

B-Field Dependence of the Space-Drift-Time Relation of ATLAS MDT Chambers

J. Dubbert^{*a,b*}, M. Groh^{*a*}, S. Horvat^{*a*}, D. Khartchenko^{*a*}, S. Kotov^{*a*}, <u>O. Kortner</u>^{*a*}, H. Kroha^{*a*}, K. Nikolaev^{*a*}, F. Rauscher^{*b*}, R. Richter^{*a*}, A. Staude^{*a*}, and C. Valderanis^{*a*}

^aMax-Planck-Institut für Physik, Föhringer Ring 6, D-80805 München, Germany ^bLudwig-Maximilians-Universität München, Am Coulombwall 1, D-85748 Garching, Germany

Abstract

The ATLAS muon spectrometer consists of an air-core toroid magnet system instrumented with 3 layers of Monitored Drift Tube (MDT) stations. 8 superconducting coils generate an average magnetic field of 0.4 T over a distance of 6 m. To achieve the desired momentum resolution of less than 10% for muon energies up to 1 TeV with the 3-point sagitta measurement, the resolution of a single muon station has to be better than 50 μ m. About a third of the barrel MDT chambers will be installed on the outer side of the magnet coils and therefore experience a highly non-uniform magnetic field with field variations of up to 0.4 T. The dependence of the space-to-drift-time relation-

Field map of the ATLAS barrel muon spectrometer at $\eta = 0$

ship r(t) of the drift tubes on the magnitude and the orientation of the magnetic field with respect to the anode wires and the muon incident angle was measured in a test-beam. These measurements allow for a parameterization of the magnetic-field dependence of r(t) with the required accuracy of 1 ns.

Principle of Drift Tube Operation

Drift paths of electrons in the absence and presence of a magnetic field

- Hit radius determined from measured electron drift time
- r-t relation sensitive to operating parameters (gas mixture, density, HV) and environment (background rate, B-fi eld)

Theoretical Model

Magnetic field has components parallel to anode wire and muon direction, i.e. $\vec{B} = (B_1, 0, B_2) = B(\cos \phi, 0, \sin \phi)$

Differential Equation for the Electron Drift

$$\ddot{ec{x}} = -\left(rac{\dot{ec{x}}}{ au}
ight)^{1+arepsilon} - rac{e}{m}ec{E} - rac{e}{m}\dot{ec{x}} imesec{B}$$

Solution of Differential Equation

$$t(r,\vec{B}) = t(r,\vec{B}=0) + B^{2-\varepsilon} \underbrace{\cdot 1}_{=:A(\phi)} \underbrace{\cdot \int_{25 \ \mu m}^{r} \frac{v_{B=0}^{1+\varepsilon}(r')}{E^{2-\varepsilon}(r')} dr'}_{=:I_0(r)}$$

Factorization into a part, $B^{2-\varepsilon}A(\phi)$, depending on the magnetic fi eld confi guration and a part, d(r), only depending on the drift properties at B = 0

Visualization of Magnetic Field Factors

Test-beam Measurements

- 3×3 tubes (same as one MDT multilayer)
- Fully rotatable on all three axes
- Magnetic fi eld 0 0.9 T
- Reference tracking with 6 silicon detectors

Results and Conclusion

- Test-beam measurements confi rm theoretical model and factorization
- Best fit for $\varepsilon = 0.0074$
- Accuracy of model: 1 ns

