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Chapter 1

The ATLAS Experiment at the Large Hadron
Collider LHC

(L. Andricek, A. Barajas-Velez, A. Bangert,
T. Barillari, M. Beimforde, N.Ch. Benekos, S. Bethke,
B. Bittner, J. Bronner, D. Capriotti, G. Cortiana,
D. Dannheim, A. D’Orazio, V. Danielyan, G. Dedes,
J. Dubbert, Th. Ehrich, J. Erdmann, A. Fischer,
M. Fras, C. Delle Fratte, N. Ghodbane, P. Giovannini,
T. Göttfert, M. Groh, W. Haberer, J. Habring,
P. Haefner, M. Ḧartig, R. Härtel, A. Hambarzumjan,
Th. Haubold, S. Horvat, J. Huber, A. Jantsch,
St. Kaiser, M. Kilgenstein, A. Kiryunin, S. Kluth,
O. Kortner, S. Kotov, H. Kroha, S. Leber, F. Legger,
M. Lippert, J. v. Loeben, A. Macchiolo, S. Menke,
S. Mohrdieck-M̈ock, P. Mooshofer, H.-G. Moser,
R. Nisius, H. Oberlack, S. Pataraia, G. Pospelov,
I. Potrap, E. Rauter, D. Rebuzzi, O. Reimann,
R. Richter, R.H. Richter, A. Rudert, D. Salihagic,
P. Schacht, J. Schieck, J. Schmaler, S. Schmidl, H. von
der Schmitt, Ph. Schwegler,P. Seidler, R. Sedlmeyer,
R. Seuster, M. Stadler, S. Stern, S. Stonjek, I. Thiel,
G. Tratzl, Ch. Valderanis, M. Vanadia, P. Vanoni,
B. Weber, P. Weigell, H. Wetteskind, A. Wimmer,
G. Winklm̈uller, J. Yuan, X. Zhuang, V. Zhuravlov,
J. Zimmer)

The LHC experiments started to take data for high-
energy proton-proton collisions in March 2010. The
accelerator provides substantial luminosity at 7 TeV
proton-proton centre-of-mass energy since, and event
data corresponding to 0.3 pb-1 have been recorded by
ATLAS so far. The luminosity of LHC will continue
to improve rapidly in the 2nd half of the 2010 running
period, with the aim to collect 1 fb-1 by the end of
2011, when a shutdown is planned to go towards the
design c.m.s. energy of 14 TeV.

Since the last report to the Fachbeirat [1] (p.74-112),
the ATLAS group at MPP has made extensive use of
cosmics and single-beam data to have detector, soft-

ware and computing facilities well-commissioned be-
fore collisions data arrived. Thanks to these efforts,
performance in tracking and calorimetry was close to
the design values very early on. For instance, the mass
peaks of known particles accessible with initial lumi-
nosity are as expected. See section 1.1 for the final
phases of detector installation, and for commissioning.

Physics analyses with the luminosity collected by
Mid 2010 have resulted in a first set of ATLAS physics
papers. Analyses of processes which require higher lu-
minosity, as expected before end of 2010 and beyond,
are well prepared. Fig. 1.1 gives an overview of signal
and background cross sections at LHC. See section 1.2
for those parts of physics analyses in which MPP is
firmly involved.

The LHC future planning foresees a substantial in-
crease of luminosity beyond the design of the present
machine, to further extend its physics reach. MPP par-
ticipates in detector and electronics development with
the aim of exploiting higher event rates with ATLAS.
See section 1.3 for the detector upgrade activities at
MPP.

The detector is described in detail in the ATLAS De-
tector paper [2]. In the remainder of this introduction
we briefly recall the ATLAS components with MPP
involvement. Along the path of particles starting at
the interaction point, these are: inner detector (semi-
conductor tracker, pixel detector upgrade); calorimeter
(hadronic endcap and its upgrade); muon spectrometer
(precision drift tubes and upgrade).

The Inner Detector

Tracking detectors at the LHC have to face three major
challenges: high occupancy, severe radiation damage
and a short bunch crossing interval. A typical hard
interaction likett̄ production creates several hundred
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Figure 1.1:Particle production cross-sections in proton–
proton collisions as a function of the centre-of-mass energy√

s and the corresponding number of events produced per
second at a luminosity ofL = 1034 cm−2s−1 planned for
the LHC. The red dotted line marks the collision energy of
the LHC. The increase of cross-section is several orders of
magnitude compared to the Tevatron at Fermilab.

charged particles within a rapidity range of|η| 6 2.5.
In ten years of operation a flux of up to 5·1014 neq/cm2

(1 MeV neutron equivalent) particles cause substan-
tial radiation damage to the SemiConductor Tracker
(SCT). Furthermore the short bunch crossing interval
of 25 ns demands fast sensors with fast readout elec-
tronics. The layout for the silicon part of the ATLAS
Inner Detector (ID) is described in [3]. A sketch of
the ID, Fig. 1.2, shows the separation of the ID into a
central (barrel) part and two endcaps.

The complete ID is operated in a 2 T axial field.
Detailed descriptions and specifications of the ID,
its components and the expected performance can be
found in [2, 4]. It is designed to provide a resolution
in transverse momentum, in the plane perpendicular to
the beam axis, ofσpT/pT = 0.0005pT/GeV⊕ 0.01
and a transverse impact parameter resolution of 10µm
for high momentum particles in the central detector re-
gion [2].

Occupancy and radiation damage vary strongly

Figure 1.2:Sketch of the ATLAS Inner Detector.

within the ID volume. To cope with this, depending on
the distance to the beam line,R, the ID is segmented
into three parts, each using a different detector tech-
nology:

• In the innermost region, 5 cm6 R 6 12 cm a
high granularity silicon pixel detector with about
80 M readout channels is used. It offers an ex-
cellent space point resolution and low occupancy.
The high resolution of this detector is essential
for secondary vertex reconstruction, needed e.g.
for τ-lepton and b-quark identification.

• In the intermediate region, 30 cm6 R 6 51 cm, a
silicon micro-strip detector, the SCT, is used. The
strips are oriented to measure with high precision
the track coordinates transverse to the beam. A
small stereo angle between two faces of a detec-
tor module allows measuring the orthogonal co-
ordinate, albeit with less precision. The detector
measures up to four space points per track. For
the SCT the total area of silicon is about 61 m2.

• Finally, for 56 cm 6 R 6 107 cm, the transi-
tion radiation tracker (TRT) uses straw tubes. The
large number of straws allows continuous track-
ing with on average 36 hits per track, which, de-
spite the moderate space resolution of single hits,
results in a high precision measurement at large
radii. In addition, the ability to detect transition
radiation improves the electron/pion separation.
The challenge for this detector is to cope with the
high occupancy.

The MPP made major contributions to the design of
the pixel- and micro-strip silicon detectors, and at
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MPP we have built about 30% of all SCT endcap mod-
ules. The actual performance of the ID after the fi-
nal installation including the cosmic ray data analysis
from the year 2008 is discussed in [5]. At the LHC,
the ID already served to measure the multiplicities and
spectra of charged particles in minimum bias inter-
actions at a proton-proton center of mass energy of
900 GeV [6], presenting the first ATLAS LHC physics
result.

The Hadronic End-cap Calorimeter

The ATLAS calorimeters consist of two different tech-
nologies – liquid argon sampling calorimeters for
the electromagnetic, hadronic endcap and forward
calorimeters with lead, copper and copper/tungsten
as respective absorber materials and a scintillator -
iron tile sampling calorimeter for the hadronic barrel
system. They are designed to measure and identify
electrons and photons with high precision∆E/E ≈
10%/

√
E up to pseudo-rapidities of|η| < 2.5 and to

reconstruct jets with∆E/E ≈ 50%/
√

E for |η| < 3
and with ∆E/E ≈ 100%/

√
E in the forward region

3 < |η| < 5. High granularity and calorimetric cover-
age up to|η| ≈ 5 are also needed for the reconstruc-
tion of missing transverse energy.

There are two end-caps in the ATLAS calorimeter
system. The Hadronic Endcap Calorimeter (HEC),
which covers the pseudo-rapidity range 1.5 < |η| <
3.2, consists of two independent mechanical units
(‘wheels’) per end-cap: the front and the rear wheel.
Each wheel has a diameter of≈ 4 m. The absorber
structure of the two wheels consists of parallel copper
plates of 25 mm (50 mm) for the front (rear) wheels.
There is a gap of 8.5 mm of LAr between adjacent ab-
sorber plates. Three electrodes divide this gap into
four separate LAr drift zones of 1.8 mm width each.
Each calorimeter wheel is divided into 32 individual
modules. A front (rear) module collects the signal in
24 (16) LAr gaps. The signals of two adjacent gaps
are collected and transmitted to an amplifier chan-
nel in the ‘active pad’ electronics, which is located
in the cold LAr volume. Finally the signals corre-
sponding to a tower pointing to the interaction point
are summed. There are four such longitudinal segmen-
tations for each end-cap tower. The signal processing
of the HEC employs the notion of ‘active pads’ which
keeps the detector capacities at the input of the am-
plifiers small and thereby achieves a fast rise time of
the signal [138]. Short coaxial cables are used to send
the signals from the pads to preamplifier and summing

boards (PSB) located at the perimeter of the wheels
inside the liquid argon. These PSB’s carry highly
integrated amplifier and summing chips in Gallium-
Arsenide (GaAs) technology.

The Muon Spectrometer

The muon spectrometer [2, 45] of the ATLAS experi-
ment is equipped with three layers of muon detectors
in a toroidal magnetic field of 3−6 Tm bending power
generated by a superconducting air-core magnet sys-
tem. The spectrometer is designed to provide muon
momentum resolution of better than 10% for trans-
verse momenta up to 1 TeV over a pseudo-rapidity
range of|η| 6 2.7. This requires a very accurate track
sagitta measurement with three layers of muon detec-
tors which have to be aligned relative to each other
with an accuracy of up to 30µm in the bending direc-
tion in the magnetic field. Drift chambers with very
high spatial resolution of 40µm, the Monitored Drift
Tube (MDT) chambers, have been developed to cover
the active area of the spectrometer of 5500 m2 with
only 5% gaps mainly in the region of the detector feet.

The cylindrical central part of the spectrometer (bar-
rel) contains eight race-track shaped magnet coils of
25 m length and 5 m radial width. The layout of the
muon chambers follows the eightfold symmetry of the
magnet around the proton beam axis in eight small and
eight large azimuthal sectors (see Figure 1.3). The bar-
rel part of the spectrometer is complemented by two
endcaps each consisting of eight superconducting coils
housed in a common cryostat fitting into the inner bore
of the barrel toroid magnet and three wheel-shaped
layers of muon detectors.

The MDT chambers built in Munich consist of two
triple layers of 30 mm diameter aluminium drift tubes
of 3.8 m length equipped with a central gold-plated
tungsten-rhenium sense wire which are separated by
an aluminium space frame. The drift tubes are oper-
ated with Ar:CO2 (93:7) gas mixture at a pressure of
3 bar and a gas amplification of 20,000 (correspond-
ing to a operating voltage between tube wall and wire
of 3080 V) and provide a position resolution of about
80µm . The sense wires are positioned within a cham-
ber with an accuracy of better than 20µm in order to
achieve the required spatial resolution of the cham-
bers [46].

In the years 2001 to 2006, 88 MDT chambers were
constructed at the MPP [47] containing about 36000
drift tubes. They cover about 15% of the active area of
the spectrometer.
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Figure 1.3:The barrel part of the ATLAS muon spectrometer viewed from the LHC tunnel after completion of the muon
chamber installation in November 2006. The MDT chambers built in Munich are mounted on rails on the outside of the
eight superconducting magnet coils.

ATLAS Computing

The construction and operation of the computing sys-
tem for the ATLAS experiment is a major undertaking
carried out by the ATLAS collaboration with support
from the Worldwide LHC Computing Grid (WLCG)
collaboration. The MPP contributes its share to this
task with a large Linux cluster located at the Rechen-
zentrum Garching (RZG) of the MPG. This cluster
serves as a part of the Munich ATLAS Tier-2 centre,
hosts the Munich calibration and alignment centre for
the ATLAS Muon system and provides our institute’s
users with large computing and storage resources. In
addition the MPP ATLAS group has several members
working on central computing tasks for ATLAS.

1.1 Detector Commissioning and
Computing

1.1.1 The Semiconductor Tracker SCT

Because of the MPP experience with silicon micro-
strip sensors and the unique possibilities offered by
the associated semiconductor laboratory (HLL = Halb-
LeiterLabor), MPP participated in the design and con-
struction of the SCT.

Mechanically the SCT consists of three main units,
namely the barrel and two identical endcaps. The bar-
rel covers the region of central rapidity,|η| 6 1, and
the detector modules, i.e. the smallest mechanically
sensitive units of the SCT, are arranged on four cylin-
ders around the beam axis. The endcaps extend the
acceptance up to|η| 6 2.5. Here the modules are
arranged on nine disks per endcap, and are oriented
perpendicular to the beam axis.

Due to the radial arrangement the endcap modules
use wedge shaped sensors glued back to back in pairs.
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The sensor dimensions are about 6.4 cm× 6.4 cm and
the strip pitch of the 768 strips per sensor is varying
in the range (64–90)µm. Electrically, the two sensors
of either pair are chained in series. One pair has a ra-
dial strip orientation, while the second pair is rotated
by 40 mrad in order to yield stereo information. The
binary readout electronics is located on a double sided
hybrid attached to the end of the module. In the bi-
nary mode the only information retained per channel
is whether the observed signal was above or below a
discriminating threshold. To equalize the efficiency of
all channels for detecting a passing particle, the dis-
criminating thresholds can be set individually for each
channel by means of calibration capacitors. On a fully
populated disk, three different types of endcap mod-
ules, inner, middle and outer modules, are arranged in
three rings.

A major challenge for the ATLAS SCT is the large
radiation level which leads to severe radiation dam-
age of the sensors and the readout electronics, calling
for cold operation (-10◦C) of the silicon sensors. The
cold operation and the dissipation of the heat gener-
ated by the electronics and the sensor leakage currents
leads to mechanical stress. To ensure stable positions
of the modules during operation needed for high qual-
ity tracking, the system requires a very high geometri-
cal stability,

Figure 1.4:View of a middle module constructed by MPP
technicians.

MPP Engagements in the ID

In the years 1997–2006 the MPP engagement mainly
concentrated on 1) the development of a cost-effective
design for radiation-tolerant silicon strip sensors, 2)
the design work for the endcap modules concentrat-
ing on the mechanical and thermal performance, 3) the
construction of 424 SCT endcap modules of the mid-
dle type, Fig. 1.4, which amount to about 30% of all

endcap modules, 4) the integration, as well as perfor-
mance measurements with cosmic ray muons, of the
combined SCT and TRT detectors at the surface be-
fore their installation into the ATLAS cavern, and 5)
the alignment of the silicon part of the ID with parti-
cle tracks. Detailed reports of the work performed by

Figure 1.5: First disc equipped with MPP short middle
modules.

the MPP group in the years 1997–2006 can be found
in [7] (p.63-67), [1] (p.77-85). The properties of the
sensors are described in [8], details of the endcap mod-
ules and their production process are given in [9]. The
first 40 short middle modules1, produced by MPP, and
mounted onto one endcap disc at Liverpool, are shown
in Fig. 1.5.

In the years 2007–2010 for the present ATLAS de-
tector the MPP group mainly worked on the SCT com-
missioning with emphasis on detector monitoring, and
the alignment of the silicon part of the ID with particle
tracks.

1The only difference between middle- and short middle mod-
ules is that the latter only carry one sensor per module side, i.e.
the second sensor is replaced by a glass plate that is insensitive to
passing particles, but retains the mechanical stability of the mod-
ule. Short middle modules are used at the largest rapidities.
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SCT Commissioning

The MPP is contributing to the SCT detector commis-
sioning in the area of online monitoring.

The SCT read-out-system (ROS) is structured in
various layers. The ROS monitoring is used to contin-
uously control the detector operation, and thereby also
gives valuable information on the LHC beam condi-
tion that ATLAS is facing. It comprises error searches
at chip-, link-, or read-out-driver level, but also in-
formation on the actual illumination of the SCT by
means of strip occupancies. The ROS monitoring is
mostly independent of the ATLAS trigger system, and
can give even faster feedback on much more data, than
what is eventually written to tape. The MPP group pro-
vides a ROS monitoring expert, whose task is to con-
stantly maintain and extend the ROS monitoring soft-
ware and its interface to the online monitoring of the
ATLAS SCT as a whole. The fast feedback achieved
is a valuable input to the detector operation, and has
already led to a detailed understanding of some LHC
conditions that otherwise would have been difficult to
get.

Detector Alignment with Particle Tracks

Since 2004 the MPP group develops software for the
alignment of the SCT and pixel detector parts of the
ATLAS ID based on particle tracks. To achieve the
best possible reconstruction of tracks the exact loca-
tion of all read-out channels needs to be known. In a
first step this is achieved by a geometrical survey of the
detector, however, for the ultimate precision the use of
particle tracks is mandatory.

A crude estimate of the alignment precision aimed
at can be obtained from the requirement that the detec-
tor misalignment should lead to a degradation of any
track parameter of at most 20% [3](p. 215). Using this
requirement, the misalignment for SCT modules in the
direction perpendicular to the strip orientation should
not exceed 12µm. Final physics aims of ATLAS are
even more demanding. For improving on the determi-
nation of the mass of the W-Boson, i.e. for an accuracy
of better than 25 MeV, an alignment accuracy of about
1µm transverse to the beam direction is needed [10].

As an example, for the SCT optical surveys are per-
formed for the location of the silicon sensors within
the modules (see above), and for the mounting points
of the modules on the discs and barrel cylinders. The
accuracy obtained with the external methods is bet-
ter than 5µm for the positions of the sensors within

a module. For the module locations one expects larger
uncertainties. For the SCT endcap modules the ex-
pected precision from external measurements is about
50 (100)µm transverse (parallel) to the beam direction,
which is not precise enough to achieve the physics
goals of ATLAS.

From the above it is clear that in any case the ul-
timate precision has to be obtained using the trajec-
tories of charged particles observed in real data. Us-
ing the external measurements as starting points, the
knowledge of the module locations is improved by
the alignment procedure based on particle tracks. The
MPP strategy uses an iterative procedure to constrain
the six degrees of freedom for individual modules by
means of aχ2 minimization of the sum of unbiased
track residuals (see below) with respect to the align-
ment parameters per module. This method is called
the localχ2 algorithm. Figure 1.6 shows the local co-

40 mrad stereo angle

x
e

y
e

z
e

readout strip

r- -side

stereo-side

Figure 1.6:Local coordinate system of an SCT module.

ordinate system of an SCT module. The six degrees
of freedom are the three coordinates along three axes
running perpendicular to the strip, along the strip and
perpendicular to the module plane (x, y, z), and the
three angles of rotation around these axes, namelyα,
β and γ. For a given single strip that gave a signal
above threshold and is associated to a fitted track, the
unbiased residual is defined as the smallest distance in
space between the actual location of the strip and the
fitted trajectory obtained when excluding that hit from
the track fit. By means of iterations, this method incor-
porates the correlation of the locations of the modules
traversed by a particle.

The algorithm has initially been implemented into
the ATLAS reconstruction software for the SCT de-
tector [11]. It was extended to also incorporate the
pixel detector [12] by treating the two precise pixel
measurements along the two dimensions of the pixel
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as two independent measurements in analogy to the
two hits recorded on the two sensors of an SCT mod-
ule. Thereby the basic mathematical framework could
be kept the same, facilitating the simultaneous align-
ment of pixel and SCT detectors.

In the conventional alignment procedures the detec-
tor geometry is only updated after a large number of
particle tracks has been analyzed, and theχ2 has been
minimized with respect to the alignment parameters.
As an alternative a KALMAN filter approach has been
implemented and studied [13]. Here the knowledge
gained by analyzing the tracks from one event is im-
mediately fed back resulting in a geometry update after
each event. The basic functionality of the KALMAN
approach has been achieved. However, no striking ad-
vantage in convergence speed has been observed. In
addition, in contrast to e.g. the localχ2 algorithm,
the KALMAN filter algorithm cannot be parallelized.
Therefore, this possible advantage could always be
compensated by parallel computing, and consequently
this approach is no longer followed in ATLAS.

The localχ2 algorithm has been used in very differ-
ent environments like Monte Carlo simulated proton-
proton interaction events [14], data from an ID com-
bined test beam (CTB) run [15, 16], simulated inter-
actions of protons with the rest gas in the beam pipe,
data recorded from cosmic ray muons taken at the sur-
face [17] as well as after completion of the ATLAS
detector at its final position [15, 18], and finally with
proton-proton collision data from the LHC.
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Figure 1.7:Improvement of the momentum resolution by
the CTB alignment

In these studies it became evident that for each of

the data sets, due to their specific limitations, addi-
tional features had to be implemented into the algo-
rithm to either make it properly converge, or to im-
prove on its performance. The separation of the align-
ment into three subsequent levels, L1 to L3, (L1≡
global structures, i.e. barrel and endcaps, L2≡ super-
structures, i.e. barrel layers and endcap discs, L3≡
individual modules) has been performed and an en-
richment of overlap hits (pairs of neighboring mod-
ules on superstructures slightly overlap, see Fig. 1.5)
was implemented into the algorithm for better conver-
gence [15].
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Figure 1.8:Momentum resolution for different momenta
and for positrons (top) and pions (bottom) for the CTB setup
when using different alignment algorithms.

For the CTB setup the improvement of the mo-
mentum resolution is seen in Fig. 1.7 [16], where the
1/momentum resolution before and after performing
the alignment is shown for pions with 100 GeV mo-
mentum. The initially wide distribution is greatly im-
proved, and after the alignment the narrow distribution
peaks at the correct value. In Fig. 1.8 [16] the perfor-
mance of the MPP algorithm is compared to other al-
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Figure 1.9:Flow of alignment parameters of the pixel layers and discs during alignment iterations for cosmic ray data.

gorithms used in ATLAS, and also to the expectation
of the ATLAS Monte Carlo simulation based on the
perfect knowledge of the geometry. Here, the figure
of merit is the momentum resolution as a function of
the known momentum. The algorithms perform simi-
lar, with the exception of the robust algorithm that, due
to its simplistic but robust implementation, is slightly
worse. The other algorithms also closely match the
expected resolution.

For the cosmic ray muon analysis the limited illu-
mination of the detector in the ATLAS cavern poses a
challenge. Due to the geometry, cosmic rays pass bar-
rel modules mostly perpendicular to the sensors, but
endcap modules almost parallel. This renders some
degrees of freedom only loosely constrained, most no-
tably for the SCT endcaps. To accommodate this, fur-
ther improved mixed levels of alignment were con-
structed, i.e. the level L32 (barrel L3 SCT alignment,
but endcaps only L2 SCT alignment) has been imple-
mented, supplemented by additional soft constraints to
limit the parameter movements of badly constrained
degrees of freedom by means of pseudo hits with ap-
propriate uncertainties [18].

For the cosmic ray alignment Fig. 1.9 shows the

flow of the six alignment parameters of the pixel lay-
ers (blue) and discs (green, red) with consecutive it-
erations, using five iterations at L1 followed by thirty
iterations at L2. A perfect convergence would man-
ifest itself in horizontal lines, which is clearly better
fulfilled for the barrel layers than for the discs that,
due to the inclination angle of the cosmic ray muons,
are less well constrained. Nevertheless, as displayed in
Fig. 1.10, the residual distributions for pixel and SCT
modules in barrel and endcaps are greatly improved
after L2 (blue) and the final (red) alignment. Again,
when comparing to the expectation for perfect knowl-
edge of the geometry (yellow), all distributions move
the right way, with the SCT barrel modules (lower left)
getting the closest. The alignment based on cosmic ray
data will constitute the basis for the alignment to fol-
low with tracks coming from the interaction vertex in
proton-proton collisions at the LHC.

The influence on the alignment caused by constrain-
ing the tracks to a common vertex, as well as the im-
pact of systematic detector mis-alignments on the per-
formance of the ATLAS b-tagging algorithms, have
also been studied [14].

Finally, the recovery of so called weak deformation
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Figure 1.10:Improvements in the residual distributions for the alignment using cosmic ray data.

modes of the detector, i.e. systematic deformations
that either leave track parameters virtually unchanged,
or lead to changed, but consistent parameters, was
thoroughly studied. The deformations were imple-
mented into the simulation [18], and their impact on
the track parameters, as well as on the measured invari-
ant mass of the Z-Boson reconstructed fromZ → µµ
events, was investigated [19].

The progress of the ATLAS ID alignment has been
constantly reported outside of ATLAS [20–22] by
members of the MPP group. At present the align-
ment based on proton-proton collision data from the
LHC is underway. It turned out that the SCT end-
cap alignment obtained from the cosmic ray analysis
is easily improved by inclusion of this data. However,
the SCT barrel alignment is already so precise that sig-
nificant improvements need further adaptations of the
software like inclusion of constraints provided by in-
variant masses from known resonances.

1.1.2 The Hadronic End-cap Calorimeter
HEC

The ATLAS MPP calorimeter group has contributed
to the construction, assembly, installation and com-
missioning of the hadronic end-cap calorimeter (HEC)
system [25,42], to the cold electronics of the HEC em-

ploying the novel concept of ‘active pads’ [138], to the
read-out system of the calorimeter, and to the trigger
summation for the HEC. The group has also taken over
the responsibility for the hadronic calibration of the
ATLAS calorimeter [35] and its application tott̄ [39]
and jet analyses [36, 37]. The largett̄ cross section
provides even in the LHC start-up phase a reasonable
statistic oftt̄ events. In the very first stage they will
yield a powerful in-situ test of the hadronic calibration
in ATLAS.

Present HEC Cold Electronics. The signal pro-
cessing of the HEC employs the notion of ‘active pads’
which keeps the detector capacities at the input of the
amplifiers small and thereby achieves a fast rise time
of the signal [138]. Short coaxial cables are used to
send the signals from the read-out pads to preamplifier
and summing boards (PSB) located at the perimeter of
the wheels inside the liquid argon. Figure 1.11 shows
a fully assembled HEC wheel in the horizontal posi-
tion on the assembly table with the PSB boards (see
Fig. 1.12) at the outer circumference.

The lateral segmentation is∆η×∆φ = 0.1×0.1 up
to η = 2.5 and∆η × ∆φ = 0.2 × 0.2 for higherη ,
and the longitudinal granularity is a fourfold read-out
segmentation. The detector capacitance varies from 40
to 400 pF giving a rise time variation from 5 to 25 ns.
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Figure 1.11: A HEC wheel fully assembled on the assembly table showing the ‘active pad’ electronics. The
PSB boards with the GaAs IC’s are mounted at the periphery of the wheel.

Figure 1.12: Picture of a Preamplifier and Summing
Board PSB showing the 16 GaAs IC’s with the re-
lated input connectors. The output connectors are in
the center of the board.

These PSB’s carry highly integrated amplifier and
summing chips in Gallium-Arsenide (GaAs) technol-
ogy. The signals from a set of preamplifiers from lon-
gitudinally aligned pads (2, 4, 8, or 16 for different
regions of the calorimeter) are then actively summed
forming one output signal, which is transmitted to the
cryostat feed-through.

The GaAs TriQuint QED-A 1µm technology has
been selected for the front-end ASIC because it of-
fers excellent high frequency performance, stable op-
eration at cryogenic temperatures and radiation hard-
ness [138]. The front-end chip consists of 8 identical
preamplifiers and two drivers. The summing scheme is
implemented with external components and intercon-
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Figure 1.13: The signal amplitude measured after val-
ues of neutron fluence from 1.5×1013 to 9×1014n/cm2

for 4 different detector capacities. Shown is the ratio
to the signal amplitude before the irradiation.

nections made on the PSB (see Fig. 1.12) at the outer
circumference.

In the hadronic endcap calorimeter a neutron flu-
ence of 0.2× 1014 n/cm2 is expected after 10 years
of LHC operation at high luminosity. It is known that
GaAs is a radiation resistant semiconductor. The ra-
diation hardness has been studied at theIBR− 2 re-
actor in Dubna, Russia, with a set of pre-production
chips. Various types of tests have been performed.
Seven chips were exposed to a total fluence of fast
neutrons of(1.11± 0.15) × 1015 n/cm2 and an inte-
gratedγ dose of(3.5± 0.3) kGy. A second set of
8 chips was irradiated withγ’s up to a total dose of
(55± 8) kGy accompanied by a fast neutron fluence
of (1.1± 0.2) × 1014 n/cm2. In these tests the ASICs
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were kept in a cryostat filled with liquid nitrogen.
The standard set of characteristics like transfer func-
tion, rise time, linearity and equivalent noise current
of the preamplifiers was measured. The measurements
show that the preamplifier characteristics start to de-
grade when the neutron fluence exceeds approximately
3×1014 n/cm2. Fig. 1.13 shows the degradation of the
amplitude with neutron irradiation for four different
values of input (detector) capacitance. Such a degra-
dation will result in a non-uniform response, which
is critical since between 2 and 16 read-out pads are
summed, and will ultimately impact the resolution re-
quired for physics measurements.

