

S. Horvat, O. Kortner, H. Kroha (Max-Planck-Institut für Physik) in Zusammenarbeit mit CEA, Saclay

DPG-Frühjahrstagung, Mainz, 01.04.2004.

Untersuchungen des Higgs-Zerfalls in 4 Myonen im ATLAS-Detektor

MOTIVATION

Zukünftige Higgssuche am LHC(CERN) in *pp*-Kollisionen bei 14 TeV Schwerpunktsenergie. Warum $H \rightarrow ZZ^* \rightarrow 4\mu$?

SIMULATION UND REKONSTRUKTION

Volle 3D-Simulation und 3D-Rekonstruktion der Higgs- und Untergrundprozesse, mit der endgültigen Detektoreffizienz und -auflösung.

ANALYSE

Untersuchung verschiedener Schnitte zur Unterdrückung des Untergrunds.

Ergebnisse: Signalsignifikanz, Massenauflösung.

Warum $H \rightarrow ZZ^* \rightarrow 4\mu$?

 $H \rightarrow ZZ^*(\rightarrow 4\mu)$:

- höchstes Verzweigungsverhältnis im größten Massenbereich
- alle Zerfallsprodukte nachweisbar
- klare Signatur (Myonen als einzige Überbleibsel in der äußersten Detektorschicht)
- Die Untersuchung konzentriert sich auf den schwierigen Massenbereich $m_H = (120 - 200) \text{ GeV}$.

 $H \rightarrow b\bar{b}$: großer QCD-Untergrund $H \rightarrow WW$: Neutrinos als Zerfallsprodukte

- volle Simulation der mit PYTHIA erzeugten Ereignisse (ATL-COM-PHYS-2003-018) Filter: mindestens 4 μ mit p_T >4 GeV, $|\eta| <$ 2.7
- N_{sim}: Anzahl simulierter Ereignisse
- $N_{erw}(300 \text{ fb}^{-1})$: erwartete Anzahl bei 300 fb⁻¹ (~3 Jahre)

Prozess	N _{sim}	$N_{erw}(300 \text{ fb}^{-1})$
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 130 GeV	50 000	104
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 150 GeV	50 000	211
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 180 GeV	50 000	125
Nicht reduzierbar: $ZZ ightarrow 4\mu$	115 000	2534
Nicht reduzierbar: $ZZ ightarrow 2\mu 2 au$	28 000	95
Reduzierbar: $Z(ightarrow 2\mu)bar{b}$	50 000	28896
Reduzierbar: $tt \rightarrow \mu \nu b \mu \nu b$	200 000	34380

Wieviele Ereignisse werden davon im ATLAS-Detektor rekonstruiert?

Rekonstruktion im ATLAS-Detektor

- volle 3D-Rekonstruktion der simulierten Daten
- unter Berücksichtigung der endgültigen Detektoreigenschaften (Effizienz, Auflösung)

Kinematische Schnitte (Detektorakzeptanz):

- nur die Ereignisse mit 4 oder mehr Myonen
- Triggerakzeptanz: 2μ mit p_T >7 GeV

 2μ mit p_T > 20 GeV

• Geometrische Akzeptanz für Myonen: $|\eta|$ <2.7

Prozess	$N_{erw}(300 \text{ fb}^{-1})$	N ^{kin} erw	N ^{kin} rekonstr	N _{sel}
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 130 GeV	104	80	49	
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 150 GeV	211	189	115	
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 180 GeV	125	112	73	
$ZZ ightarrow 4\mu$	2534	2267	1290	
$ZZ ightarrow 2\mu 2 au$	95	56	34	
$Z(ightarrow 2\mu)bar{b}$	28 896	2340	5217	
$tt ightarrow \mu u b\mu u b$	34 380	7162	10836	

 ${\sim}80\%$ des erzeugten Signals nachweisbar, ${\sim}$ 65% davon rekonstruiert

Invariante Masse 4 Myonen, rekonstruiert für Signal und Untergrund, 300 fb $^{-1}$ -Statistik:

- nicht reduzierbarer Untergrund klein
- zusätzliche Schnitte zur Unterdrückung reduzierbaren Untergrunds

Schnitt1: Isolierte Leptonen

Myonen aus den b-Zerfällen sind von zusätzlichen Spuren umgeben:

• Isolierung der Leptonen durch deponierte E_T^{dep} im Kegel $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.3$ um jeden μ -Kandidaten herum

(Kalorimetermessung)

• Schnitt: $E_T^{dep} < 9 \text{ GeV}$

Prozess	Unterdrückungsfaktor des Untergrunds
	bei der Signaleffizienz von 90%
Zbb	98±5
tī	163±8

Gemeinsamer Vertex aller Myonen

Z-Bosonen aus dem Higgszerfall zerfallen nahe zueinander:

 \Rightarrow gemeinsamer Vertex aller Myonen, im Gegenteil zum Untergrund

Kombinierte Spuren: Innerer Detektor und Myonspektrometer

• χ^2 der Vertexanpassung unterscheidet zwischen Signal und Untergrund .

Schnitt2: χ^2 der Vertexanpassung

 $\chi^2\text{-}\text{Verteilung}$ für 15 000 Signal- und 15 000 Untergrundereignisse:

Prozess	Unterdrückung des Untergrunds		
	bei der Signaleffizienz von 90%		
Zbb	4.9±0.6		
tī	5.3±0.6		

Entdeckungspotenzial bei 300 fb⁻¹

Prozess	N ^{kin} rekonstr	N ¹³⁰ sel	N^{150}_{sel}	N ¹⁸⁰ sel
$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\mu$	49/115/73	25.3	58.6	37.0
$ZZ ightarrow 4\mu$	1290	9.6	9.3	27.0
$ZZ ightarrow 2\mu 2 au$	34	1.0	1.3	0.19
$Z(ightarrow 2\mu)bar{b}$	5217	1.5	2.3	0±0.4
$tt ightarrow \mu u b \mu u b$	10836	0.005	0.005	0±0.1
S/\sqrt{B}		7.2±0.1	16.3±0.3	7.1±0.1
5σ -Signifikanz erreicht nach:		150 fb^{-1}	30 fb^{-1}	$150~{\rm fb}^{-1}$

Die volle Statistik der Signalereignisse wurde benutzt für die Bestimmung der Massenauflösung σ für drei Higgsmassen.

• nach Anwendung aller üblichen Schnitte:

