Validation of Garfield with Test-Beam Data of ATLAS Muon Drift-Tube Chambers in Magnetic Fields

<u>Chrysostomos Valderanis</u>¹, S. Bethke¹, J. Dubbert¹, S. Horvat¹, O. Kortner¹, S. Kotov¹, H. Kroha¹, R. Richter¹, F. Rauscher²

> ¹Max-Planck Insitut für Physik München ² Ludwig-Maximilians-Universtität München

DPG-Frühjahrstagung, Heidelberg March 2006

ATLAS muon drift-tube chambers

Motivation for the study

Average magnetic field: 0.4 T.

Goal:

• conversion of drift times into drift radii with an accuracy $\leq 20~\mu{\rm m}.$

In chambers on the toroid coils:

- large gradients of the magnetic field along a tube,
- \Rightarrow large variations of the maximum drift time t_{max} along a tube.

This goal requires a formula to correct for these variations with an accuracy of ~ 1 ns.

Set-up for the test-beam measurements

Location: Gamma Irradiation Facility at CERN.

B=0.3 T, 0.6 T, 0.9 T.

Position accuracy of silicon tracker: $<20~\mu{\rm m}.$

A simple model

Equation for the electron drift (special case: $\vec{B} \parallel$ wire)

 $\epsilon = 0$: Langevin equation.

 $\label{eq:constraint} \begin{array}{c} \underline{\epsilon > 0:} \\ \text{Larger friction can be caused by inelastic} \\ \text{electron-molecule scattering.} \end{array}$

 $E_{rot}(CO_2) \sim E_{kin}(e^-) \Rightarrow$ rotations of CO₂ can be excited.

 \Rightarrow Inelastic electron-molecule scattering is expected for Ar:CO₂(93:7).

Predictions by the simple model

Solution of the differential equation

$$\begin{split} t(r,\vec{B}) &= t(r,\vec{B}=0) &+ \Delta t(r,\vec{B}) \\ &\approx t(r,\vec{B}=0) &+ \\ &B^{2-\epsilon} &\cdot \int\limits_{r_{min}}^{r} \frac{v_{B=0}^{1-\epsilon}(r')}{E^{2-\epsilon}(r')} \, dr' \end{split}$$

Accuracy of the approximation for $\Delta t(r, \vec{B})$: $\approx 1\%$.

Comparison with test-beam measurements

- Langevin equation with linear friction term ($\epsilon = 1$) insufficient to describe the measurements.
- Inelastic scattering of drifting electrons off CO₂ molecules must be taken into account!

Role of Garfield simulations

- Inelastic scattering of drifting electrons off CO₂ molecules are important.
- Since CO₂ has no dipole moment rotational excitations can only exist on top of vibrational excitations.
 CO₂ molecules are thermally excited to vibrational states.
- Test-beam measurments are taken at a single CO₂ content (7%) and a single temperature.
 Expect temperature spread in ATLAS: 15 K.
- Reliable Garfield calculations are needed to extrapolate from the test-beam operating point to other operating points, especially different temperatures.

Garfield versions

- The predictions of the two latest Garfield versions were compared with our test-beam measurements: Garfield-8 and Garfield-9.
- Main difference: Garfield-9 uses new calculations of cross sections for electron-CO₂ scattering.

Comparison of Garfield with Measurements

First case: no magnetic field

Garfield-8 can be matched to test-beam data by increasing the CO_2 content to (the wrong value of) 7.1%.

Comparison of Garfield with Measurements

Second case: magnetic field switched on

- Test-beam studies of the space-drift-time relationship of ATLAS MDT chambers in magnetic fields show that inelastic collisions of drift electrons with the CO₂ molecules of the drift gas must be taken into account.
- Comparisons of the test-beam measurements with the predictions of the two latest Garfield versions show that only the most recent version (9) treats collisions with CO₂ molecules appropriately.