Similar measurements withγ-irradiation show that
the characteristics stay unchanged up to a dose of at
least 50 kGy. Both boundary values are well above
the radiation levels expected in the final ATLAS envi-
ronment at LHC.

Another important practical aspect of the cold elec-
tronics is the heating of the chips that can finally result
in bubbling of the liquid argon. The bubbles propa-
gating to a LAr detector gap can cause high voltage
discharges. Therefore the power consumption has to
be kept low.

Data Analyses from Beam Tests

100 cm

ATLAS axis

0

-185

+240

+140

-110

EMEC

HEC 
rear

HEC 
front

FCal2 FCal1CTC

WTC

Figure 1.14: Schematic view of the calorimeter set-
up of the 2004 combined beam test. Shown are the
inner EMEC (front), the HEC, the FCal1 and FCal2
modules (below the HEC modules). In addition, the
cold tail catcher (CTC, behind FCAL2) and the warm
tail catcher (WTC, outside of cryostat) are shown as
well.

The analysis of data from HEC only [26] and com-
bined beam tests of the calorimeters, which were per-
sued in 2002 and 2004, [27–30] (see description of
these beam tests in our previous report [1] (p.85-94)),
is continued and still provides valuable insights into
the calibration of the detector response and the simu-
lation of hadronic showers.

In the latest beam test the modules have been ex-
posed to beams of electrons, pions and muons with
energies up to 200 GeV covering the transition region
2.5 < |η| < 4.0 [31]. This is a particularly complex
region of overlap of the three end-cap calorimeters.
The electromagnetic endcap calorimeter (EMEC), the
HEC and the forward calorimeter (FCal) modules are
positioned as in ATLAS, including all details of cryo-
stat walls and supports (dead material). One quarter of
the front and rear HEC wheels have been assembled,
but with small modules which cover in size only the
forward η region. Similarly, one EMEC inner wheel
module (1/8 of the EMEC wheel) and 1/4 of the FCal1
and FCal2 have been assembled. Fig. 1.14 shows a
schematic of the set-up of the different calorimeter
modules. The beam enters through the cryostat win-
dow from the right at a nominal position ofy = 0 cm.
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Figure 1.15: Linearity (upper plot) and resolution
(lower plot) for charged pions in the EMEC/HEC re-
gion (point D) of the 2004 combined test beam. Open
symbols are for uncalibrated (EM), filled symbols
for local hadron calibrated clusters (DM). The data
is compared to Geant4 simulations with the Quark-
Gluon String Precompound (QGSP) model and a vari-
ant of it adding Bertini intra-nuclear cascades (BERT).

The validity of the local hadron calibration ap-
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proach (described in more detail further below) was
tested for the first time on real data in a diploma the-
sis [43] in 2008 utilizing as a first step the calibration
constants derived for ATLAS. The results for linearity
and resolution for charged pions in the EMEC/HEC
region before and after calibration are depicted in fig-
ure 1.15 in comparison to the expectations for two dif-
ferent hadronic showering models (so called hadronic
physics lists in Geant4 [41]).

The linearity is found to be restored within 1% be-
yond 60 GeV and within 3 % below that energy. Both
shower models are in good agreement with the data
for the linearity before and after the calibration. The
resolution is improved by the calibration although the
constants are not optimized for the test beam setup.
Here both shower models predict better resolutions
compared to data but the same relative improvement
due to calibration is found for both simulations and
the data. The test beam results are used to further tune
the shower models in Geant4.

The currently ongoing analysis of the test beam data
focuses on the performance with dedicated constants.

Commissioning of the HEC
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Figure 1.16: Typical pulse shapes, recorded during the
cosmic ray campaign, for the first layer of the HEC.
The relative difference between data and prediction is
indicated by triangles on the right scale.

Cosmic Muons. First tests reconstructing the real
particle response in ATLAS have been done us-
ing muons from cosmic rays in the years 2007 and
2008 [42, 44]. For the HEC the incoming cosmic ray
flux is mostly parallel to the orientation of the absorber
plates and the LAr gaps. Nevertheless, using inclined
tracks and reconstructing the effective track length in
individual read-out cells, a cross check of the cali-
bration can be done. Alternatively the energy in the
calorimeter cells alone can be used to select data sam-

ples independent of the muon tracks. This approach
has been adopted for the pulses in figure 1.16. Only
small deviations (3− 5%) of the prediction from the
data in the peak region and the end of the negative un-
dershoot are observed.
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Figure 1.17: Electronic noise (σnoise) in randomly trig-
gered events at the EM scale in individual cells for
each layer of the LAr calorimeter as a function of|η|.
Results are averaged overφ.

Random triggers in the cosmic data are taken to
measure the electronics noise, and the stability of
pedestal with time. Figure 1.17 shows the measured
noise on cell level for each layer of the LAr calorime-
ter as a function of|η|. Here the noise is defined as the
measured width of the distribution of the reconstructed
energy per cell in events without any expected ion-
ization signal. Good agreement with predicted values
from simulations [2] is observed and the uniformity in
φ and the symmetry inη is within a few percent. The
stability of the pedestals in the HEC was monitored
over 6 months and showed variations of 2 MeV only –
well below the numerical precision of the energy com-
putation which is 8 MeV.

The transverse missing energy in random triggers is
sensitive to correlated noise in the calorimeter and has
been used together with noise suppression methods to
search for unaccounted effects in the noise description.
Figure 1.18 showsEmiss

T computed for all cells above
2σnoise and for cells inside topological clusters [34]
which are seeded by cells above 4σnoise. Both are con-
sistent with the Gaussian model of electronics noise
although the agreement in the stricter suppressing case
using topological clusters is a bit worse due to the en-
hanced sensitivity to details in the noise description.
The absence of large tails shows that the electronics
noise is well under control and not perturbed by large
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Beam Splash Events. The turn on of the LHC in
2008 and again in 2009 provided with so-called beam-
splash-events another set of commissioning data.
In beam splash events circulating single beams at
450 GeV are dumped on collimators some 140 m up-
stream of the detector and cause a large particle spray
to pass the detector from one end-cap to the other leav-
ing huge amounts of energy (typical are 1000 TeV and
more) in the calorimeters. The comparison for each
endcap of the average cell energy as function ofη and

φ for the 85 beam splash events observed in 2008 al-
lowed to identify all channels with reduced high volt-
age, where the decrease in signal is larger than 20%
[44]. Figure 1.19 shows the average cell energies on
both sides for a given bin in|η| as a function ofφ. The
missing quadrant on the C-side (missing dots at high
φ indices) was caused by a malfunctioning power sup-
ply which is meanwhile operational again. Currently
about 1% of all channels in the LAr calorimeters are
not operational and a few percent require a correction
for reduced high voltage.

The relative timing for the readout of the calorime-
ter systems was also tuned with the splash events.
Since at these large energies the time resolution is well
below 1 ns the expected time differences due to time-
of-flight and the trigger could be confirmed within
±2 ns [42].

Collisions. Finally late in 2009 the first collisions at
center-of-mass energies of

√
s = 900 GeV have been

recorded with the ATLAS detector. Comparisons to
simulations of QCD processes (minimum bias events)
allowed a first validation of the clustering and calibra-
tion scheme described in the next paragraph.

Examples for these early validations with physics
events are show in figures 1.20 and 1.21.

cluster
η

-5 -4 -3 -2 -1 0 1 2 3 4 5

 D
A

T
A

/M
C

〉 
cl

us
te

r
 E〈

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

   PreliminaryATLAS
 = 900 GeVsData 2009  

>0.5 GeVT,cluster  E

All Clusters
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Both figures demonstrate that the systematic error
for the clustering and the calibration are well under
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control and currently are on the level of< 5%.

Local Hadron Calibration

The local hadronic calibration [35], which is devel-
oped in large parts in our group has been further re-
fined in the reporting period and validation efforts
started with collisions data and with simulatedtt̄-
events [39,44].

The aim of the method is to provide the energy
on the hadron level for each individual cluster in the
calorimeter which in turn serve as input to the recon-
struction of higher level objects like jets [36, 37] and
missing transverse energy [38]. The most important
steps in this procedure are:

1. Topological Clustering. Clusters [34] are recon-
structed in the calorimeters around seed cells with
very significant energy (|E| > 4σnoise). Neigh-
boring cells in the same and in neighboring lay-
ers are added to the cluster regardless of their en-
ergy and expand the cluster further by their re-
spective neighbors in case they’re found to have
|E| > 2σnoise. Clusters are merged in this step
if they share a cell with|E| > 2σnoise. The
so-found clusters are split and regrouped again
around local energy maxima (E > 500 MeV). In

this step merging of clusters is not allowed and
border cells are shared among the clusters. The
resulting clusters have a close correspondence to
individual particles hitting the detector and thus
motivate the local hadron calibration approach.

2. Classification. Each cluster is compared by
means of cluster shape variables like depth and
energy density with a-priori probabilities for such
shapes derived from simulations of charged and
neutral pions. If the resulting probability of the
cluster to stem from a charged pion is above 50%
the cluster is classified as hadronic, those with
values below as electromagnetic. The probabil-
ity phad to be hadronic is stored as well for each
cluster.

3. Cell Weighting. Invisible hadronic energy de-
posits are recovered in this step by applying cell
weightswcell derived from charged pion simula-
tions to the cells in all clusters. The weights are
functions of cell position, cell energy density and
cluster energy as inspired by the H1 weighting
scheme [32, 33]. Since electromagnetic showers
do not lead to invisible energies (i.e. their weight
ought to be 1) the final weight per cell is given by
phad× wcell + (1− phad) × 1.

4. Out-Of-Cluster Corrections. Both, electromag-
netic and hadronic showers lose energies on the
edge of the shower due to the applied noise cuts.
Averaged corrections depending onη, shower
depth and energy are derived for both and applied
with the same probabilities as in the weighting
step.

5. Dead-Material Corrections. Energy deposits
in non-instrumented material upstream of, in be-
tween, and beyond the calorimeter is recovered
in this step. The correlation of the losses with
energy deposits in calorimeter layers close to the
dead-material (like the pre-sampler for any ma-
terial upstream) is used here and parameterized
corrections are applied again with the probability
weighted sum of hadronic and electromagnetic
corrections.

6. Jet-Level Corrections.Finally some corrections
need to be applied to the jets made out of the cal-
ibrated clusters mainly due to particles not leav-
ing any signal in the calorimeter and thus not ac-
counted for in the correction steps above. The



1.1. DETECTOR COMMISSIONING AND COMPUTING 17

main reasons for missing signals are the noise
threshold for seeding clusters, the magnetic field
bending charged particles with lowpT outside the
jet acceptance and absorbed particles in the dead
material upstream of the calorimeters.

Figure 1.22 shows the comparison of the average
cluster energies normalized to the uncalibrated energy
as a function ofη after the individual cluster calibra-
tion steps outlined above in the first collisions data.
For this inclusive plot low energetic clusters dominate
and the largest corrections are applied in the out-of-
cluster and dead-material correction steps. As already
shown in figure 1.21 the agreement with simulations is
better than 4% for allη regions.
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Figure 1.22: Average cluster energies normalized to
the uncalibrated energy after various calibration steps
for collisions at

√
s = 900 GeV.

Current developments focus on the jet-level correc-
tions, where the energy distribution of the constituent
clusters in a jet is used to estimate the lost energy frac-
tion, and the validation of the local hadron calibration
with isolated hadrons in collision data at

√
s = 7 TeV

and inclusive cluster samples extending the studies
shwon here for

√
s = 900 GeV.

Another focus concerns the work on refined simu-
lations for jets in ATLAS with the ability to tag each
energy deposit with the originating hadron produced
by the generator. This technique allows to use the jet
simulations directly instead of single particle simula-
tions to derive the local hadron calibration constants.

First simulations with this new labeling scheme are al-
ready available and refined calibration constants are
expected within the next few months.

1.1.3 The Muon Drift Tube Chambers MDT

The 88 Monitored Drift Tube chambers built at the
Max-Planck-Institut f̈ur Physik were installed in the
ATLAS experiment from February to June 2006, after
being integrated with their respective trigger chambers
and tested at CERN in 2005 [48–51] (see Figure 1.3).
The chambers were the first to be mounted on the rail
system in the barrel part of the spectrometer and were
positioned with an accuracy of about 1 mm [50], well
within the specifications. The barrel part and the mid-
dle wheels of endcaps of the muon spectrometer were
installed in 2006, the missing inner and outer endcap
wheels followed in 2008, completing the muon spec-
trometer. 10 of 62 additional chambers improving the
acceptance in the barrel-endcap transition region have
been installed in 2009, the rest will follow in 2012.

The Max-Planck-Institut f̈ur Physik has taken a
leading role in the commissioning of the ATLAS muon
spectrometer and, via a representative in the ATLAS
Muon Steering Group, is responsible for the overall
coordination of the operation and maintenance of all
MDT chambers since beginning of 2008. In addition,
our MDT group provides on-call gas system and de-
tector experts, as well as the data quality expert, who
is responsible for the final sign-off of the MDT data.
The MPP team is also involved in providing training
and documentation for the shifters operating the de-
tector in the ATLAS control room.

The commissioning of the MDT chambers should
have followed their installation closely, but it was de-
layed due to the late installation of the final services in
the experiment—the routing of the low and high volt-
age cables, readout fibres, and gas pipes and valves—
and the availability of the commercially manufactured
power supply boards. Thus, the commissioning phase
of the muon spectrometer spanned from the end of
2006—with only 13 MDT chambers operational on
temporary services—to September 2008, when the
first beam was circulated in the Large Hadron Collider
(LHC), and 98.8% of the 350000 channels of the 1088
MDT chambers of the muon spectrometer were oper-
ational.

A notable exception to the general commissioning
strategy were the MPP MDT chambers: immediately
after their installation and in regular intervals after-
wards their gas tightness, HV stability and the sta-
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bility of the chamber geometry has been tested [50].
As a result, these chambers exhibited less problems
than other types when finally put into operation. The
chambers were connected to the ATLAS gas system in
2007 and to the power supplies and read-out chain in
2008 by a team of 3 technicians and 4 physicists from
MPP. Due to their exposed position at the outside of
the ATLAS detector and the hostile environment with
cooling and cryogenic stations and electronics racks
on the surrounding structures nearby, the MPP cham-
bers showed an increased noise pickup compared to
the inner chambers. The situation was remedied by
designing additional low-pass filters for the high volt-
age lines which were mounted on all MPP chambers
in 2008 [52]. These filters are now also used on other
chambers in the muon spectrometer which suffer from
high noise rates.

