

DPG Frühjahrstagung 2005 T209.7, 04.03.2005

J. Dubbert, O. Kortner, H. Kroha, R. Richter, R. Hertenberger und F. Rauscher

joerg.dubbert@mppmu.mpg.de

MPI München

Einführung

- Gasdichtigkeitstest
- Solution Noise-Test
- Integration
- Cosmic Ray Test
- Zusammenfassung und Ausblick

Einführung (1)

ATLAS Early Installation: 22 Myonstationen im Fußbereich

12 BMF Kammern (JINR Dubna)

6 BOG Kammern (ALU Freiburg)

4 BOF Kammern (MPI/LMU München)

BOF (Barrel Outer Foot) Monitored Drift Tube Kammer

- Abmessungen: 4 m \times 2.2 m
- 2×3 Rohrlagen
- 72 Rohre pro Lage
- Driftrohre:
 - \oslash 3 cm
 - 400 μ m Wandstärke Anodendraht: \oslash 50 μ m
- Ar:CO₂=93:7 bei 3 bar abs.
- Gasverstärkung: 2 · 10⁴ (3080 V)
- Optische Aligment-Monitorsysteme
 - Kammerintern
 - Von Kammer zu Kammer

Einführung (3)

Test und Integration von MDT Kammern in BB5

MDT Test

- Lecktest
- Noise-Test
- Cosmic Ray Test

Integration

- Alignment-Sensoren
- B-Feld-Sensoren
- Zusammenbau mit RPC-Kammer
- Sag-Kompensation

Alle BMS/F, BML, BOS/F und BOL Kammern (382 Stück) durchlaufen BB5!

T209.7 04.03.2005

Status der Kammern

4 BOF1 MDT-Kammern: Sektor 12 and 14, Seite A and C

Status in München — 25.10.04

MDT-Kammer	Kommentar	
BOF1A12	2 Endplugs mit Rissen, Rohre abgehängt von HV und Gassystem	
BOF1A14	2 Endplugs mit Rissen, Rohre abgehängt von HV und Gassystem	
BOF1C12		
BOF1C14		

Alle Kammer an der LMU leckgetestet und im Höhenstrahlungsmessstand kalibriert

Status bei Ankunft am CERN — 26.10.04

- ✓ Keine gerissenen Drähte
- ✔ Keine zusätzlichen Lecks

Keine Schäden durch Transport

T209.7 04.03.2005 Endabnahme und Integration von ATLAS-Myon-Driftrohrkammern am CERN MPI und LMU München – p.6

Leckratenmessung (1)

Bestimmung der Gasdichtigkeit jeder Multilage

- Druckmessung p(t)
- Temperaturmessung *T*(*t*)
 (18 kammerinterne Sensoren)
- Temperaturkorrektur $p_{corr}(t) = p(t) - dT(t) \cdot p(0)/T(0)$
- Linearer Fit an Druckabfall $p_{corr}(t)$
- Messgenauigkeit etwa 2 mbar/d

Maximal erlaubte Leckrate: 10 \times einfache ATLAS Kammerleckrate

Leckratenmessung (2)

Ergebnisse

Maximal erlaubte Leckrate: 10 \times 0.68 mbar/d

MDT-Kammer	Leckrate (LMU) / mbar/d	Leckrate (CERN) / mbar/d
BOF1A12	0.62 ± 0.11	0.34
BOF1A14	1.05 ± 0.90	0.41
BOF1C12	<1.10	0.53
BOF1C14	0.37 ± 0.13	0.70

Alle Kammern erfüllen das (einfache) ATLAS Leckratenlimit

- Zufallstrigger
- Messung #Hits / Rohr
- Umrechnung in Noiserate über aktives Zeitfenster der Readout-Elektronik (1.6 μs / Ereignis)
- Eff. Threshold: -50 mV
- Messung ohne und mit HV (3080 V)
 - Identifizierung toter Kanäle
 - Differenzierung Elektronik- und Entladungsrauschen

Funtionstest Elektronik und Messung Kammerverhalten

Ergebnisse

Max. erlaubte Noiserate: 5 KHz (Mittelwert und Einzelrohr)

(No individual ASD threshold)

Alle Kammern erfüllen Noiseratengrenzwert

Survey Targets

B-Feld-Sensoren

Alignment-Sensoren

Integration (2)

Zusammenbau mit RPC-Triggerkammer

Rotation der Myonstation

Ausrichtung MDT

Sag-Kompensation

Integrierte BOF Myonstation

Cosmic Ray Test (1)

 Teststand f
ür BML, BMS/F, BOS/F und BOL Myonstationen geeignet Maximale Kammergröße:

ca. 5 m \times 2.2 m

- 3 Stationen
- Trigger: 2 BOL RPC
- Triggerrate: 400 Hz
- Operativ seit Mitte Januar 2005

Funtionstest kompletter Myonstationen (MDT + RPC) inkl. RO-Kette und Frontend-Elektronik

Cosmic Ray Test (2)

Ergebnisse

TDC Spektrum

ADC Spektrum

Trefferverteilung

Test Report

Cosmic Ray Test von allen BOF-Myonstationen bestanden

Zusammenfassung

- 4 BOF MDT Kammern erfolgreich getestet und integriert
 - 1 Rohr noisy nach HV-Test @ 3400 V (wieder ok, "geheilt" durch inv. HV)
 - 1 Draht aus Crimpung gerutscht (Rohr von HV abgehängt)
- 3 BOF in ATLAS installiert, 4-te BOF: Einbau 08.03.05
- "Early Installation" Sektor 12 und 14 komplett
- 84 weitere BOS/F-Kammern: Test ab Juni 05, Installation ab August 05

Keine Probleme bei Test, Integration und Installation der ersten BOF MDT-Kammern

Ausblick (1)

Ausblick (2)

Vielen Dank an alle die bei Test, Integration und Installation geholfen haben, insbesondere S. Leber, U. Schorer, H. Wetteskind und J. Zimmer U. Landgraf und S. Zimmermann