

Test and Calibration of Large Drift Tube Chambers

IEEE NSS 2004 - 19. October 2004

O. Biebel, T. Christiansen, <u>J. Dubbert</u>, J. Elmsheuser, F. Fiedler,
R. Hertenberger, O. Kortner, T. Nunnemann, F. Rauscher, D. Schaile,
A. Staude, R. Ströhmer, C. Vollmer

Contact: joerg.dubbert@physik.uni-muenchen.de

Ludwig-Maximilians-Universität München

Introduction

- The LMU Cosmic Ray Facility
- Chamber Commissioning
- Chamber Calibration
- Summary

Introduction

Introduction (1)

ATLAS Muon Spectrometer

Air Core Toroid Magnet System

- 788 Trigger Chambers
 - 1226 Precision Chambers
 - 32 Cathode Strip Chambers (CSC)
 - 1194 Monitored Drift Tube (MDT) Chambers

Introduction (2)

Monitored Drift Tube Chambers

Drift tubes

- Aluminum tubes, 3 cm outer diameter, 400 μm wall thickness
- Centered anode wire, 50 μ m diameter
- Gas mixture: $Ar/CO_2 = 93/7$
- Pressure: 3 bar
- Gas gain: 2×10^4
- Max. drift time: \approx 700 ns
- Averaged resolution: 100 μm
- Support frame of aluminum
- Optical (RasNik) systems to monitor chamber deformations
- Chamber size: 1-11 m²
- Optical chamber to chamber alignment

Introduction (3)

Physics requirements: - $\Delta p_T/p_T < 10\%$ up to 1 TeV

- Stand-alone operation

Sagitta measurement with 3 MDT stations

- \rightarrow 50 μ m point resolution needed
- \rightarrow 20-30 μm RMS on wire positions needed

Guaranteed by chamber design and monitoring

. . .

The LMU Cosmic Ray Facility

Setup (1)

- 2 Scintillator hodoscopes
 - Full chamber coverage (8.7 m²)
 - 5 segments along tubes
 - $extsf{9} < 800 extsf{ps} extsf{time resolution}$
 - 9.5 cm track resolution along tube
- **●** Iron Absorber (\Rightarrow E_µ > 600 MeV)
- Streamer tubes (energy cut based on multiple scattering)
- 2 Reference chambers certified by X-Ray tomograph
- ✓ Optical and capacitive alignment monitors (< 5 μ m precision)
- 80 Hz trigger rate
 15-25 M events / chamber
- Test chamber can be shifted

Programme

Commission and calibrate 88 BOS/BOF MDT chambers built at the Max-Planck-Institut für Physik

- Fix leaks / Measure leak rate
- Complete chamber
- Equip with & test front-end electronics
- A HV test
- Commission chamber
 (tube response, homogeneity)
- Calibrate chamber
 (wire positions, geometry)

Goal: MDTs ready for installation and operation in ATLAS

Commissioning

- Measure drift time spectra
- Fit analytic functions at beginning and end
- Parameter set
 - Maximum drift time
 - Rise time
 - Noise level

Maximum Drift Time

Very good agreement between multilayers

N.B.: Error bars denote single tube RMS spread

Calibration

Motivation

Physics requirements: ...

ightarrow 20-30 μ m RMS on wire positions needed

Guaranteed by chamber design and monitoring

but...

- Some geometry parameters difficult to control during production (e.g. layer distances)
- Longterm stability (chamber production started end of 2000)
- Anchor points for calibration / reconstruction at LHC

Method

• Wire positions derived from comparison of predicted drift radius r_{ref} (weighted average reference tracks) and measured drift radius r_{drift} in the test chamber $\Delta r = r_{drift} - r_{ref} \approx \delta_z - m \cdot \delta_y$

- $\begin{array}{ll} \bullet & \delta_z \text{ from } \langle \Delta r' \rangle = \delta_z \langle m \rangle \cdot \delta'_y \approx \delta_z \\ & (\Delta r' \text{ with corrected y pos.}) \end{array}$
- Grid scaling factor γ : $z(n) = z_0 + \gamma \cdot g_{nom} \cdot n$

Performance

BOS5A08 (Exceptional chamber with known production error)

Comparison of measurements of Cosmic Ray Facility with X-Ray Tomograph gives accuracy

- Perpend. to chamber plane
 - **₽** δ_y: 25 μm
 - \bullet $\delta_{y, Layer}$: 4.5 μ m
 - $\alpha_{x, Layer}$: 17 μ rad
- In chamber plane
 - *●* δ_z: 8 μm
 - \blacksquare $\delta_{z, Layer}$: 2 μ m
 - *g*: 0.15 μm
- Agreement with Monte Carlo

Preliminary Results (1)

Multilayer y-Distance

RO Side

HV Side

N.B.: Blue circles mark repaired chambers, values given in parentheses are without these MDTs Error bars denote RMS spread of single tube deviation from linear fit to multilayer data

Preliminary Results (2)

Multilayer z-Displacement

RO Side

HV Side

N.B.: Blue circles mark repaired chambers, values given in parentheses are without these MDTs Error bars denote RMS spread of single tube deviation from linear fit to multilayer data

LMU Cosmic Ray Facility operates in series test mode since September 2003

- LMU Cosmic Ray Facility operates in series test mode since September 2003
- Present rate: 1 chamber per week

- LMU Cosmic Ray Facility operates in series test mode since September 2003
- Present rate: 1 chamber per week
- Chamber commissioning (leak rate, electronics, response)

- **SUMMARY**
- LMU Cosmic Ray Facility operates in series test mode since September 2003
- Present rate: 1 chamber per week
- Chamber commissioning (leak rate, electronics, response)
- Chamber calibration achieves expected precision:
 - $\mathcal{O}(10 \ \mu m)$ on wire positions
 - \checkmark Few μ m on chamber geometry

Valuable anchor points for the calibration with LHC data

- **SUMMARY**
- LMU Cosmic Ray Facility operates in series test mode since September 2003
- Present rate: 1 chamber per week
- Chamber commissioning (leak rate, electronics, response)
- Chamber calibration achieves expected precision:
 - $\mathcal{O}(10 \ \mu m)$ on wire positions
 - Solution Few μ m on chamber geometry

Valuable anchor points for the calibration with LHC data

- - ATLAS leak rate limit fulfilled
 - Very good homogeneity of tube response
 - Consistent chamber geometry throughout production time

Additional Slides

Leak Rate Meas. (1)

- \checkmark Max. allowed leak rate: 2 \times N_{Tubes} \times 10^{-8} bar l/s \rightarrow 0.68 mbar / d
- Leak test with He leak detector in sniffer mode, Ar/He mixture at 3 bar (2.6 bar Ar, 0.4 bar He)
- Precision absolute pressure measurement for each multilayer separately (0.1 mbar accuracy)
- $\begin{array}{ll} \label{eq:star} \bullet & \delta T = 0.1 \ ^\circ C \to \delta p = 1 \ \text{mbar} \\ \Rightarrow \text{need good temperature measurement / stabilization} \\ \hline & \textbf{Difficult for a chamber of this size!} \end{array}$

Back

Leak Rate Meas. (2)

Max. allowed leak rate: 0.68 mbar/d

Chambers meet ATLAS requirements

Back

Fit Functions

Leading edge

Trailing edge

$$F(t) = p_0 + \frac{A_0}{1 + \exp\left(\frac{t_0 - t}{T_0}\right)} \qquad G(t) = p_m + \frac{\alpha_m \cdot t + A_m}{1 + \exp\left(\frac{t - t_m}{T_m}\right)}$$

Back

Layer y-Distance

RO Side

HV Side

