m_k) = N_b \cdot \alpha^2(m_k - \epsilon) e^{-lpha(m_k - \epsilon)}$$

2.) Funktion für Signal+Untergrund:

$$f_{sb}(m_k) = \frac{N_s}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{(m_k - \mu)^2}{2\sigma^2}} + N_b \cdot \alpha^2 (m_k - \epsilon) e^{-\alpha (m_k - \epsilon)}$$

• Die Güte des Fits bestimmt die wahrscheinlichste Hypothese.

• Signalsignifikanz =
$$\frac{N_s}{\sqrt{Var(N_s)}}$$
.

Stabilität der Anpassung getestet mit 60 unabhängigen Unterdatensätzen, jeder mit der Anzahl der Ereignisse wie bei 30 fb^{-1} .

Niedrige Statistik \rightarrow variable Binbreite, Inhalt der Bins konstant. O.Kortner, Č.Zupančič, Nucl. Instr. And Meth. A 531 (2004)

Ergebnisse des Ensembletests für m_H=130 GeV/ c^2

	Fitergebnis	Bemerkung
N _{good fits}	54	max. 60
<N _s - N _s ^{true} $>$ (RMS)	2 (6)	$N_{s}^{true} = 23$ (3)
$< N_b - N_b^{true} > (RMS)$	3 (12)	N ^{true} =86 (10)
$<\!\!\frac{\chi_b^2-\chi_{sb}^2}{\chi_{sb}^2}\!>$ (RMS)	1.6 (1.0)	Hypothesentest
<Signf. $>$ (RMS)	2.9 (0.6)	

- Genaue Trennung der Signal- und Untergrundbeiträge (N_s, N_b) .
- Unterscheidung zweier Hypothesen möglich (χ_b^2, χ_{sb}^2) .
- Signalsignifikanz etwas niedriger als bei der Berechnung im bestimmten Massenfenster (aber innerhalb statistischer Fehler): Higgsmasse und -breite sind freie Parameter der Anpassung.

Potential für eine frühe Higgsentdeckung im Kanal $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ bewertet durch detailierte Simulation der Physikprozesse im ATLAS, mit der aktuellsten Detektorbeschreibung und Rekonstruktionssoftware.

Große Datenmengen (monatelange Datenproduktion) ermöglichen die Optimierung der Schnitte und präzise Ermittlung der Signalsignifikanz:

- Verschlechterung der Signifikanz im Vergleich zum ATLAS-TDR, wegen Änderungen des Detektorlayouts und noch zu schaffenden Verbesserungen der Rekonstruktionsalgorithmen.
- Signalsignifikanz aus den gesamten Datensätzen (volle Statistik) bestätigt durch den Ensembletest mit Unterdatensätzen derren Grösse der integrierten Luminosität von 30 fb⁻¹ entspricht.