Calibration Data from Cosmic Ray Tests

Manfred Groh

Max-Planck-Institut für Physik

13.02.2005

Overview:

- Motivation for second teststand
- Introduction of mobile cosmic teststand
- Trigger quality
- Additional investigations
- First results from LMU test facility

Why another Cosmic Teststand?

 All produced chambers are tested at LMU (→ previous talk of Felix)

Why another Cosmic Teststand?

- All produced chambers are tested at LMU (→ previous talk of Felix)
- First 40 chambers were tested without the final electronics
- ⇒ Test these chambers again with final electronics attached before shipping to CERN

Need for a second teststand, since LMU is fully booked!

What we want to measure:

Main purpose of both cosmic tests:

Test the full functionality of the final electronics

Main purpose of both cosmic tests:

Test the full functionality of the final electronics

Additional byproduct: Calibration constants

- Important calibration constants for every channel:
 - t_0 (since trigger is good enough!)
 - Pulseheight (important input parameter for r(t) calibration in presence of cavern background)

Main purpose of both cosmic tests:

Test the full functionality of the final electronics

Additional byproduct: Calibration constants

- Important calibration constants for every channel:
 - t_0 (since trigger is good enough!)
 - Pulseheight (important input parameter for r(t) calibration in presence of cavern background)
- To be useful, need knowledge of dependence on:
 - Temperature, gas pressure
 - ADC integration time
 - HV
 - Readout distance

Chamber Storage

Chamber Storage

The Mobile Cosmic Teststand - Really Mobile

The Mobile Cosmic Teststand - Principle

Expected trigger rate: 36 Hz

- \Rightarrow 40,000 hits per tube and day
- \Rightarrow 24 h enough for t_0 -measurement

Test of Homogeneity

Independence of Trigger on Position

Variation with track position: ≤ 0.1 ns

Trigger Time Resolution

Trigger Time Resolution

⇒ Homogeneity and time resolution good enough to trigger events AND to measure t_0 offsets

Dependence of Pulseheight

Dependence of Pulseheight on:

- Temperature, gas pressure
- ADC integration time
- HV
- Readout distance

Dependence of Pulseheight

Dependence of Pulseheight on:

- Temperature, gas pressure
- ADC integration time
- HV
- Readout distance

First measurements taken at LMU

- All positions measured simultaneously
- Constant temperature ($\Delta T < 0.5^{\circ}$ C)
- Our readout still at BB5

Dependence of Charge on HV

Remark

Pulseheights at 3080 V:

LMU 27 fC

X5 (2003) 34 fC

Pulseheights at 3080 V:

LMU 27 fC 2.5 GeV X5 (2003) 34 fC 90 GeV

Charge ratio = ratio of primary ionisations predicted by the Bethe-Bloch formula!

Energy measurement in principle possible, although not really precise.

Dependence of Pulseheight on Readout Distance

 Mobile cosmic teststand to test 40 chambers with final electronics

Summary

- Mobile cosmic teststand to test 40 chambers with final electronics
- As byproduct calibration parameters of each channel:
 - Relative *t*₀-offset
 - Pulseheight

Summary

- Mobile cosmic teststand to test 40 chambers with final electronics
- As byproduct calibration parameters of each channel:
 - Relative *t*₀-offset
 - Pulseheight
- Increase of pulseheight with HV
- Decrease of pulseheight with increasing readout distance