The commissioning of the ATLAS muon spectrom-
eter encompasses the connection of services to the
chambers and the electronic racks in the experimen-
tal cavern. The MPP team supported this global work
with 1–2 technicians and 2–4 physicists during 2007
and 2008. About 50% of all barrel MDT chambers
were connected by the team and subsequently inte-
grated in the read-out and debugged. Faulty front-
end electronics cards were exchanged and high volt-
age failures due to a few broken anode wires in the
drift tubes or dirt in the Faraday cages—caused by
the ongoing installation of other subdetectors—were
fixed. The channel mapping of the optical fibres for the
read-out and the high and low voltage cabling of the
whole spectrometer was verified and corrected. Af-
ter the chambers had been integrated in the read-out
of the experiment, data taken with cosmic ray muons
is used to verify their proper operation and test their
performance [53, 54]. An event display of one of the
first recorded cosmic muons traversing the entire muon
spectrometer is shown in Figure 1.23; see Figure 1.3
for a comparison with the installed detector.

A major part of the commissioning phase consisted
of taking into operation the recirculating MDT gas
system—-the largest gas system of any LHC experi-
ment. This effort was coordinated and to a large part
executed by the MPP team. The system consists of
15 distribution racks serving 226 individual gas mani-
folds, each connected to 4 to 32 MDT chambers. The
total gas volume of 2.2× 106 bar L is exchanged once
every 24 hours, and about 10% of the gas is replaced.
In addition to the 2.8 million O-ring seals of the on-
chamber gas distributions. The systems has 4500 man-

Figure 1.23:A cosmic muon traversing the ATLAS muon
spectrometer, recorded in 2008. Only the MDT chambers
with hits close to the reconstructed track and part of the
toroid magnet system is shown. The topmost MDT chamber
was built at MPP.

ual valves and 18000 connections. Stringent require-
ments exist for the allowed leak rate which should not
exceed 2· 10-7 bar L/s per drift tube to avoid back
diffusion of air into the system which would change
the space to drift relation and degrade the drift tube
efficiency. The vast majority of all chambers and con-
nections fulfils the tightness requirements after several
hundreds of leaks were repaired. At the moment, the
total leak rate of the system is about 30% higher than
the allowed limit, caused by several larger leaks which
will be repaired during the next LHC shutdown when
access is possible. No adverse effect of the larger leaks
has been observed so far. The purging of all MDT
chambers, the leak search and repair, and the adjust-
ment of the distribution system took an estimated man-
power of 1.5 man years during 2007 and 2008. Peri-
odic leak tests are still performed to spot new leaks in
the system.

As all other subdetectors of the ATLAS experiment,
the MDT system has entered routine operation in 2009
and 2010. Annual failure rates of the active and pas-
sive front-end electronics on the chambers, the high
voltage distribution, and the detector control system
are all well below 1%, but the more than 50000 dif-
ferent components nevertheless requires a continuous
maintenance of the system to which the Max-Planck-
Institut für Physik contributes a major share of man-
power and expertise. The MDT system has been oper-
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ational with 99.7% of all channels taking high quality
data for the past two years.

Muon Detector Commissioning with Cosmic Rays

The MPP group is contributing to all aspects of
the software development for the analysis of the
ATLAS muon detector data, including the calibration
of the space drift-time relationship of the MDT cham-
bers [55–61], the alignment of the muon spectrome-
ter with muon tracks [50, 52, 62–66], the evaluation
and monitoring of the data quality of the muon de-
tector [67, 68], optimisation of the muon reconstruc-
tion for the high background rates expected at the
LHC [64, 69], and the Monte Carlo simulation pro-
grams for the muon spectrometer [70, 71]. The first
two projects which are of central importance for the
operation and performance of the ATLAS muon spec-
trometer and in which the MPP group plays a leading
role are discussed in more detail in the following.

Drift Tube Calibration. The pressurised drift-tube
technology has been chosen for the ATLAS muon
tracking chambers because of the high spatial resolu-
tion of better than 80µm which can be achieved for
individual drift tubes by measuring the drift time of
the ionisation electrons to the sense wires. In order to
reach the required spatial resolution of the chambers
of 40µm not only the the sense wires have to be posi-
tioned in a chamber with an accuracy of 20µm but also
the space drift-time relationship of the approximately
400,000 drift tubes in ATLAS has to be known with
the same precision. The drift properties of the elec-
trons depend on the temperature and pressure of the
drift gas as well as on the magnetic field and the rate of
background hits from neutrons and photons which can
be very high at the Large Hadron Collider (LHC). For
the regular calibration of the space drift-time relation-
ship, correlations between the positions measurements
of the drift tubes hit by a traversing muon can be used.

We have developed fast and efficient algorithms
for the determination of the space drift-time relation-
ship [49, 55] and of the spatial resolution [56] of the
MDT chambers which are now part of the ATLAS
data reconstruction software. The algorithms have
been extensively tested with simulated data, cosmic
ray commissioning data [54, 55], in a muon beam at
CERN [57, 58] and under LHC operating conditions,
in magnetic fields and at high background rates, us-
ing test beam data taken by our group at the Gamma

Irradiation Facility at CERN [59]. A model for mag-
netic field corrections to the space drift-time relation-
ship has been derived from the measurements [60].

The large sample of cosmic ray muons recorded by
the ATLAS detector in 2008 and 2009 allowed de-
tailed studies of the robustness of the calibration al-
gorithms. Ther-t calibration algorithm showed robust
operation for all the chambers apart from the cham-
bers with muons at 30◦ incidence angles where all drift
radii are equal. Ther-t calibration method originally
applied to straight track segments in triplelayers of the
muon chambers had to be extended to curved track
segments in the muon chambers to achieve the same
level of robustness for all muon chambers [72]. Fig-
ure 1.24 shows the accuracy of the space drift-time
relationship provided by the improved calibration al-
gorithm as a function of the number of collected muon
track segments in a chamber for simulation and cos-
mic ray data. The required accuracy of 20µm is re-
liably achieved with 3000 muons per chamber for all
chambers of the muon spectrometer. The predicted ac-
curacy is confirmed by the studies with muons from
cosmic rays.

The dependence of the drift time on the mag-
netic field strength measured with cosmic rays in the
ATLAS detector agrees well with the model based on
the test beam measurements (see Figure 1.25).

The MPP group is operating one of the three com-
puting centres dedicated to the calibration and the
alignment of the ATLAS muon spectrometer [61] us-
ing a special data stream of muon tracks reconstructed
by the ATLAS second level trigger algorithms. The
commitment of the MPP group to calibrate roughly
one third of the MDT chambers and to align the muon
detectors with muon trajectories includes the develop-
ment of fully automated calibration and alignment pro-
cedures and monitoring tools [73].

Muon Chamber Alignment with Tracks. To
achieve the required momentum resolution of the
ATLAS muon spectrometer up to the highest muon en-
ergies, the relative positions of the chambers have to be
continuously monitored and misalignment corrections
have to be applied to the measured track sagitta with
an accuracy of 30µm. The MPP group contributed
significantly to the development and test of the high-
precision optical alignment monitoring system for the
muon spectrometer [45]. The group also developed al-
gorithms for the alignment of the ATLAS muon spec-
trometer with muon tracks [62–66].
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Figure 1.24: Accuracy of the calibration of the space drift-time relationship of the drift tubes of the ATLAS MDT
chambers as a function of the number of cosmic muon tracks used per chamber. Left: Simulated data. Right: Cosmic ray
data confirming the predictedr-t accuracies.
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Figure 1.25:Magnetic field corrections to the drift timet in different regions of magnetic-field strength (0.47 T on the
left, 0.54 T on the right) in MDT chambers in the middle layer of the large sectors of the barrel muon spectrometer as a
function of the drift distancer. The measured difference in the drift times with and withoutmagnetic fieldB agrees well
with the model expectation in red derived from test beam measurements. The error bars of data points correspond to the
estimatedr-t accuracy of 20µm. The drift time correction increases with the distance to the wire because of the deflection
of the drifting electrons in the magnetic field oriented in the direction of the tube axis.

In the barrel part of the spectrometer, only the large
chamber sectors mounted in between the magnet coils
can be fully aligned with optical sensor measurements.
The small chamber sectors mounted on the coils (see
Figure 1.3) have to be aligned with respect to the large
sectors with muon tracks passing through the overlap
regions between the the small and large sectors. The

MPP group is providing these alignment corrections
using the muon calibration data at the Munich calibra-
tion and alignment computing centre [61,62].

Straight muon tracks measured while the toroid
magnets are turned off are needed for the precise deter-
mination the initial chamber positions after installation
as a starting point for the monitoring of further cham-
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distributions obtained using a track-based alignment (large
sectors). The station index describes the position of the
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ber movements by the optical sensors mounted on the
chambers. An efficient algorithm has been developed
and successfully applied to cosmic ray commission-
ing data [63]. Figure 1.26 shows the mean value of
the apparent sagitta of straight cosmic muon tracks
after the initial alignment with straight cosmic muon
tracks. In Figure 1.27 the mean value of the apparent
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Figure 1.28:Resolution of the sagitta measurement as a
function of the muon momentum as measured in ATLAS
cosmic ray data. The red line illustrated the fitted resolution
which is the quadratic sum of a term proportional to the
inverse momentum taking into account multiple scattering
and a constant term (of 100µm) reflecting the limitation of
the resolution by the spatial resolution and the alignment of
the muon chambers.

sagitta distributions of the large sectors are shown as
a function of the position of the MDT chamber along
the z-direction (parallel to the beam pipe). The accu-
racy of the initial alignment is of the order of 50µm
or better and close to the desired ultimate accuracy of
30 µm. Improvements of the alignment accuracy are
expected when chamber deformations will be taken
into account in the track reconstruction. The measure-
ment of the sagitta resolution of straight tracks in the
muon spectrometer as a function of the muon momen-
tum measured by the inner detector is presented in Fig-
ure 1.28. It improves with increasing momentum as
multiple scattering decreases with increasing momen-
tum and reaches a plateau value of about 100µm at
high momenta reflecting the limited spatial resolution
and the residual misalignment of the muon chambers.
The achieved resolution is about a factor 2 larger than
the target value of 50µm because the chambers are
only aligned with 50µm instead of 30µm precision.

The method is being extended to the alignment of
the muon chambers with curved muon tracks in the
magnetic field during normal operation of the exper-
iment in order to verify the optical alignment correc-
tions. This requires an independent measurement of
the muon momentum which is insensitive to misalign-
ment of the MDT chambers along the muon track. The
MDT chambers with their two triple or quadruple lay-
ers of precisely positioned drift tubes measure not only
track coordinates with high accuracy but also the local
track direction. This feature can be utilised for inde-
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Figure 1.29:Track reconstruction efficiency in the muon
spectrometer as a function of the pseudorapidity of the cos-
mic ray muon reconstructed by the inner detector. The
muon momentum in the inner detector was requested to be
greater than 5 GeV for the top part and greater than 9 GeV
for the bottom part. The loss of efficiency in the region near
|η| = 0 is due to acceptance holes of the muon spectrometer
needed for services of the inner detector and the calorime-
ters.

pendent momentum determination from measurement
of the track deflection angles between the inner and the
outer chamber layer and between the two multilayers
of the chambers in the middle layer located inside the
magnetic field. Studies with simulated data showed
that the required alignment accuracy can be achieved
within two days of data taking at the nominal LHC lu-
minosity of 1033 cm−2s−1 [64,66].

Muon Identification Performance

The huge sample of cosmic ray muons made it possi-
ble to study the performance of the muon identifica-
tion in great detail up to muon momenta of 300 GeV
[74,75]. Figure 1.29 shows the track reconstruction ef-
ficiency in the ATLAS muon spectrometer for cosmic
ray muons reconstructed in the inner detector. The ef-
ficiency is close to 100% in the instrumented regions
of the muon spectrometer. The drop of the efficiency at
|η| = 0 is caused by the acceptance gap of the muon
spectrometer which is needed for the services of the
inner detector and the calorimeters.
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Figure 1.30: Transverse momentum resolution of the
muon spectrometer evaluated by comparing the momen-
tum of cosmic ray muons measured in the top part of the
spectrometer with the momentum in the bottom part of the
spectrometer in the barrel region of the muon spectrome-
ter. The results of two complementary track reconstruction
algorithms show similar performance.

The momentum of cosmic ray muons traversing the
entire ATLAS detector are measured twice, first in the
top part of the muon spectrometer, then in the bottom
part of the muon spectrometer. The comparison of the
two momentum measurements allowed us to measure
the fractional momentum resolution of the muon spec-
trometer up to muon withpT = 300 GeV (see Fig-
ure 1.30). The measured momentum resolution is in
agreement with the expected momentum resolution for
pT . 100 GeV, but is a factor 2-3 worse than expected
above 300 GeV due to the residual misalignment of
the muon spectrometer.

The muon reconstruction efficiency and the momen-
tum scale and resolution will be measured for low
pT with J/Ψ → µ+µ− decays and for highpT with
Z → µ+µ− decays inpp collision data at the LHC
[76, 77]. FirstJ/Ψ → µ+µ− events have been ob-
served by the ATLAS experiment. The invariant mass
distribution of theJ/Ψ → µ+µ− events is shown in
Figure 1.31

The position of theZ resonance peak is a measure
for the momentum scale, its width a measure for the
momentum resolution. The muon reconstruction ef-
ficiency will be measured by the so-called ”tag-and-
probe method”. In the tag-and-probe method events
with an isolated muon and an inner detector track giv-
ing an invariant mass compatible with theZ boson
mass are selected. The fact that one of the two tracks
is identified as muon ensure that the second track is
also a muon and one can count how often the second
track is reconstructed as a muon. The method has been
studied on Monte-Carlo data and is able to reproduce
the muon reconstruction efficiency with a systematic
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Figure 1.32:Comparison of the relative efficiency of the
standard muon reconstruction algorithm with respect to ref-
erence muons as defined in the text with the Monte-Carlo
prediction for pT > 4 GeV. The star-shaped symbols la-
belled as MC truth show the standard muon reconstruction
efficiency for muons identified as true muons in the simula-
tion.

uncertainty of 0.2%.
First Z → µ+µ− candidate events have been ob-

served in the ATLAS detector. One such event is
shown in Figure 1.33. In the early phase of the LHC

operation the rate of dimuon decays ofZ bosons is
too low for the tag-and-probe method and alterna-
tive methods have to be used to get a handle on the
muon spectrometer reconstruction efficiency. The ef-
ficiency of the standard muon reconstruction is mea-
sured with respect to an alternative muon identification
approach. In the alternative approach an inner detector
track which deposits only little energy in the calorime-
ters and which can be matched with a track segment
in the muon spectrometer is identified as muon. The
relative efficiency of the standard muon reconstruction
with respect to the alternative selection is shown as
a function of the transverse muon momentum in Fig-
ure 1.32 [78]. The relative efficiency agrees with the
Monte-Carlo prediction within errors. It is lower than
the true efficiency as the alternative muon selection has
a lower rejection power against muons from pion and
kaon decays in flight than the standard reconstruction.

At transverse momenta below 20 GeV the momen-
tum resolution in the momentum resolution is signifi-
cantly larger than in the inner detector and can be mea-
sured by comparing the momentum measured in the
muon spectrometer with the momentum measured in
the inner detector. The resolution measured this way
is in agreement with the Monte-Carlo prediction and
the measurement with cosmic ray muons within the
measurement uncertainties (see Figure 1.34) [79].

The analysis of cosmic ray data and the first results
of the analysis ofpp collision data confirm the ex-
pected performance of the muon spectrometer.

1.1.4 Computing

The rate of triggered and filtered data from the experi-
ment data acquisition system (DAQ) will be about 200
beam-crossing events per second. This rate translates
to more than 300 MB/s given an expected event size
of ca. 1.6 MB. When the additional data generated by
event reconstruction is taken into account, several PB
of physics data per year will have to be handled by
the ATLAS computing system [80,81]. The large vol-
ume of the data and the enormous computing resources
needed to perform data reduction and extract physics
results necessitated the adoption of the Grid comput-
ing paradigm by ATLAS and the other LHC experi-
ments. The LHC Computing Review [82] provides a
good overview of the worldwide LHC computing.
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Figure 1.33:Event display of aZ → µ+µ− candidate event recorded at a centre-of-mass energy of
√

s = 7 TeV

ATLAS Computing Model

The ATLAS computing model [80] is based on the es-
tablished procedure of performing several successive
steps of data reduction. The data coming from the
DAQ is termed RAW data and will be passed through
the event reconstruction immediately after recording
(prompt reconstruction). The next step of data reduc-
tion leads to event summary data (ESD, about 500
kB/event) consisting of reconstructed particle tracks
and calorimeter clusters and the corresponding hits af-
ter noise suppression. The last step of central data re-
duction results is the analysis object data (AOD, about
100-200 kB/event) where essentially only the recon-
structed particle momenta and identity information is
kept. The working groups in ATLAS can define their
own derived physics data (DPD), which are typically
10 kB/event.

The ATLAS computing system [81] is organised
in a hierarchical manner with three levels (or tiers)

of distributed and interconnected computing centres
mapped approximately to the different levels of re-
duced data. The single Tier-0 centre at CERN serves
the four LHC experiments and provides mass storage
of raw data and processing capacity for the prompt re-
construction. The reduced data (ESD and AOD) are
distributed to the Tier-1 centres along with the RAW
data.

ATLAS has ten Tier-1 centres; one of them is oper-
ated by the FZ Karlsruhe in Germany (GridKa). The
responsibility of the Tier-1 centres is to store between
them a copy of the RAW data, provide processing ca-
pacity for deriving ESD/AOD data from RAW data
(reprocessing) and to make ESD and AOD data sets
available for organised physics analyses.

Each of the Tier-2 centres in turn are connected to
one of the Tier-1 centres. There are about 30 Tier-2
centres serving ATLAS and their responsibility is to
provide processing capacity to run the ATLAS simu-
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Figure 1.34:Comparison of the momentum resolution in
the barrel part of the muon spectrometer measured with
muons frompp collisions in comparison with the expected
resolution from Monte-Carlo data and the analysis of cos-
mic ray data. The measured resolution agrees with the pre-
diction within the measurement uncertainties.

lation and to run scheduled and unscheduled physics
analyses by working groups or individual users with
AOD data. In addition the derivation of calibration
constants may be performed at Tier-2 centres. The
Tier-2 centres will each hold approximately 1/3 of the
total AOD data such that the usually three Tier-2 cen-
tres connected to a regional Tier-1 centre together hold
the entire AOD data set.

Tier-3 centres correspond to local computing facil-
ities operated at institutes and dedicated to the local
ATLAS groups, while Tier-4 corresponds to individ-
ual user’s workstations.

Worldwide LHC Computing Grid

The WLCG collaboration lead by CERN with all ma-
jor institutes participating in the LHC as partners pro-
vides the computing resources needed for timely and
successful analysis of the LHC experiments data [83].
One of the most important goals of the WLCG is to de-
liver the necessary software to manage the distributed
data storage and computing tasks as well as to give
transparent access to the data to all collaborators of an
LHC experiment.

The Institute is an official member of the WLCG

collaboration. It is the responsibility of the ATLAS
group at MPP to contribute a large fraction of the re-
sources needed to build and operate a Tier-2 centre in
Munich for use by the ATLAS collaboration.

Munich Tier-2/Tier-3 Computing Centre

The two ATLAS groups in Munich at the MPP and
the Ludwig-Maximilians-University Munich (LMU)
(Prof. D. Schaile) have agreed to build and operate
a Tier-2 centre for ATLAS of the average size as spec-
ified in [80]. The centre is hosted by the RZG and
the Leibniz Rechenzentrum (LRZ) in Garching. The
four parties MPP, LMU, RZG, and LRZ have signed a
memorandum of understanding (MOU) outlining the
details of the project.

The contributions of MPP/RZG and LMU/LRZ are
expected to be about equal in size. It is foreseen to add
100% of the CPU resources and 50% of the storage re-
sources needed for the Tier-2 centre in order to support
local computing requirements for the Munich calibra-
tion and alignment centre and at the Tier-3 level. The
hardware is one homogeneous setup and the sharing
of resources between Tier-2, Munich calibration and
alignment centre and Tier-3 can be adjusted during op-
eration according to the needs of the experiment or the
local working groups.

The hardware is located on the sites of the two com-
puting centres RZG and LRZ in Garching. Such a fed-
eration of computing centres is explicitly foreseen in
the WLCG to operate a common Tier-2 service.

The total resource requirements for the Munich
Tier-2/Tier-3 computing centre for 2010 are estimated
as 11.8 kHS061 for data processing and 650 TB for
data storage on disk. This corresponds to approx-
imately 1700 CPU cores and about 33 fileservers
with 20 TB RAID storage each. A wide area net-
work (WAN) connection with a sustained bandwidth
of 30 MB/s is supplied by RZG for import and export
of data.

MPP Computing Facility at RZG

The computing facility serves the whole institute and
the main users are currently the ATLAS and MAGIC
groups.

The system consists now of 8 IBM BladeCenter H
equipped each with 14 single-board computers. Com-
mon services such as power supply and LAN are pro-

17 HS06 correspond roughly to one core of a AMD or Intel
multicore CPU from 2009
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vided by the BladeCenter. The single-board comput-
ers have two CPUs (Intel Xeon 3.2 GHz or Xeon 54xx
quad-core), 2 GB RAM/core and a bandwidth of 1
Gb/s to the LAN. Data are stored on integrated file-
servers, which connect 12, 16 or 28 large SATA hard-
disks (currently 300, 500 or 750 GB) each to RAID
arrays via dedicated PCI expansion cards. The total
useable disk space is more than 300 TB.

The RZG maintains the operating system (OS), cur-
rently Suse Linux Enterprise Server (SLES) 10, batch
queue system (Sun grid engine SGE), and other system
services. The mass data storage system dCache devel-
oped by DESY and FNAL has also been installed and
is used by ATLAS. The MPP user groups, e.g. ATLAS,
have to install and maintain their own experiment soft-
ware on this platform.

The RZG operates several servers running the LCG
software needed to connect the MPP computing facil-
ity to the WLCG. One person from MPP seconded to
RZG runs together with staff from RZG the WLCG
services, responds to problem reports, installs up-
grades, and interacts with our users. Some of the
WLCG services run as virtual machines [84], since
this makes it more convenient to use the required Sci-
entific Linux OS instead of SLES10 as is standard at
RZG.

Our Tier-2 site is monitored on a regular basis by
the WLCG. Performance is quantified by availability,
defined as the fraction of time a site is available, and
reliability, defined as the fraction of time a site is avail-
able corrected for known and announced downtimes.
Our site has with few exceptions reached values above
90 %, accepted as good by WLCG, for both measures.

1.2 ATLAS Physics Analysis

For a long time the MPP ATLAS group has been con-
tinuously working on the preparation of physics anal-
ysis of hadron collision data at the LHC. The results
obtained in the years 1997-2007, including prepara-
tory work based on Tevatron data, are described in the
previous reports [7] (p.82-84), [1] (p.106-112), [85],
and references therein.

The present physics studies for the ATLAS exper-
iment cover a broad physics range. Already at the
early stage of data taking, a number of Standard Model
(SM) processes occur in abundance. These processes
allow for detailed studies of the detector performance,
as well as for the precision measurements of QCD and
electroweak observables. The few hundred nb−1 of
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Figure 1.35: Time evolution of the cumulative lumi-
nosity since the start of the LHC operation at

√
s =

7 TeV.

data collected so far (see Figure 1.35) yielded the first
measurements of inclusive lepton distributions, as well
as the initial measurements of cross-sections for elec-
troweak gauge boson production. Also the properties
of top-quark production will very soon become mea-
surable as the integrated luminosity increases. The
methods to determine the mass of the top-quark ex-
plained below will show their full potential when ap-
plied to the data of the ongoing 2010-2011 run of LHC
with an expected luminosity of about 1 fb−1.

A good understanding of SM processes is essen-
tial also for new discoveries. The ATLAS discovery
potential is explored in searches for the Higgs boson
both in the Standard Model and in supersymmetric ex-
tensions, as well as in a generic search for supersym-
metric particles and other phenomena like the lepton
flavour violation. The sensitivity to many of these pro-
cesses is expected to exceed the current limits from ex-
periments at other colliders by the end of 2010, once
an integrated luminosity of about 200 pb−1 is reached.
The ongoing investigations are described in more de-
tail below.

1.2.1 Standard Model Processes

Inclusive Lepton Cross Sections

At the LHC pp collision events with highly ener-
getic electrons and muons in the final state provide
clean signatures for many physics processes of inter-
est. A good understanding of the inclusive electron
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Figure 1.36: Monte-Carlo prediction of the electron re-
construction efficiency for electrons from heavy quark and
Z boson decays. [88]

and muon cross sections is therefore of great impor-
tance. The MPP group contributes to these measure-
ments [86–88].

At the LHC electrons are produced predominantly
in decays of heavy quarks with transverse energies be-
low about 30 GeV and in decays ofW andZ bosons
at higher transverse energies. The MPP group signif-
icantly contributed to the optimisation of the electron
selection criteria to arrive at an electron selection ef-
ficiency which is flat in the transverse electron energy
(see Fig. 1.36). The first measured inclusive electrons
spectrum at a centre of mass energy of 7 TeV at the
LHC is shown in Fig. 1.37 in comparison with the pre-
diction of the Pythia minimum bias Monte-Carlo. The
MPP group contributes to the study of the observed
20% discrepancy between data and Monte-Carlo pre-
diction, using the increasing statistics of the inclusive
electron sample.

The MPP group is also involved in the measure-
ment of the inclusive muon cross section contributing
with its experience in muon performance studies. The
measured inclusive muonpT spectrum is presented
in Fig. 1.38 where it is compared to the Pythia 6.4
minimum bias Monte-Carlo prediction. The measured
spectrum is well reproduced by the Monte-Carlo sim-
ulation. The discrepancy observed forpT > 20 GeV
is due to muons originating fromW andZ boson de-
cays. According to the Monte-Carlo simulation, the
main sources of muons at transverse momenta be-
low 20 GeV are in-flight decays of charged pions and
kaons and the decays of heavy-flavour hadrons. Meth-
ods to separate the contribution of pion and kaon de-
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decays with the Pythia 6.4 minimum bias Monte-Carlo pre-
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Figure 1.38:Comparison of the measured inclusive muon
transverse momentum spectrum with the Pythia 6.4 mini-
mum bias Monte-Carlo prediction. The Monte-Carlo data
is decomposed into three sources of muons, namely in-flight
decays of charged pions and kaons and the decays of heavy-
flavour hadrons. [87]

cays from the other sources are under developmnet.

Electroweak Gauge Boson Production

The measurement of theW andZ boson production is
a first essential step in understanding hard electroweak
processes in the high-energy regime of the LHC. With
a sufficient amount of collected data, precise inclu-
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Figure 1.39: Transverse mass distribution ofW → µνµ

candidates found in 16.6 nb−1 of ppcollision data collected
by ATLAS. [89]

sive and differential cross section measurements can
be performed to probe the parton density functions. In
addition, these processes are studied with the motiva-
tion of estimating the backgrounds to the searches for
Higgs bosons and supersymmetric particles. Of par-
ticular interest here is the electroweak gauge bosons
production in association with jets, where the bosons
are decaying into electrons, muons orτ leptons.
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Figure 1.40: Comparison of the measuredW cross sec-
tion with the NNLO prediction. The expected asymmetry
in the production cross sections ofW+ and theW− boson
is confirmed by the cross section measurements. [89]

W bosons have been observed in 16.6 nb−1 of pp
collision data collected with ATLAS: 43W bosons
in the eνe final state and 67W boson in theµνµ fi-

Figure 1.41: Invariant mass spectrum of oppositely
charged muons in 318 nb−1 of ppcollision data. [89]

nal state. As expected forpp collisions, moreW+

thanW− bosons have been detected, 70W+ and 40
W− bosons. Fig. 1.39 shows the transverse mass
distribution of theW → µνµ candidates confirm-
ing the observation ofW bosons. The Monte-Carlo
prediction is consistent with the measured distribu-
tion and has a negligible background contamination.
The total inclusiveW-boson production cross section
times the leptonic branching ratio is measured to be

σ = [8.5± 1.3(stat)±0.7(syst)±0.9(lumi)] nb
for theW → eνe channel and

σ = [10.3± 1.3(stat)±0.8(syst)±1.1(lumi)] nb
for the µνµ channel. The experimental errors of the
cross sections are dominated by the statistical errors
of the numbers of observedW candidates and the 11%
uncertainty of the luminosity measurement. The mea-
suredW production cross section agrees well with the
NNLO calculations as shown in Fig. 1.40. The mea-
surement of theW production cross section required
a good understanding of the lepton identification effi-
ciencies besides the reliable measurement of the lu-
minosity. As reported in 1.1.3 the MPP group has
significantly contributed to the understanding of the
performance of the muon identification inpp colli-
sion data. The measurement of the muon identification
efficiency reduced the systematic cross section uncer-
tainty caused by the uncertainty of the Monte-Carlo
efficiency predictions to less than 3%.

Also candidates forZ → ℓ+ℓ− decays with iso-
lated charged leptons have been found by ATLAS.
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Figure 1.41 shows the dimuon invariant mass spec-
trum for oppositely charged muons collected with the
ATLAS detector. In addition to resonance peaks at the
masses ofρ/ω, J/ψ, ψ′, andY mesons a resonance
peak at 91 GeV, the mass of theZ boson, is clearly
visible with very small background. In the 229 nb−1

of pp collision data 46Z → e+e− and 79Z → µ+µ−

events were observed in the mass window of 66 GeV<
mℓ+ℓ− <116 GeV. The measured cross sections of

σ = [0.72± 0.11(stat)±0.10(syst)±0.08(lumi)] nb
for Z → e+e− and

σ = [0.89± 0.10(stat)±0.07(syst)±0.10(lumi)] nb
for Z → µ+µ− are in agreement with the theoretical
prediction (see Figure 1.42).

The increase in statistics ofW and Z bosons ex-
pected in the next months will allow us to improve the
precision of the cross section measurements, to inves-
tigate theW+-W− production asymmetry, and to mea-
sure the cross sections of the production of the weak
gauge bosons for 0, 1, and more than 1 accompanying
jet. The measurement of the differentialZ production
cross section will be used to probe parton density func-
tions.

1.2.2 Top-Quark Physics

Overview

The top-quark is by far the heaviest known elemen-
tary building block of matter. The precise knowledge
of the quantum numbers of the top-quark helps to fur-
ther constrain the parameters of the Standard Model,
and is a mandatory prerequisite for any study of new
physics that will almost inevitably suffer from top-

quark reactions as background processes. In addition,
the top-quark should have the strongest couplings to
any mechanism that generates mass, which makes it a
very interesting object for an unbiased search for this
mechanism.

The present main interest of the top-quark physics
analysis work of the MPP group is the investigation
of the tt̄ production process, and particularly the de-
termination of the mass of the top-quark (mtop) and
the production cross-section (σtt̄) in the reactiont t̄ →
bb̄ W+ W−.

The analyses use two decay channels of the W-
boson pair, the lepton + jets channel, where the W-
boson pair decays intoℓν qq′ with ℓ = e, µ (branching
ratio,BR = 30%) and the all-jets channel, where both
W-bosons decay into aqq′ pair (BR = 44%). In both
channelsmtop is obtained from hadronically decaying
W-bosons and the corresponding b-jet.

The main background reactions tot t̄ production,
as determined from Monte Carlo simulations, are the
W + n-jets production, QCD multijet production, sin-
gle top-quark production, and that fraction of thett̄
production where the W-boson pair decays via the
other decay channels. The QCD multijet production
process is special due to the huge cross-section be-
fore any cut, such that event samples fully covering
the signal phase space cannot be simulated with suf-
ficient statistics, especially for the lepton + jets chan-
nel, where the selected lepton mostly results from a
wrongly reconstructed jet. Eventually this background
contribution has to be obtained from data. So far, ini-
tial studies of this background based on Monte Carlo
samples have been performed and methods to evaluate
it from the data, like the matrix-method, have been im-
plemented. The matrix-method was successfully ap-
plied to estimate the background fraction from Monte
Carlo samples with a deliberately unknown composi-
tion of signal and background events [91]. In the MPP
investigations, for the first time thekt-jet algorithm has
been used in top physics analyses at ATLAS [15, 92]
Because of a better stability against divergences, this
algorithm is theoretically preferred over the tradition-
ally applied cone-jet algorithm. By now also the
experimental advantages became apparent, such that
since recently a variant of it, namely the anti-kt jet al-
gorithm is the ATLAS standard.

At present the analyses are optimised on Monte
Carlo samples and are ready to be applied to the data
to be taken still this year. The results presented below
do not yet contain ATLAS collision data. The analyses



30 CHAPTER 1. THE ATLAS EXPERIMENT AT THE LARGE HADRON COLLIDERLHC

are mostly performed assuming the initially envisaged
proton-proton centre of mass energy of

√
s = 10 TeV

and for integrated luminositiesLint of several 100
pb−1. An overview of the recent activities is given
below, the initial investigations were reported in [1]
(p.106-112), [85].

Lepton + Jets Channel

The lepton + jets channel is the best compromise
of branching fraction and signal-to-background ratio
(S/B), defined as the ratio oft t̄ signal events to physics
background events. Therefore most of the effort is in-
vested in this channel. At MPP a number of analyses
have been performed to arrive at the most sensitive ob-
servable and analysis strategy for obtainingmtop from
the invariant mass of the three jets assigned to the de-
cay products of the hadronically decaying top-quark.
Different event- and jet selection algorithms, observ-
ables, jet calibration schemes (see Sec. 1.1.2), and fit-
ting methods have been exploited for this.

In the lepton + jets channel the charged lepton with
a high transverse momentum1 (pT) from the decay
of one W-boson is utilised to trigger and identify the
event, and to efficiently suppress background without
genuine charged leptons, i.e. from the QCD multijet
production. In general, the event selection for the lep-
ton + jets channel requires an isolated electron or muon
within the good acceptance of the detectors, which has
a transverse momentum of more that 20 GeV and lies
within the rapidity range of|η| < 2.5. Since the ini-
tial state is balanced inpT, to account for the neutrino
a missing transverse energy of more than 20 GeV is
required. In addition, at least four jets are required
within the same range of rapidity, and having trans-
verse momenta of more than 40 GeV for the three
highestpT jets, and more than 20 GeV for the fourth
jet. All jets should be well separated from the identi-
fied lepton. Given the different emphasis of the ana-
lyses, these requirements are slightly modified or ad-
ditional requirements like the presence of identified b-
jets, or restrictions to the reconstructed invariant mass
of the W-boson are imposed. With these selections,

1In the ATLAS right-handed coordinate system thex-axis
points towards the centre of the LHC ring, they-axis points
upwards and thez-axis points in the direction of the counter-
clockwise running proton beam. The polar angleθ and the
azimuthal angleφ are defined with respect to thez-axis and
x-axis, respectively. The pseudo-rapidity is defined asη =
− ln(tan(θ/2)) and the radial distance in(η, φ) space is∆R =
√

∆η2 + ∆φ2.
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Figure 1.43: The reconstructed top-quark mass together
with a fit.

for each lepton sample an average signal efficiency of
about 10% is reached, and the S/B is about 1.5.

The standard assignment of jets to the top-quark and
the W-Boson are as follows. For each event, from all
jets withpT > 20 GeV the three jet combination which
maximises the transverse momentum is chosen to form
the hadronically decaying top-quark. This algorithm
is named thepT-max method. Out of this, the two jet
pair with the smallest∆R is taken to represent the W-
boson. A typical top-quark mass spectrum observed
with these requirements [18], and only using signal
events and W + n-jets events, is shown in Fig. 1.43.
In this example, the spectrum is fitted with a Gaus-
sian function to parametrise the correct combinations
leading to the top-quark mass and width, and a sum
of Chebyshev polynomials used to describe the events
stemming from the sum of the physics background
events and wrong jet combinations in selected signal
events. The Gaussian part of the fit is also shown sep-
arately and compared to the red histogram made from
the correct jet triplet. In this case correct jet triplets
are defined as those combinations of jets where the re-
constructed four-vector of the jet triplet coincides with
that of the top-quark to within∆R = 0.1.

From this figure it is clear that firstly the correct jet
triplets constitute only a small part of the events in
the peak region around the generated top-quark mass
of 172.5 GeV, secondly that the shape of the combi-
natorial background can well influence the fitted peak
value, and thirdly that the shown W + n-jets contribu-
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Figure 1.44:Same as Fig. 1.43 but with an additional like-
lihood selection.

tion is still sizeable and not entirely flat.
These issues are addressed, e.g. by using other al-

gorithms to select the jet triplet, or by exploiting ad-
ditional variables or a constrained fit that both help
to separate signal from background. Additional algo-
rithms studied include the so-called∆R method that
exploits the angular correlations between the two b-
jets that should have a large∆R, and the two light-jets
that should have a small∆R. This algorithm works
without explicitly using b-jet identification, instead
from a pT ordered jet list the first two jets are assumed
to be the b-jets and the next two jets to stem from the
W-Boson decay. On these jets the angular require-
ments are applied. Whether the decrease in statistical
precision compared to thepT-max method is compen-
sated by superior features like an improved resolution,
or a smaller bias in the reconstructed mass, is under
investigation.

Due to the presence of the decay of the top-quarks
that correlate the W-Bosons and their corresponding
b-quarks, the signal events should exhibit a different
correlation of the observed jet structure than the back-
ground processes without top-quarks. The separation
of the jets can be monitored when running thekt-jet
algorithm by studying thedmerge(M → M − 1) val-
ues at which anM-jet configuration is reduced to an
(M − 1)-jet configuration. In a multivariate analysis
it was found that thedmergevalues in signal and back-
ground events are not sufficiently different to be used
as discriminating variables [18]. In contrast, a likeli-
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Figure 1.45:The top-quark mass distribution when apply-
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hood function build from seven event variables, like
e.g. the invariant mass of the charged lepton and its as-
signed b-jet, or the∆R between the W-Boson and the
b-jet from the hadronically decaying top-quark candi-
date, is clearly able to significantly improve the S/B,
while retaining most of the events where the correct jet
triplet was selected. This is demonstrated in Fig. 1.44.

A kinematic fit exploiting as constraints the known
W-Boson mass both for the leptonic and the hadronic
W-Boson decays, and in addition the equality of
the two corresponding reconstructed top-quark masses
mainly serves three purposes. Firstly, it increases the
efficiency for selecting the correct jet triplet by mak-
ing more detailed use of the entire event. Secondly,
it provides a quality measure, namely the probability
P(χ2) of the fit, to better suppress background events.
Finally, it improves on the resolution of the top-quark
mass provided the uncertainties of the measured quan-
tities and their correlations are properly understood,
something that is only expected after a larger data set
has been analysed. Compared to thepT-max method
the efficiency for selecting the correct jet triplet is in-
creased by about 15% absolute, and about 25% of
the background events can be removed [93] by requir-
ing P(χ2) > 0.15. An example of such a selection
for events with four reconstructed jets and requiring
P(χ2) > 0.15 is shown in Fig. 1.45. The better sup-
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pression of the W + n-jets events compared to Fig. 1.43
is apparent. It has been verified that this improvement,
is very stable against variations of the assumed object
resolutions. Since at the moment only initial approxi-
mations are made for the resolution of the objects, the
possible improvement in the mass resolution is not yet
exploited.

The largest systematic uncertainty in any determi-
nation ofmtop stems from the imperfect knowledge of
the jet energy scale (JES), which depends on kinematic
properties likepT andη of the jets, and is different for
light-jets and b-jets. Therefore, one of the most im-
portant features of anymtop estimator is the stability
against the variation of the JES. To minimise the JES
uncertainty on the measuredmtop two paths are fol-
lowed: one is a calibration by means of the known W-
boson mass (MPDG

W ) to obtain the JES for light-jets, the
other is exploring the stabilised top-quark mass (mstab

top ,
see below) to be as independent as possible of the ac-
tual JES value, without actually determining it.

In the lepton + jets channel an iterative in-situ cali-
bration of the JES for the selected events has been per-
formed [44]. Jets are treated in the massless limit with
unchanged reconstructed angles, such that any change
in the invariant two-jet mass (Mreco

W ) can be expressed
in energy dependent JES factors. The jet calibration
then makes use of the fact thatMreco

W calculated from
the jets assigned to the W-boson decay has to match
MPDG

W . The energy bins are chosen logarithmically
from 50 GeV to 400 GeV and the resulting calibration
factors, which are consecutively applied per iteration,
are shown in Fig. 1.46 for the initial situation, the 9th

iteration and the final result. The flatness of the cali-
bration factors of the 9th iteration with values close to
unity clearly shows that the fit has converged. Com-
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paring the initial and final situation reveals that the it-
erations slightly change the simple picture one would
have obtained by once adjusting the peak of the ini-
tial distribution toMPDG

W . When applying this global
scaling method the uncertainty onmtop from the JES
uncertainty is considerably reduced [44].

The variablemstab
top is calculated as the ratio of the re-

constructed masses of the top-quark and the W-Boson
candidates from the selected jet triplet. For conve-
nience this ratio is multiplied byMPDG

W . The main
consequence of usingmstab

top is a strong event-by-event
cancellation of the JES dependence of the three-jet
and two-jet masses in the mass ratio, while retaining
the sensitivity tomtop. The quantitative gain in stabil-
ity when usingmstab

top instead of the jet triplet invariant
massmreco

top is apparent from Fig. 1.47 taken from [94]
Using this variable a template analysis has been devel-
oped [91, 94, 95]. In this analysis Probability Density
Functions (PDFs) are constructed from templates of
the signal events at various assumedmtop values and
from a template of the combined physics background
events. The signal PDF linearly depends onmtop,
whereas the background PDF does not. Using pseudo-
experiments for a given luminosity the sensitivity of
the method, together with the systematic uncertainties
from various sources, has been estimated. An exam-
ple of a pseudo experiment is shown in Fig. 1.48 for
the muon channel and for

√
s = 10 TeV andLint =

100 pb−1. For this situation the statistical uncertainty
for the combined electron and muon channel is about
2 GeV. The total systematic uncertainty is estimated to
be about 3.8 GeV for each channel, still dominated by
the systematic uncertainty from the JES for light jets
and b-jets [94].

The determination of the combinatorial- and
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physics background from data rather than from Monte
Carlo samples likely results in a reduced systematic
uncertainty. For this purpose a data driven method
was developed that explores themreco

top and Rtop =
mreco

top /Mreco
W distributions at the same time. The idea

is to use e.g. the events from the sideband region of
themreco

top distribution to predict the shape of the back-
ground contribution to theRtop distribution. An ini-
tial investigation ignoring possible shape differences
of the combinatorial- and physics background, and us-
ing a simple four-vector smearing approach, yields
promising results, and will be extended to fully sim-
ulated Monte Carlo events and eventually data.

A direct fit to themreco
top distribution and the tem-

plate method lead to different systematic uncertainties.
An analysis is underway to systematically compare the
two approaches. This is done for thepT-max and for
a selection method that defines the top-quark as the jet
triplet with the minimum sum of the three∆Rvalues.

Concerning the cross-section measurement an ini-
tial investigation of a cut and count analyses with
and without using b-jet identification has been per-
formed [14]. It exploits the lepton + jets channel at√

s = 10 TeV and forLint = 200 pb−1. For the
sources of systematic uncertainties investigated the to-
tal systematic uncertainty on the cross-section is esti-
mated to be about 30%.

