Suche nach dem Higgsboson im Kanal $pp \rightarrow qqH, H \rightarrow \tau\tau$ mit dem ATLAS-Detektor

<u>Manfred Groh</u>, Steffen Kaiser, N. Benekos, S. Bethke, S. Horvat, O. Kortner, S. Kotov, H. Kroha, S. Mordieck-Möck, R. Richter, C. Valderanis, J. Yuan

Max-Planck-Institut für Physik

DPG 2007, Heidelberg

Der Atlas Detektor am LHC (CERN)

Large Hadron Collider (LHC): p-p Kollisionen bei 14 TeV Schwerpunktsenergie Angestrebte integrierte Luminosität: $30fb^{-1}$ in den ersten drei Jahren (2007-2010), danach $100fb^{-1}$ pro Jahr

Eines der wichtigsten Ziele: Suche nach dem Higgsboson im Massenbereich $m_H = (115 - 800) \ GeV$ (Andere Massen durch Standardmodell bzw. LEP-Suchen ausgeschlossen.)

Higgs Zerfälle am LHC

Verzweigungsverhältnis:

 \rightarrow Für $m_H = 115 - 140$ GeV: $H \rightarrow \tau \tau$ vielversprechender Entdeckungskanal!

<u>*τ*-Zerfälle</u>:

$$\begin{array}{l} -\tau \to \nu_{\tau} + \nu_{e} + e \ (17.4\%) \\ -\tau \to \nu_{\tau} + \nu_{\mu} + \mu \ (17.8\%) \\ -1 \ \text{prong:} \ \tau \to \nu_{\tau} + \pi^{\pm} + n\pi^{0} \ (50.2\%) \\ -3 \ \text{prong:} \ \tau \to \nu_{\tau} + \pi^{\pm} + n\pi^{0} \ (16.2\%) \end{array}$$

Hadronische τ -Zerfälle werden als τ -Jets im Detektor nachgewiesen. Identifikation u.a. durch die Anzahl der Spuren im Inneren Detektor und Form des Jets.

VBF Higgs-Produktion

Signatur:

- Zwei Vorwärtsjets aus dem VBF-Prozess mit großer Rapiditätslücke
- Unterdrückte Jetaktivität im Zentralbereich
- $\rightarrow~$ Nur Higgszerfallsprodukte im Zentralbereich

Signal- und Untergrundprozesse

Prozess	$\sigma(pb)$	$L(fb^{-1})$	
Signal, Volle Simulation,	Herwig, VE	3F-Filter	
$H(120GeV) \rightarrow \tau\tau \rightarrow ll$	0,0148	3070	
$H(120GeV) \rightarrow \tau\tau \rightarrow ll, lh$	0,1	211	
Untergrund, Volle Simulation, Alpgen, VBF-Filter			
$Z \rightarrow \tau \tau + 2Jets$	2,5	33.6	
$Z \rightarrow \tau \tau + 3, 4, > 5Jets$	0,6 - 2	42 - 94	
$Z \rightarrow ee/\mu\mu + 2, 3, 4, > 5Jets$	1,2 - 6	11 - 31	
$t\bar{t}, MC@NLO$	461000	0,1	
Zusätzlich: Schnelle Simulation			
$H(120GeV) \rightarrow \tau\tau \rightarrow ll$	0,0148	4600	
$H(120GeV) \rightarrow \tau\tau \rightarrow ll, lh$	0,1	522	
$Z \rightarrow \tau \tau + 0, 1 Jets$	1,96 - 2,2	12,3 - 13,6	
$Z \rightarrow \tau \tau + 2Jets$	153	24,4	

Volle Simulation: Detaillierte Beschreibung von Detektorgeometrie und -eigenschaften. Realistischer, aber langsam.

Schnelle Simulation: Parameterisierte Beschreibung der Detektoreigenschaften. Sehr schnell.

Untergrundprozesse:

Auswahlkriterien der Ereignisse

Wichtigste Schnitte:

- Fehlende Transversale Energie: $E_T^{miss} > 50 GeV$ (lh: $E_T^{miss} > 30 GeV$)
- Kollineare Approximation sinnvoll 0 < x < 1 (lh: $0 < x_{\tau-jet} < 0.75$)
- Öffnungswinkel zwischen den Leptonen
- Δη der Vorwärtsjets
- Keine weiteren zentralen Jets

Effizienz der Ereignisauswahl ($M_H = 120$ GeV)

Semileptonisch:

Effizienz der Ereignisauswahl ($M_H = 120$ GeV)

Effizienz der Ereignisauswahl ($M_H = 120 \text{ GeV}$)

Leptonisch:

Rekonstruierte Invariante $\tau\tau$ -Masse

Generierte Higgs Masse: 120 GeV Skaliert auf 30 fb^{-1}

Rekonstruierte Higgs Masse weicht von generierter ab!

