Sandra Horvat, N.Benekos, O.Kortner, S.Kotov, H.Kroha Max-Planck-Institut für Physik, München

Untersuchungen des Higgs-Zerfalls in 4 Myonen im ATLAS-Detektor

- ATLAS-Detektor
- Simulation des $H \rightarrow ZZ^* \rightarrow 4\mu$ Signals und der Untergrundprozesse mit vollständiger Detektorbeschreibung
- Optimierung der Schnitte für die Unterdrückung des Untergrunds bei niedriger Luminosität
- Anpassung der Signal-/Untergrund-Hypothesen an die Messwerte
- Abhängigkeit von der Detektoralignierung
- Zusammenfassung

ATLAS-Detektor

- Erste 1.5 Jahre: niedrige Luminosität $(2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1})$.
- Nominelle Luminosität ($2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$) nach 1.5 Jahren.

Signal- und Untergrundprozesse

Volle Simulation der mit PYTHIA erzeugten Ereignisse.

(ATL-COM-PHYS-2003-018)

Prozess	$\sigma \times BR$ (fb)	N _{simuliert}
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 130 GeV	0.682	50 000
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 150 GeV	1.325	50 000
$gg ightarrow H ightarrow ZZ^* ightarrow 4\mu$, 180 GeV	0.759	50 000
Nicht reduzierbar: $ZZ ightarrow 4\mu$	22.88	115 000
Reduzierbar: $Z(ightarrow 2\mu)bar{b}$	22400	50 000
Reduzierbar: $tt \rightarrow \mu \nu b \mu \nu b$	5730	200 000

Analyse optimiert für die niedrige Luminosität.

Detektorauflösung und -effizienz

- Hohe Effizienz und Impulsauflösung der Myonspurrekonstruktion.
- Kombinierte Spurrekonstruktion im MS und ID notwendig.

4 μ -Massenauflösung und 4 μ -Massenfenster:

m _{4µ} (GeV)	σ (GeV)	δm (GeV)
130	1.56 ± 0.02	5
150	1.94 ± 0.01	6
180	2.36 ± 0.02	7

Selektion der Ereignisse

Auswahl der von Jets

isolierten Myonen

Zusätzliche Schnitte zur Unterdrückung des Untergrunds:

- Bedingungen an die invarianten Massen beider Myonenpaare: $|m_{12}^{\mu^+\mu^-} - m_Z| < |m_{34}^{\mu^+\mu^-} - m_Z|$: $m_{12}^{\mu^+\mu^-} \in (m_Z \pm \delta m_{12}^c)$ und $m_{34}^{\mu^+\mu^-} < \delta m_{34}^c$
- kleiner Abstand aller Myonspuren vom Wechselwirkungspunkt

Optimierung der Unterdrückungsfaktoren

Durchgeführt in Massenfenstern um die Higgsresonanz herum.

Isolierungsvariablen: deponierte Energie ΣE_T oder Σp_T im Kegel $\Delta R = \sqrt{\Delta^2 \eta + \Delta \phi^2}$ um jedes Myon herum

- Unterdrückung des gesamten Untergrunds um Faktor 70
- Kalorimetermessungen ergeben bessere Untergrundunterdrückung

Gemeinsamer Vertex aller 4 Myonen

Vertexvariablen:

- Normierter Stoßparameter $A_0/\sqrt{Var(A_0)}$: Abstand der Myonspur vom Wechselwirkungspunkt
- Qualität χ^2 der Anpassung eines gemeinsamen Vertexes an 4 μ

Signalsignifikanz bei 30 fb⁻¹

Anpassung der Simulation an die Messwerte

Der übriggebliebene Untergrund ermittelt durch die Anpassung der erwarteten Untergrund- und Signalverteilungen an die Messwerte:

- Hypothese 1: $N_{Beob} = \alpha_1 \cdot N_{Signal}^{MC} + \alpha_2 \cdot N_{Untergrund}^{MC}$
- Hypothese 2: $N_{Beob} = \beta \cdot N_{Untergrund}^{MC}$

• Relativer Fehler der Parameter: 20% (α_2, β) bis 60% (α_1)

• Abweichung von der Erwartung: 15% (α_2, β) bis 30% (α_1)

Winkelverteilungen als zusätzliche Information

• Relativer Fehler der Parameter: 5% (α_2, β) bis 60% (α_1)

• Abweichung von der Erwartung: 5% (α_2, β) bis 25% (α_1)

Genaue Spurrekonstruktion ist auf die hochpräzise Alignierung der Spurdetektoren angwiesen.

Einfache Abschätzungsmodelle:

- die Versetzungen der Myonkammern von der nominellen Positionen umgewandelt in den Versatz der Myonimpulse kein Einfluß auf die Signalrekonstruktion, innerer Detektor bestimmt die Impulsauflösung für $p_T < 50$ GeV
- Gauß'sche Verschmierung der Stoßparametern und der Impulse im inneren Detektor

starke Abhängigkeit von der Auflösung der Vertexposition, Signalsignifikanz sinkt um 10%-20% bei zweimal schlechteren Vertexauflösung

- Die endgültige Detektoreffizienz und -auflösung wurden für die vollständige Simulation des Higgs- und der zugehörigen Untergrundprozesse im Betracht genommen.
- Verschiedene Schnitte zur Unterdrückung des Untergrunds wurden untersucht und optimiert.
- Die zusätzlichen Informationen zur Unterscheidung zwischen Signal und Untergrund aus der Winkelverteilungen erhältlich.
- Die Alignierungseffekte mit einfachen Modellen getestet.

Ausblick:

Erweiterung der Analyse: $H \rightarrow ZZ^{(*)} \rightarrow 4I$.