S.Horvat

Max-Planck-Institut für Physik, Munich

Determination of the single-tube resolution with tracks

Ringberg, February 13-15th, 2005

Outline

The correct spatial drift-tube resolution $\sigma(r)$ is needed for the precise reconstruction of muon trajectories.

 It depends on the operating parameters of MDT chambers and background count rates in ATLAS cavern ⇒ it has to be repedeatly redetermined during detector operation.

Two approaches for the resolution determination using muon tracks:

- conventional iteration method
- χ^2 -metod

Both methods tested for the performance in ATLAS environment:

- tracks at large angles of incidence on the chamber
- curved tracks in a magnetic field
- additional hits caused by the background irradiation

Tests are done with the Monte-Carlo and the X5-testbeam data.

Track Reconstruction and Single-Tube Resolution

Parameters α_k are obtained by the χ^2 -minimization:

$$\frac{\partial \chi^2}{\partial \alpha_k} = 0 \quad \text{for} \quad \chi^2 = \sum_{i=1}^{N_{hits}} w_i \left[r(t_i) - r_i^{(fit)} \right]^2$$

• $r_i^{(fit)} = f(\alpha_k)$ - shortest distance of the trajectory from the i^{th} wire • $r(t_i) \equiv r_i$ - measured drift radius of the i^{th} track point • w_i - weight of the i^{th} track point, $w_i = 1/\sigma_{est}^2(r_i)$

Track Reconstruction Accuracy

Averaging over a sample of identical muon tracks gives the variance of the track fit, σ_{fit}^2 :

$$\sigma_{fit}^{2} = \left\langle \left(\sum_{k=1}^{d} \left(\alpha_{k} - \langle \alpha_{k} \rangle \right) \cdot z^{k-1} \right)^{2} \right\rangle = F(w_{i}, \sigma(r_{i}))$$

Best accuracy achieved with $w_i = 1/\sigma^2(r_i)$, i.e. $\sigma_{est}(r_i) = \sigma(r_i)$

The reconstruction of muon trajectories relies on the accurate knowledge of the spatial single-tube resolution $\sigma(r)$.

• It can be determined using muon tracks.

Iteration Method for Resolution Determination

Spatial resolution $\sigma(r_m)$ of the tube *m*:

- Hit r_m excluded from the track fit.
- Track reconstruction through the remaining hits $r_{i,i\neq m}$ predicts the position $r_m^{(fit)}$ in tube m.
- Repeated over a sample of identical muon tracks.

Comparing r_m and $r_m^{(fit)}$ gives: $\sigma^2(r_m) = \sigma^2(r_m^{(fit)} - r_m) - \sigma_{fit}^2(r_m^{(fit)})$ The track fit variance $\sigma_{fit}^2(r_m^{(fit)})$ depends on the resolution $\sigma(r_{i,i\neq m})$.

- ullet ightarrow starting with estimate σ_{est} ightarrow obtain the new resolution curve ightarrow
- Iterating until the obtained resolution agrees with estimated one.

χ^2 -Method for Resolution Determination

The track fit variance has a known dependence on the spatial resolution, $\sigma_{fit}^2(r_m^{(fit)}) = F(\sigma(r_{i,i\neq m})) \Longrightarrow$

Measured distribution $\sigma^2(r^{(fit)} - r)$ can be described analytically: $\sigma^2(r_m^{(fit)} - r_m) = \sigma^2(r_m) + \sigma^2(r_m^{(fit)})$ $= \sigma^2(r_m) + F(\sigma(r_{i,i\neq m})) = \Sigma_m(\sigma(r))$

• $\sigma^2(r_k^{(fit)} - r_k) \equiv \sigma_k^2$ determined from pool of n_k tracks at each r_k bin

• Resolution curve parametrized by Legendre polynomials, $\sigma^{2}(r) = \sum_{l} c_{l} \cdot P_{l}(r).$

• Parameters c_l obtained from the χ^2 -minimization:

$$\chi^2 = \sum_k \left[\frac{n_k}{\sigma_k^2} \left(\sigma_k - \boldsymbol{\Sigma}_k \right)^2 \right]$$

The method is independent of the initial resolution estimate \Longrightarrow no need for iterations.

Special Treatment Near the Anode Wire

• The (r(t) - r(true))-distribution is asymmetrical close to the wire, but the tracking methods assume a gaussian distribution \implies the $(r - r^{(fit)})$ -measurement in the <u>first bin is excluded</u>.

• Instead, the resolution near the wire is obtained from the drift-time spectrum: $\sigma(r=0) = a \cdot T_0 \cdot v(r=0)$.

 T_0 - rise time, v - drift velocity

MTGEANT-4 simulation of muon tracks traversing a 6-layer chamber (BOS chamber):

- Straight tracks at different angles of incidence $\theta = 0^{\circ}, 13^{\circ}, 24^{\circ}, 30^{\circ}, 41^{\circ}, 45^{\circ}, 51^{\circ}$
 - test of both methods with a straight track fit
 - test of both methods with a curved track fit (curvature = 0)

Curved tracks with different curvatures, at 0° angle of incidence curvature = 20, 45, 90 μm
(p_T = 80, 40, 20 GeV/c for B=0.4 T)
- test of both methods with a curved track fit

Monte-Carlo Studies: Initial Resolution Estimate

Starting with three different initial resolution estimates:

- i) true resolution
 - convergence expected already after the first step
 - test the limits on the accuracy
- ii) background irradiation effect
 - representative case for ATLAS
- iii) constant resolution
 - extreme case for the test of convergence

Accuracy with the Straight Track Fit

i) True resolution as the initial estimate:

- Both methods converge in one step.
- Similar accuracy is obtained for both methods.

• The width of the difference:

$$D_{rms} = \sqrt{\left[\sum_{bin} (\sigma_n - \sigma)^2\right]/N_{bins}} \approx 2 \ \mu m$$
 (with ~20 000 tracks)

Convergence with Straight Track Fit

ii), iii) Initial estimate different from true resolution:

- Iteration method needs several iteration steps to converge.
- $\chi^2\text{-method}$ converges in one step

• Final accuracy is independent of the initial estimate, similar accuracy of $\sim 2 \ \mu m$ obtained with both methods.

Dependence on the Available Statistics

Number of muon tracks needed for a given accuracy:

- 2 μm accuracy is achievable with 5 000 muon tracks.
- 1 000 tracks provide an accuracy of better than 10 μm.
- The method is not reliable with less than 500 tracks.

A Comment on the Size of the Track Fit Variance

- Iteration method is sensitive to the initial resolution estimate.
- This sensitivity increases with the size of the track fit variance.
- The variance of the track fit through an 8-layer chamber is small, due to the larger number of track points ⇒

the resolution can be determined more accurately.

Iteration Method with Curved Track Fit

•
$$\sigma_{fit}(y = \alpha_0 + \alpha_1 \cdot z + \alpha_2 \cdot z^2) > \sigma_{fit}(y = \alpha_0 + \alpha_1 \cdot z)$$

 the variance of the curved track fit becomes comparable to the single-tube resolution ⇒ iteration method highly sensitive, the convergence is lost!

OUTLINE/ MOTIVATION/ TWO APPROACHES/ MONTE-CARLO STUDIES/ TESTBEAM DATA/ R(T)-DEPENDENCE/ SUMMARY

χ^2 -Method with Curved Track Fit

- The track fit variance is described by an exact formula \Longrightarrow the convergence is not lost!
- Initial resolution estimate defines only the selection of hit points for the track reconstruction (second order effect).
- Accuracy is slightly worse than for the straight track fit.

OUTLINE/ MOTIVATION/ TWO APPROACHES/ MONTE-CARLO STUDIES/ TESTBEAM DATA/ R(T)-DEPENDENCE/ SUMMARY

Influence of the γ -irradiation

- χ^2 -method applied on the X5-testbeam data taken in 2002.
- The resolution depends strongly on the background count rate.
- Additional background hits increase the variation of the track fit variance within a given *r*-bin.

Dependence on the r(t)-Relation

- Previous results are obtained with the accurate r(t)-relation.
- Assume a wrong r(t)-realation, $r(t) \rightarrow (r + \delta r)(t)$
- Take $\delta r = A \cdot \frac{2\pi r}{R}$, R outer tube diameter (the residuals of the track fit still remain equal to zero).

Effect on the resolution determination:

$$\begin{split} & \left[\sigma^2(r_k - r_k^{(fit)})\right]' \\ &= \sigma^2(r_k + \delta r_k - r_k^{(fit)} - \delta r_k^{(fit)}) \\ &= \left[\sigma^2(r_k - r_k^{(fit)})\right] \cdot \left(1 + \left(\frac{d(\delta r)}{dr}\right)_{r^{(fit)}}^2\right) \end{split}$$

Dependence on the r(t)-Relation

- The deviation from the true resolution as expected.
- With an r(t)-accuracy of 100 μ m the resolution can be determined with an accuracy of 5 μ m.

Two methods for the determination of the spatial drift-tube resolution using straight or curved muon tracks have been tested for the performance in the ATLAS environment.

χ^2 -method .vs. iteration method:

- Faster and more robust.
- No need for the iterations, i.e. re-tracking.

Accuracy of both methods:

- $\sim 1~000$ muon tracks needed for a reliable performance, accuracy of better than 10 μ m.
- Accuracy of 2 μ m with 5 000 tracks.
- Distortion of the r(t)-relation up to 100 μ m (initial r(t)-accuracy) introduces a resolution error of less than 10 μ m.