All-Jets Channel

In the all-jets channel only jet requirements and jet
topologies can be used to separate the signal from the
background reactions. Consequently, this channel suf-
fers from a much higher background from the QCD

multijet production. Here, events with isolated lep-
tons are vetoed, and the missing transverse energy is
required to be consistent with zero. In addition, at
least six jets, not consistent with being purely electro-
magnetic, and two of which are identified b-jets, are
required within|η| < 2.5. By exploring the trans-
verse energies of the jets and the angular correlation
of the two b-jets, the S/B is improved by several or-
ders of magnitude to about 10−1, while retaining a sig-
nal efficiency of about 10%. In this procedure the use
of b-jet identification is absolutely essential. In addi-
tion, the availability of a multi-jet trigger with appro-
priate thresholds is imperative to not loose the signal
events already at the trigger stage. This involves a deli-
cate optimisation to retain a sufficiently high efficiency
for the signal events, while not saturating the ATLAS
readout system with the QCD multijet events. The
trigger conditions have been carefully studied, and the
use of some trigger signals are suggested to ATLAS.
Under the assumption that these will be available, and
when exploiting the above event selection, a mass dis-
tribution has been isolated, where the signal starts to
be visible on a still large background. For this analysis
the next steps are the optimisation of the background
description and a fit to the distribution to access the
sensitivity tomtop.

1.2.3 Searches for the Higgs Boson

The origin of particle masses is one of the most im-
portant open questions in particle physics. In the Stan-
dard Model, the answer to this question is connected
with the prediction of a new elementary neutral parti-
cle, the Higgs bosonH. The massmH of the Higgs
boson is a free parameter of the theory. The theoreti-
cal upper limit of about 800 GeV leaves a wide mass
range to be explored. The experimental lower bound
of 115 GeV has been set at a 95% confidence level
by the direct searches with LEP experiments, while
the upper bound of 185 GeV is derived from the elec-
troweak precision measurements. The recent searches
at the Tevatron have also excluded a SM Higgs boson
in the mass range of 162 GeV< mH <166 GeV.

In the minimal supersymmetric extension of the
Standard Model (MSSM), the Higgs mechanism pre-
dicts the existence of five Higgs bosons, three neutral
(h/H/A) and two charged onesH±. Their production
cross sections and decays are determined by two inde-
pendent parameters, e.g. the ratio tanβ of the vacuum
expectation values of the two Higgs doublets in this
model and the massmA of the pseudoscalar Higgs bo-
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son. Current experimental searches at LEP and Teva-
tron exclude at a 95% confidence level theA boson
mass values below 93 GeV, as well as the tanβ values
below 2. For anA boson mass of up to 200 GeV, also
the high tanβ values above 40 are excluded.

The search for the Higgs boson is one of the main
motivations for the LHC and the ATLAS experiment.
The high cross sections of the background processes
exceeding the signal by many orders of magnitude call
for selective triggers, efficient background suppres-
sion and reliable prediction of the background con-
tributions. Until recently, the MPP group has been
devoted to the preparation for an early Higgs boson
discovery during the first years of LHC running at
the nominal centre of mass energy of 14 TeV. The
results obtained in these studies can be found in the
newly published review of the ATLAS physics poten-
tial [98]. As of lately, the searches are being optimised
for the initial LHC operation at a centre of mass en-
ergy of 7 TeV. With a relatively low expected total in-
tegrated luminosity of 1 fb−1, the Higgs boson discov-
ery is rather unlikely under these operating conditions.
However, the allowed Higgs boson mass range can be
constrained beyond the present experimental limits, as
summarised in [99,100].

The Standard Model Higgs Boson

The expected potential for the Standard Model Higgs
boson discovery is shown in Fig. 1.49. In the mass
range above 180 GeV, the key discovery channel is the
Higgs boson decay into four charged leptons via two
intermediateZ bosons. The lower mass range can only
be covered by the combination of searches in several
Higgs boson decay modes.

The clearest signature is found in the four-lepton
decay channelpp → H → ZZ(∗) → 4ℓ which also
allows for a precise Higgs boson mass measurement.
The reconstruction of this channel strongly relies on
the high lepton identification efficiency and good mo-
mentum resolution of the ATLAS detector. The re-
ducibleZbb̄ andtt̄ background processes can be sup-
pressed by means of theZ boson mass reconstruction
and the requirement of a low jet activity in the vicinity
of each lepton. The remaining reducible background is
small compared to the irreduciblepp → ZZ(∗) back-
ground. In addition to the optimisation of the analy-
sis selection criteria, our studies include the detailed
evaluation of the theoretical and experimental system-
atic uncertainties for both signal and background pro-
cesses [101]. We also evaluate the potential to ex-

 (GeV)Hm

100 200 300 400 500 600

ex
pe

ct
ed

 s
ig

ni
fic

an
ce

0

2

4

6

8

10

12

14

16

18

Combined
 4l→ 

(*)
ZZ

γ γ
τ τ

νµν e→WW0j 
νµν e→WW2j 

ATLAS
-1L = 10 fb

Figure 1.49: Discovery potential of the ATLAS experi-
ment for the Standard Model Higgs boson. The statisti-
cal significance expected for an integrated luminosity of
10 fb−1 at a centre of mass energy of 14 TeV is shown for
the different Higgs boson decay modes and their combina-
tion as a function of the Higgs boson massmH . [98]

clude a part of the allowed Higgs boson mass range
in the initial phase of LHC operation [102], including
the development of the methods for the precise deter-
mination of the background contributions from data.
The expected exclusion limits are shown in Fig. 1.50
(top picture). The best upper limit on the Higgs boson
production, obtained for the Higgs boson mass around
200 GeV, is still about a factor of two above the Stan-
dard Model prediction. The exclusion reach is espe-
cially low in the mass region around 160 GeV, where
the H → ZZ∗ decays are strongly suppressed by the
Higgs boson decays into two on-shellW bosons.

Due to the high branching ratio for the decayH →
W+W− → (ℓ+ν)(ℓ−ν), the Higgs boson with a mass
between 140 GeV and 180 GeV can be excluded in
this channel during the initial phase of LHC opera-
tion. In combination with the four-lepton and the two-
photon decay channels, the exclusion reach is slightly
improved to cover the mass range from 135 GeV to
190 GeV, as shown in Fig. 1.50 (bottom picture). Due
to the two neutrinos in the final state of the Higgs bo-
son decays intoW bosons, no precise measurement of
the Higgs boson mass is possible. Precise determina-
tion of the background contributions is therefore re-
quired to exclude the presence of signal events. For
this purpose, we are measuring the Standard Model
background processes with present LHC data. The
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Figure 1.50:Expected upper limits (95% confidence level)
on the Standard Model Higgs boson production rate in the
H → ZZ(∗) → 4ℓ channel alone (top picture) and after the
combination with theH → WW→ ℓνℓν andH → γγ chan-
nels (bottom picture). Both figures are shown as a func-
tion of the Higgs boson mass at an integrated luminosity of
1 fb−1 and a centre of mass energy of 7 TeV, normalised to
the Standard Model prediction. The bands indicate the 68%
and 95% probability regions in which the limit is expected
to fluctuate in the absence of signal. [100]

H → WW decay channel also allows for an early
Higgs boson discovery during the LHC operation at
14 TeV. Parallel to the optimisation of the event selec-
tion criteria in this context [103], we have developed
a new algorithm for the jet reconstruction [66, 104],
which is used for the suppression of thett̄ andW+ jets
backgrounds to the Higgs boson production via theW
or Z gauge boson fusion. The algorithm reconstructs
the jets using particle tracks in the inner detector in-
stead of energy depositions in the calorimeters. The
inner detector tracks can be associated to common ver-
tices leading to a jet reconstruction probability which
is insensitive to the presence of multiple proton-proton
interactions per beam collision (pile-up events).

In the mass range below 140 GeV, the Higgs boson
predominantly decays intobb̄ pairs. Due to the large

contribution of QCD background in the gluon-fusion
production mode, this decay can only be triggered and
discriminated from the background in the production
mode of the Higgs boson in association with att̄ pair.
Our studies have shown that the discovery potential in
theH → bb̄ decay channel is very much limited by the
large experimental systematic uncertainties [105,106].

The second most frequent mode which can be ob-
served in the mass range below 140 GeV is the decay
into aτ+τ− pair. This decay can only be discriminated
against the background processes in the Higgs boson
production mode via theW or Z gauge boson fusion
where two additional forward jets in the final state pro-
vide a signature for background rejection. The decay
modes with bothτ leptons decaying leptonically (ℓℓ
mode) as well as with one hadronic and one leptonic
τ-decay (ℓh mode) have been studied [51, 107]. The
event selection criteria have been optimised using mul-
tivariate analysis techniques. With a neural network
based background rejection method, the signal signif-
icance is improved compared to the standard analysis
with sequential cuts on the discriminating variables, as
shown in Fig. 1.51.

Higgs Bosons Beyond the Standard Model (MSSM)

The searches for the three neutral Higgs bosons pre-
dicted by the MSSM differ to some extent from the
searches for the SM Higgs particle. Compared to the
Standard Model, the neutral Higgs boson decay modes
into two intermediate gauge bosons are suppressed
in the MSSM, while theA andH boson decays into
charged lepton pairs,µ+µ− and τ+τ− are enhanced.
The latter decay channel has an about three hundred
times higher branching ratio compared to the first one
but is more difficult to reconstruct and provides a less
precise determination of the Higgs boson mass.

Our studies of MSSM Higgs boson decays into
two τ leptons are summarised in [108]. The dom-
inant background contribution originates from the
Z → τ+τ− and tt̄ processes and can be suppressed
by the requirements on the presence ofb jets in the fi-
nal state and large angular separation between the two
decaying leptons. This channel provides the highest
sensitivity reach for the neutral MSSM Higgs bosons.

Motivated by the excellent muon reconstruction in
the ATLAS detector, we also study the prospects for
the search in the channel with MSSM Higgs boson de-
cays into two oppositely charged muons. The event
selection criteria are optimised for the best discov-
ery potential taking into account the theoretical and
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Figure 1.51: Discovery potential for the Higgs boson
search in theH → τ+τ− decay channel, shown separately
for theℓℓ andℓh decay modes and their combination at an
integrated luminosity of 30 fb−1 and a centre of mass en-
ergy of 14 TeV. The results are obtained using the standard
analysis with sequential cuts on the discriminating variables
(top picture), as well as for neural network based analysis
(bottom picture). The shaded bands indicate the effect of
the experimental systematic uncertainties. [51]

experimental systematic uncertainties [109]. The in-
variant dimuon mass distribution after all analysis se-
lection criteria is shown for the signal and domi-
nant background processes in Fig. 1.52. The dom-
inant Z → µ+µ− and tt̄ background contributions
are rather large compared to the signal and are sub-
ject to sizeable experimental systematic uncertainties,
particularly with regard to the jet energy scale. It is
therefore important to measure this background con-
tribution with data. This can be done by combining
the information from the side-bands of the invariant
dimuon mass distribution with the measurements on
thee+e− control sample. The latter is motivated by an
almost vanishing Higgs boson decay probability into
two electrons, while the background contributions are
similar for the dimuon and the dielectron final states.
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The expected ratio of invariant dielectron and dimuon
mass distributions is shown in Fig. 1.53 after all anal-
ysis selection criteria and after correcting for the dif-
ferent electron and muon reconstruction and identifi-
cation efficiency. We perform a detailed study of the
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background estimation from data in [110, 111]. The
presented method allows for a significant decrease of
systematic uncertainties and thus in an improved sen-
sitivity reach for the MSSM Higgs boson search in
the µ+µ− decay channel. Especially during the ini-
tial phase of LHC running with the limited amount of
data, the introduced control data samples are essen-
tial for obtaining reliable exclusion limits. The exclu-
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sion reach with early data at a centre of mass energy
of 7 TeV has been evaluated for theh/H/A → µ+µ−

channel in [112], see Fig. 1.54. At an integrated lumi-
nosity of 1 fb−1 one cannot improve the current limits
reached by the Tevatron experiments using this chan-
nel alone. However, its combination with searches in a
more sensitiveh/H/A → τ+τ− decay channel allows
for an improved coverage of the(mA, tanβ) parameter
space.
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Figure 1.54:The tanβ values needed for an exclusion of
the neutral MSSM Higgs bosons shown as a function of
the Higgs boson massmA for the analysis mode with at
least one b-jet in the final state. An integrated luminosity
of 1 fb−1 and a centre of mass energy of 7 TeV are as-
sumed. Dashed lines represent the results assuming zero
uncertainty on the signal and background, while the full
lines correspond to the results with both signal and back-
ground uncertainty taken into account. [100]

The light neutral MSSM Higgs boson is difficult
to distinguish from the Standard Model Higgs bo-
son. Clear evidence for physics beyond the Stan-
dard Model would be provided by the discovery of
charged scalar Higgs bosons. We have studied the
prospects for the search for the charged MSSM Higgs
bosons in the decay channelH± → τ±ντ which dom-
inates for relatively small Higgs boson masses be-
low 200 GeV [113, 114]. The charged Higgs bosons
are produced in top quark decays inpp → tt̄ →
(bH±)(bW∓) events. Theτ leptons fromH± decays
are reconstructed in their hadronic decay modes while
theW bosons from top quark decays are required to
decay leptonically. SinceH± mass cannot be recon-
structed because of the undetected neutrinos in the fi-
nal state, these events can only be distinguished as
an excess of events with reconstructedτ leptons and
large missing transverse energy above the high back-
ground of standard model decays of top quark pairs. In

Fig. 1.55, the discovery region in the(m±
H , tanβ) plane

is shown for a charged Higgs boson in the above pro-
duction and decay mode assuming different amounts
of integrated luminosity. The theoretical and experi-
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mental systematic uncertainties have been taken into
account. We have developed the methods to decrease
the original instrumental background uncertainty of
50% down to 10% by means of the control measure-
ments on data [114,115].

1.2.4 Search for Physics Beyond the
Standard Model

Supersymmetric Particles

Supersymmetry (SUSY) is the theoretically favoured
model for physics beyond the Standard Model. The
new symmetry unifying fermions and bosons predicts
for each Standard Model particle a new supersymmet-
ric partner with the spin quantum number differing by
1/2. Supersymmetry provides a natural explanation
for Higgs boson masses near the electroweak scale.
In addition, the lightest stable supersymmetric parti-
cle is a good candidate for the dark matter. The SUSY
models can also provide solutions to the problem of
the unification of the fundamental forces. In order
to suppress the SUSY-induced processes violating the
baryonic and leptonic quantum numbers, the so-called
R-parity has been introduced as a conserved quantum
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number. Each SM particle has an R-parity equal to 1,
while the supersymmetric partners carry an opposite
sign, i.e. an R-parity of -1.