Vergleich E_T^{miss} Rekonstruiert - Wahrheit

Signal, leptonische Analyse (generiert: $M_H = 120$ GeV)

Bei Verwendung der wahren Fehlenden Energie (anstatt der rekonstruierten) wird die Higgs Masse richtig berechnet.

Vergleich Schnelle - Volle Simulation

Skaliert auf 30 fb^{-1}

- Prozess der Vektorbosonfusion ermöglicht die Suche nach dem Higgsboson im anspruchsvollen Zerfallskanal $H \rightarrow \tau \tau$.
- Analyse mit voller Simulation des wichtigsten Untergrundes (Z → ττ)
 → Realistischere Vorhersagen als mit Schneller Simulation.
- Rekonstruktion der Fehlenden Energie noch problematisch.
- Schnitte müssen noch optimiert werden.
- Zum Einfluss verschiedener Jet-Algorithmen: Vortrag von Iris Rottlaender, T 416.9

13

Anhang

14

Elektron Rekonstruktion Volle Simulation

Elektron Rekonstruktion Schnelle Simulation

Myon Rekonstruktion Volle Simulation

Myon Rekonstruktion Schnelle Simulation

Backup: Jetalgorithmen

TowerJets	N_{Sig}	$N_{Z \to \tau \tau}$	$N_{Sig}/N_{Z \to \tau \tau}$
Cone (R=0.4)	12.5	7.9	1.58
Cone (R=0.7)	12.7	11.1	1.15
K _T (D=0.1)	0.3	0.0	-
K _T (D=0.3)	11.6	4.8	2.43
K _T (D=0.5)	13.4	11.1	1.20
K _T (D=0.7)	12.9	9.5	1.36
K _T (D=1.0)	9.7	3.2	3.05
TopoJets	N_{Sig}	$N_{Z \to \tau \tau}$	$N_{Sig}/N_{Z \to \tau \tau}$
TopoJets Cone (R=0.4)	N _{Sig} 11.6	$\frac{N_{Z \to \tau \tau}}{4.8}$	$\frac{N_{Sig}/N_{Z\to\tau\tau}}{2.44}$
TopoJets Cone (R=0.4) Cone (R=0.7)	N _{Sig} 11.6 13.0	$\frac{N_{Z\to\tau\tau}}{4.8}$ 9.5	$\frac{N_{Sig}/N_{Z \to \tau\tau}}{2.44}$ 1.37
TopoJets Cone (R=0.4) Cone (R=0.7) K _T (D=0.1)	N _{Sig} 11.6 13.0 6.8	$\frac{N_{Z \to \tau \tau}}{4.8}$ 9.5 1.6	$\frac{N_{Sig}/N_{Z \to \tau\tau}}{2.44}$ 1.37 4.26
TopoJets Cone (R=0.4) Cone (R=0.7) K _T (D=0.1) K _T (D=0.3)	$\frac{N_{Sig}}{11.6} \\ 13.0 \\ 6.8 \\ 10.2$	$N_{Z \to \tau \tau}$ 4.8 9.5 1.6 3.2	$\frac{N_{Sig}/N_{Z\to\tau\tau}}{2.44}$ 1.37 4.26 3.19
TopoJets Cone (R=0.4) Cone (R=0.7) K _T (D=0.1) K _T (D=0.3) K _T (D=0.5)	$\frac{N_{Sig}}{11.6} \\ 13.0 \\ 6.8 \\ 10.2 \\ 12.1$		$\frac{N_{Sig}/N_{Z \to \tau\tau}}{2.44}$ 1.37 4.26 3.19 3.82
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} N_{Sig} \\ 11.6 \\ 13.0 \\ 6.8 \\ 10.2 \\ 12.1 \\ 12.6 \end{array}$	$N_{Z \to \tau\tau} \\ 4.8 \\ 9.5 \\ 1.6 \\ 3.2 \\ 3.2 \\ 12.7 \\$	$\frac{N_{Sig}/N_{Z\to\tau\tau}}{2.44}$ 1.37 4.26 3.19 3.82 1.00

Verbesserung der Tau-Rekonstruktionseffizienz bei niederenergetischen Tauzerfällen mit Hilfe des Topocluster-Algorithmus:

