<u>Performance of the ATLAS Precision Muon</u> Chambers under LHC Opertating Conditions

Oliver Kortner Max-Planck-Institut für Physik, Munich

9th Pisa Meeting on Advanced Detectors: Frontier Detectors for Frontier Physics 25.05.-31.05.2003

OUTLINE

- 1. The ATLAS detector and its muon spectrometer.
- 2. Monitored drift-tube chambers as precision tracking detectors.
- 3. Background conditions in the muon spectrometer.
- 4. Spatial resolution of drift tubes at the ATLAS background.
- 5. Single-tube and tracking efficiencies at the ATLAS background.
- 6. Summary.

THE ATLAS DETECTOR

THE ATLAS MUON SPECTROMETER

- Average magnetic field: 0.4 T.
- Fast trigger chambers: TGC, RPC.
- High resolution tracking detectors: CSC, <u>MDT</u>.
- \star Accurate reconstruction of the muon momentum (3% accuracy).

MONITORED DRIFT-TUBE CHAMBERS

MONITORED DRIFT-TUBE CHAMBERS

1200 chambers (350 000 tubes in total) must built for ATLAS.

PICTURE FROM THE CHAMBER ASSEMBLY

QUALITY CONTROL BY X-RAY TOMOGRAPHY

X-ray sources on a precision step-motor

Accuracy of the wire position measurement: 2 μm (stat) + 2 μm (syst).

measurement of the intensity as a function of the motor position

RESULTS OF THE X-RAY TOMOGRAPHY

75 of 650 chambers produced at 13 different sites have been tested.

Further details on the chamber assembly and the X-ray tomography in the poster session:

- **H. Kroha et al.** Large Scale Production and Tests of Precision Drift Tube Chambers for the ATLAS Muon Spectrometer.
- **S. Schuh.** A high precision X-ray Tomograph for quality control of the ATLAS Muon Monitored Drift Tube Chambers.

BACKGROUND CONDITIONS

Neutron and Photon Background Counting Rates $(s^{-1}cm^{-2})$

SPATIAL RESOLUTION OF DRIFT TUBES

EXPERIMENTAL SET-UP AT CERN'S GAMMA IRRADIATION FACILITY

MDT chamber with 4 m long tubes

740 GBq movable lead filters Cs137 source for rate adjustment

four-layer silicon tracking detector

Second such measurement. First mesurement: M. Aleksa et al., NIM A 446 (2000) 435.

 $\sqrt{Var(r(t) - r_{STEL})}$ as a function of r_{STEL} is the single-tube resolution $\sigma(r)$.

RATE DEPENDENCE OF THE SINGLE-TUBE RESOLUTION

AVERAGE SINGLE-TUBE RESOLUTIONS

Average single-tube resolution:

$$\bar{\sigma} := \sqrt{\frac{1}{14.6 \text{ mm}} \int_{0}^{14.6 \text{ mm}} \sigma^2(r) dr}$$

SPATIAL RESOLUTION UNDER IRRADIATION - SUMMARY

Neutron and Photon Background Counting Rates $(s^{-1}cm^{-2})$

SPATIAL RESOLUTION UNDER IRRADIATION – SUMMARY

WAYS OF IMPROVING THE SPATIAL RESOLUTION

a) Improving the resolution by lowering the discriminator threshold.

The average resolution is improved by 5 μ m at the lower threshold.

WAYS OF IMPROVING THE SPATIAL RESOLUTION

b) Improving the resolution by increasing the gas gain.

The space-charge effect compensates the gain in resolution.

SINGLE-TUBE AND TRACKING EFFICIENCIES

SINGLE-TUBE EFFICIENCY

 μ

First possibility :

- The tube traversed by the muon has detected a hit.
- \rightarrow The tube is efficient.

Second possibility :

- The tube traversed by the muon has detected no hit.
- \rightarrow The tube is not efficient.

SINGLE-TUBE EFFICIENCY

First possibility :

- The tube traversed by the muon has detected a hit.
- \rightarrow The tube is efficient.

Second possibility :

The tube traversed by the muon has detected no hit.

 \rightarrow The tube is not efficient.

Irradiation $(s^{-1}cm^{-2})$	Irradiation in kHz per tube	Efficiency
none	0	0.9970±0.0002
63 s ⁻¹ cm ⁻²	73	0.9962 ± 0.0002
121 s ⁻¹ cm ⁻²	138	0.9960 ± 0.0002
183 s ⁻¹ cm ⁻²	209	0.9955 ± 0.0003

High efficiency also at high rates!

PROBABILITY $\epsilon_{3\sigma}$ for a Correct Hit

 $(r_{STEL})^{\mu}$ First $|r_{S}$ $(r_{STEL})^{r}$ Second $|r_{S}$ (r_{S}) (r_{S})

First possibility :

 $|r_{STEL} - r(t)| \leq 3\sigma(r_{STEL})$

 \rightarrow The hit is correct.

Second possibility :

 $|r_{STEL} - r(t)| > 3\sigma(r_{STEL})$

 \rightarrow The hit is wrong.

PROBABILITY $\epsilon_{3\sigma}$ for a Correct Hit

TRACK-RECONSTRUCTION EFFICIENCY

Track-reconstruction efficiency for a track with at least k hits:

$$\sum_{l=k}^{6} \begin{pmatrix} 6\\l \end{pmatrix} \epsilon_{3\sigma}^{l} \cdot (1-\epsilon_{3\sigma})^{6-l}$$

SUMMARY

- 1. Monitored drift-tube chambers are the heart of the precision detector in the ATLAS muon spectrometer.
 - (a) Their mechanical precision is 15 μ m.
 - (b) The spatial resolution of their tubes is less than 104 μ m.
- 2. In the ATLAS muon spectrometer, these chambers will experience background counting rates of up to $100 \text{ s}^{-1} \text{cm}^2$.
- 3. Under these conditions the average single-tube resolution will be degraded by less than 10 $\mu{\rm m}$ only.
- 4. Efficient track reconstruction under LHC operating conditions has been demonstrated.