Untersuchung des Ansprechverhaltens der ATLAS Driftrohrkammern mit Höhenstrahlung

<u>Manfred Groh</u>, Jörg Dubbert, Sandra Horvat, Oliver Kortner, Hubert Kroha, Robert Richter

Max-Planck-Institut für Physik

DPG Frühjahrstagung, Dortmund 2006

ATLAS

Die ATLAS MDT Kammern

Elektronik der ATLAS MDT Kammern

Motivation für mobilen Höhenstrahlteststand

- Alle über 100 in München produzierten Kammern wurden seit Herbst 2003 an der LMU getestet (→ Vortrag von Felix Rauscher T 704.6)
- ABER: Die ersten 25 Kammern wurden ohne endgültige Elektronik getestet
- ⇒ Erneuter Test der Kammern mit endgültiger Elektronik vor Transport ans CERN notwendig

Weiterer Höhenstrahlteststand erforderlich, da LMU-Teststand ausgebucht war!

Umsetzung

- Einsatz des Teststands in der Lagerhalle um Kammertransporte zu vermeiden
- Kein Einbau der Kammer in den Teststand erforderlich, Trigger wird in Stapel der zu testenden Kammern eingeschoben
- Slow Control f
 ür Steuerung der Gas- und Hochspannungsversorgung
- Hodoskop aus Plastikszintillatoren um Datenauslese zu triggern und um den genauen Zeitpunkt des Ereignisses zu bestimmen

Triggeraufbau

Messungen

• 25 Kammern, je > 2Mio Events

Effizienz

Effizienz

vertauschte Kabel:

Messung der Kalibrationskonstanten t_0

 Messung der relativen t₀-Versätze aller Kanäle als Kalibrationsparameter für ATLAS

Einfluss der Kabellängen

⇒ Einfluss der Kabellängen auf den Versatz der Driftzeitspektren deutlich sichtbar!

Ortsauflösung in Drahtnähe

 Breite der Anstiegsflanke ist Maß für die Ortsauflösung des Driftrohrs in Drahtnähe

Typische Verteilung der Flankenbreiten aller 432 Driftrohre innerhalb einer Kammer

Temperaturabhängigkeit

Konstanter Druck + höhere Temperatur \Rightarrow kleinere Dichte

- \Rightarrow höhere Gasverstärkung \Rightarrow höhere Signale
- ⇒ höhere Auflösung der Driftzeitmessung
- \Rightarrow kleinere Flankenbreite

(Gilt nur in Drahtnähe, bei grösseren Driftradien dominiert der Einfluss der Diffusion.)

Zusammenfassung

- Aufbau eines mobilen Höhenstrahlteststands mit positionsunabhängigem Triggersignal mit 0,4 ns Zeitauflösung
- Test von 25 Kammern mit endgültiger Elektronik, alle Kammern konnten ohne tote/verrauschte Kanäle ans CERN geschickt werden (Vortrag von Jörg Dubbert / Jörg von Loeben T 203.2)
- Messung der Kalibrationsparameter t₀ für Synchronisation aller Kanäle innerhalb einer Kammer
- Untersuchung von Temperaturabhängigkeit der Drifteigenschaften

- Driftrohr ohne Eintrag
- Driftrohr mit Eintrag
- Akzeptierter Korridor
- Myon–Spur des Hodoskops

Anhang

- Simulation
- Messung nach 15 Tagen ohne Gasfluss

Anhang

Anhang

