Search for Higgs boson in $WH, H \rightarrow b\bar{b}$ decay channel with the ATLAS detector

Jianming Yuan, Sergey Kotov Sandra Horvat, Oliver Kortner, Hubert Kroha

MPI für Physik, München

DPG, March 31, 2006

- Introduction
- MC samples
- Reconstruction efficiency and resolution
- Analysis result
- Summary and plans

< A

Introduction

- $H
 ightarrow b ar{b}$ decay is dominant when Higgs mass is around 120 GeV
- $H \rightarrow b\bar{b}$ can be observed only in associated production with tt or W/Z boson (a lepton from tt, W/Z decay is needed for trigger)
- WH production model is very challenging due to large irreducible and reducible backgrounds from WZ, W+jets, Z+jets, etc
- First study with full simulation

Produced Data samples

Produced MC samples for signal and some important backgrounds

Sample	$\sigma(pb)$	MC generator		N _{generated} (10 ⁴)		$N_{expected for \ \pounds=30 \ fb}-1(10^4)$
		Fast	Full	Fast	Full	
$WH W \to I \bar{\nu}_I H \to b \bar{b}$	0.28	Pythia	Pythia	50	2.1	0.84
W+jets W $\rightarrow I\bar{\nu}_I$	114800	Pythia	-	4500	-	344400
$WZ W \rightarrow I \bar{\nu}_I Z \rightarrow b \bar{b}$	1.3	Pythia	Pythia	100	1.1	3.9
$WZ W \rightarrow Jets Z \rightarrow II$	1.8	Pythia	-	100	-	5.4
$WZ W \rightarrow I \bar{\nu}_I Z \rightarrow udsc$	4.8	Pythia	-	100	-	14.4
$Z+jets Z \rightarrow II$	22822	Pythia	-	3630	-	68466
$ZZ Z \rightarrow II Z \rightarrow b\bar{b}$	0.38	Pythia	-	100	-	1.1
WW W \rightarrow Jets W \rightarrow udsc	32.0	Pythia	-	200	-	96.0
$tt \rightarrow WWbb(W decay freely)$	488.5	Pythia	MC@NLO	480	31.5	1465.5

< 1[™] ►

Event selection

• 1 isolated lepton

- P_t >20 GeV, $|\eta|$ <2.5
- $E_t < 10$ GeV within the isolation cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$
- e-id: E-M cluster has a matched track in ID and cluster shape is consistent with *e*-hypotheses
- $\bullet~\mu_-\mathrm{id}:$ combined fit of muon track has good quality
- 2 good b jets
 - $P_t > 15$ GeV, $|\eta| < 2.5$
 - b-tag: standard ATLAS b-tagging
- To reject $t\bar{t}$ background: no additional leptons with $P_t > 6$ GeV, $|\eta| < 2.5$, no additional jets with $P_t > 15$ GeV, $|\eta| < 5$

Reconstruction efficiency and resolution

Comparison of Fast and Full simulation for signal

Different shape of DeltaR of b and bbar:

If two jets are too close, they will be reconstructed as one jet by Full simulation. Fast simulation does not consider this situation

Outline Introduction Data samples Analysis description Conclusions and plans

Signal and background distribution

- 4 同 ト - 4 目 ト - 4 目 ト

Rough signal significance estimate

The expected WH, $W \rightarrow l\bar{\nu}_l, H \rightarrow b\bar{b}$ signal and background events in an m_{bb} mass window of $\pm 30 \text{GeV}/c^2$

Decay channel	Efficiencies(%)		N _{final events}		N _{normalized to 30 fb-1}		ATLAS TDR
	Fast	Full	Fast	Full	Fast	Full	
WH	1.422	1.378	7112	289	119	116	250
WZ	0.210	0.482	6307	52	231	188	220
tt	0.020	0.044	939	139	2868	4372	3700
W+jets	0.0002	-	98	-	7500	-	4160(Wjj+Wbj)
Z+jets	0.0003	-	103	-	2054	-	-
ZZ	0.301	-	3008	-	33	-	-
WW	0	-	0	-	0	-	-
Total Background					12686	-	10820
S/\sqrt{B}					1.1	-	2.4

Difference to TDR due to more detailed simulation of b-tagging efficiency

(日) (周) (日) (日)

Conclusions and plans

- fast simulation with a more detailed parameterization of b-tagging has been performed, signal significance 2 times lower than ATLAS TDR
- $WH, H \rightarrow b\bar{b}$ decay channel is not a higgs discovery channel, unless very good predictions from MC background shape is provided
- to get more reliable signal significance estimate, larger samples W+jets,Z+jets should be produced

Reconstruction efficiency and resolution

 P_t resolutions are around 2.5% for electrons, 3.0% for muons, 12% for b jets

(日) (周) (日) (日)