If the mass scale of the SUSY particles is accessible
at the LHC, the squarks and gluinos (the superpartners
of quarks and gluons with spin 0 and 1/2, respectively)
will be copiously produced inpp collisions. Assum-
ing that the R-parity is conserved in these processes,
all supersymmetric particles must be produced in pairs
and each will decay to the weakly interacting light-
est supersymmetric particle via decay chains involv-
ing the production of quarks and leptons. Therefore,
the SUSY events at the LHC are characterised by the
large missing transverse energy, highly energetic jets
and leptons.

If the supersymmetry would be a conserved sym-
metry, each particle and its superpartner are expected
to have an equal mass. However, since the supersym-
metric partners of the Standard Model particles are not
observed so far, SUSY must be a broken symmetry. A
model with the SUSY breaking mechanism mediated
by the gravitational interaction is called mSUGRA and
is described by the common mass termsm0 andm1/2

for all boson and fermion masses, respectively, at an
energy scale above 1015 GeV, where the electroweak
and strong interactions are unified (GUT scale).

The searches for SUSY signatures with conserved
R-parity are performed in ATLAS by searching for an
excess of events in various channels. These channels
explore a large variety of possible signatures in the
detector, divided according to different jet and lepton
multiplicities. Fig. 1.56 shows the 5σ discovery reach
for the mSUGRA model in the final states with 4 jets
and 0 leptons, the states with 4 jets and 1 lepton or in
the final states with 2 jets and 2 leptons.

The Standard Model processes with similar signa-
tures as the signal are the top-quark pair (tt̄) and the
gauge bosons (W andZ) production. These processes
are characterised by a large missing transverse en-
ergy originating from weakly interacting neutrinos and
therefore constitute the main background to SUSY
searches at the LHC. Additional important source of
the background is the QCD jet production in which the
mis-measured jet energy can lead to the high-energy
tails in the distribution of the missing transverse en-
ergy. It is expected that at the LHC the Monte Carlo
prediction will not be sufficient to achieve the good un-
derstanding and the control of the background for the
SUSY searches. Our studies are concentrating on the
data-driven estimation of these, which is essential for

Figure 1.56:The 5σ discovery reach of the ATLAS exper-
iment in the search for the mSUGRA signal using channels
with various jet and lepton multiplicities in the (m0, m1/2)
parameter space of the mSUGRA model. The discovery
reach is evaluated for the centre of mass energy of 10 TeV
and an integrated luminosity of 200 pb−1.

an early discovery of SUSY with the ATLAS detector.
We have developed the methods for the determina-

tion of thett̄ background contribution from data [119].
The background contribution is measured by means of
the control data samples which are free of the SUSY
signal contribution. The contribution from thett̄ pro-
duction with top quark decays involving theτ leptons
and non-reconstructed electrons or muons is estimated
from similar events with identified muons and elec-
trons. The control data sample is composed mainly
of tt̄ events in which both top quarks decay into a b-
quark, neutrino and a lepton (electron or muon). Addi-
tional kinematic constraints are applied on these events
similarly to the criteria used for the signal selection.
The number of b-jet pairs passing the kinematic con-
strains is used to divide the measured data sample into
the SUSY-dominated and thett̄-dominated region (see
Fig. 1.57).

A similar strategy is used to define the control sam-
ple with semi-leptonictt̄ → (ℓνb)(qqb) decays [120].
In this case the discriminating variable distinguishing
between the signal and the background region is the
invariant mass of the three nearby jets. In case of the
tt̄ events, the value of this variable will be close to the
top quark mass (see Fig. 1.58).

The contribution of thett̄ background with tau lep-
tons produced in top-quark decays can be estimated
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tt̄ events. This region is used as a control data sample for the
estimations of thett̄ background to the searches for SUSY
signatures with one lepton in the final state. The events with
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the signal. [119]

 (GeV)had
topm

0 100 200 300 400 500

 / 
10

 G
eV

-1
E

ve
nt

s 
/ 2

00
pb

1

10

210

0 100 200 300 400 500

1

10

210 ν qqlbb→tt
W + jets

ντ qqbb→tt
 νlν lbb→tt

SU3
SU4

Simulation
ATLAS preliminary

Figure 1.58:Invariant mass of the tree nearby jets in each
event. This variable is used for the selection of the con-
trol data sample oftt̄ → (ℓνb)(qqb) events, needed for an
estimation of thett̄ background in SUSY searches with no-
lepton signatures. The arrows indicate the selected window
for this variable. The contributions of the Standard Model
processes are shown by the stacked hatched histograms.
The SUSY contribution for two typical SUSY mSUGRA
models (SU3 and SU4) are overlaid. [120]

from the control data sample by replacing the recon-
structed electron or muon with a simulated tau lepton
decay (see Fig. 1.59). Similarly, one can also estimate
the contribution oftt̄ with a non-identified electron
or muon by removing the reconstructed leptons from
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Figure 1.59:Missing transverse energy distribution in the
one-lepton final state. The solid line shows the Monte Carlo
estimate, circles are the result of data-driven estimation.
The shaded histograms show the increase of the data-driven
estimates due to the contaminating SUSY signal (repre-
sented by SU3 and SU4 models) in the control data sample
and the dashed lines show the SUSY signals stacked on the
top of thett̄ background. [120]

each event in the control data sample.
We analysed a set of the most important kinematic

variables for the 70 nb−1 of data collected by the
ATLAS experiment [121]. We find a good agreement
between data and Monte Carlo predictions, indicating
that the Standard Model backgrounds for the SUSY
searches are well under control (see Fig. 1.60).

Other Extensions of the Standard Model

The discovery of the neutrino flavour oscillations has
shown that the lepton flavour is not a conserved quan-
tity within the Standard Model. Beyond the SM, the
lepton flavour violation can occur in many SUSY ex-
tensions. One of the lepton flavour violating process
accessible at the LHC is a neutrinoless decay of a
tau leptonτ → µµµ. Although the Standard Model
predicts a very small branching ratio for this decay,
BR(τ → µµµ) 6 10−14, some extensions of the Stan-
dard Model, such as SUSY and models with doubly
charged Higgs boson, predict the values which are sev-
eral orders of magnitude higher. Therefore, the mea-
surement of the branching ratio for theτ → µµµde-
cay will put stringent limits on the parameters of such
models beyond SM.

During one year of data-taking at the low luminos-
ity of 1033 cm−2s−1, ATLAS will collect 1012 τ lepton
decays. Due to the very large background contribu-
tion only a fraction of these decays can be observed
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in ATLAS, namely the decays ofτ leptons originating
from theW andZ boson decays. We studied the sen-
sitivity of the ATLAS detector to theτ → µµµdecay,
where the tau lepton is produced in the decay ofW bo-
son [72]. This process is characterised by a large miss-
ing transverse energy from the non-detectable neu-
trino and by the three nearby muon tracks. The main
background processes are the production of charmed
and beauty mesons, with their subsequent decays into
muons (see Fig. 1.61).

The study with the simulated data shows that the
upper limit of BR(τ → µµµ) 6 5.9 · 10−7 can be
achieved with 10 fb−1 of collected data. Extrapolating
this expected sensitivity to higher integrated luminosi-
ties, an integrated luminosity of 100 fb−1 has to be
collected by the ATLAS experiment to reach the cur-
rent best upper limit ofBR(τ → µµµ) 6 3.2 · 10−8

(90% CL) by the BELLE experiment.
In addition to the described study of the lepton

flavour violation, we pursue the searches for non-
Standard Model heavy neutral gauge bosonZ′. This
particle is predicted by some extensions of the Stan-
dard Model which address the problems of the mass
hierarchy and the number of generations of lepton and
quarks.
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Figure 1.61: Invariant mass distribution of the tree nearby
muons, shown for the signal and background processes after
applying all analysis selection criteria. The signal consists
of theτ → µµµdecays with tau leptons originating from the
W bosons (green), while the background processes include
the decays of charmed and beauty mesons. Histograms are
normalised to an integrated luminosity of 10 fb−1 at a centre
of mass energy of 14 TeV. Non-shaded area represents the
selected mass window for the evaluation of the limits on the
branching ratio. [72]

1.2.5 Analyses Summary

In summary the MPP physics analyses are well ad-
vanced. The MPP group has significantly contributed
to the first physics measurements of ATLAS, the mea-
surement of the inclusive lepton transverse momen-
tum spectra and the measurement of theW and Z
boson production cross sections. A variety of paths
are explored in the search for the most appropriate
variable and analysis strategy to determine the top-
quark mass, a measurement that will soon be domi-
nated by the systematic uncertainty. In the context of
the searches for new physics phenomena, many new
methods have been developed to understand the back-
ground contribution originating from the above SM
processes. Strategies for the Higgs boson and super-
symmetry searches are optimised for the highest pos-
sible sensitivity during the early data taking phase.
Members of the group are actively participating in the
ATLAS efforts and have presented their own and the
ATLAS collaboration results at international confer-
ences [96,97,116–118,122–125].
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1.3 Detector Upgrade

The design luminosity of the LHC of 1034 cm−2s−1 is
expected to be reached after a few years of data taking
at lower luminosity. Theintegratedluminosity after
10 years of operation will be about 300 fb−1.

For the study of even lower-cross section phenom-
ena at the LHC, a substantial increase of the LHC
luminosity is needed. With a series of upgrades of
the CERN accelerator complex an order of magni-
tude could be achieved, which may yield an integrated
luminosity of up to 3000 fb−1 after 10 years of ad-
ditional running (Super-LHC or SLHC). To help the
LHC detectors to cope with this luminosity increase, a
new operation mode of the machine is foreseen (”lu-
minosity levelling”), reducing the decay rate of lumi-
nosity during a proton fill in such a way that the peak
luminosity at the beginning of the fill will be limited
to about 4× 1034 cm−2s−1, yet yielding a 10 times
higher integrated luminosity for the fill.

While this reduction of thepeakrelative to theinte-
grated luminosity by a factor of 2.5 represents a sub-
stantial alleviation for the operation of the ATLAS de-
tector, the increase of luminosity by a factor of 4 rela-
tive to the original design value of 1034 cm−2s−1 still
calls for a major upgrade effort for most subsystems of
the ATLAS detector. Tracking detectors, for example,
may need higher granularity to cope with the high par-
ticle rates while e.g. the overall radiation dose corre-
sponding to 3000 fb−1 will require new radiation hard
readout electronics in all subsystems of the ATLAS
detector.

The present planning foresees the installation of the
Insertable B-Layer of the Pixel detector (see next sec-
tion) in the year 2016, with the other upgrade steps to
follow by 2020.

1.3.1 R&D towards a novel Pixel Detector
for the SLHC

Overview

The present ATLAS Inner Detector consists of a pixel
detector, the Semiconductor Tracker (SCT), and the
Transition Radiation Tracker (TRT), which are located
at increasing radii from the beam line as described
above.

After about five years of operation it is planned to
extend the present pixel detector by an additional in-
nermost layer, which will be directly mounted onto a
new beam pipe. This upgrade is named the Insertable
B-Layer (IBL). After ten years of operation at the LHC

with the design luminosity profile the complete sil-
icon part of the ATLAS Inner Detector most likely
has to be replaced due to radiation damage. In addi-
tion, an upgrade of the LHC accelerator, named Super-
LHC (SLHC), is planned to reach a ten-fold increase
in luminosity. Consequently, for a given radius the ex-
pected radiation dose and hit occupancy at the SLHC
are a factor 5–10 higher than at the LHC. The Inner
Detector upgrade, mandatory for running at the SLHC,
demands a completely new design for the Inner Detec-
tor, rather than upgrading the existing detector. For
example, the high hit occupancy leads to an unaccept-
able occupancy for the TRT detector, which needs to
be replaced by a new device with a different detector
technology. The choice has been made for a patterned
solid state detector with decreasing granularity for in-
creasing radius. Although the general strategy is clear,
the details of the layout and also the detector concepts
to be used at various radii are still under study.

The geometrical design is developed by the Inner
Detector Layout Group, where the MPP is participat-
ing. The initial design, the strawman, has been defined
in [126]. From this the final design will be obtained by
iteration, depending on the results from detector R&D
as well as simulation of the expected performance.
In any case, the expected increase in radiation dose
means that a new generation of radiation tolerant sili-
con sensors has to be developed for the innermost part
of the Inner Detector.

MPP Module Design

Utilizing the knowledge and capabilities of the semi-
conductor laboratory, HLL, who designed both the
present pixel and the SCT sensors, the MPP has set out
to investigate the feasibility of a novel detector concept
for the pixel detector. The R&D [127] is embedded in
the ATLAS upgrade activities, and has three main in-
gredients, 1) the production of (75–150)µm thin sen-
sors to increase the radiation tolerance, 2) the use of
a novel interconnection technology (SLID, see below)
for attaching the readout electronics to the pixel sen-
sors that may lead to a cost effective solution to replace
the presently used bump bonding technology, and 3)
the vertical integration of analog and digital electron-
ics with inter chip via (ICV), which will allow for in-
dividual optimization of the electronic chips. A sketch
of a pixel module using this concept, while obeying the
restrictions placed by the presently available ATLAS
FEI3 read-out electronics, is shown in Fig. 1.62.

For the production of thin sensors the process [128]
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Figure 1.62:Sketch of the MPP module concept.

developed at the HLL is used. These sensors offer ben-
eficial features [129] like a low depletion voltage, low
leakage current and high charge collection efficiency
(CCE).

The novel Solid-Liquid InterDiffusion (SLID) in-
terconnection technology [130] has been developed
by the Fraunhofer IZM Institut in Munich [131], but
was not yet applied to sensors made for high energy
experiments. The high density interconnection tech-
nology allows for smaller pixel sizes than in the cur-
rent ATLAS hybrid pixel detector, which may be hard
to achieve by the presently used bump bonding tech-
nique. Besides the interconnection of chips and sen-
sors this technology allows for vertical integration of
several layers of thinned chips with ICVs, by using
the combined ICV-SLID process. When exploiting
this, e.g. the chips performing the analog and digital
parts of the read-out can be arranged on top of each
other rather than side by side, which makes the de-
sign more compact and the signal paths shorter. In
addition, the chips can be made using different tech-
nologies and optimized individually in terms of speed,
power consumption and radiation hardness, allowing
for a better overall performance. The first investiga-
tions, like the initial design studies and the compati-
bility investigations of thin sensors with the SLID met-
alization system and processing steps [132], were al-
ready reported in [1] (p.77-85). The results obtained in
the years 2007-2010 are described below, starting with
the sensor design supported by device simulation, fol-
lowed by the wafer production and device evaluation,
and finally the SLID and ICV investigations.

Thin Sensors

The design and production of four thin sensor wafers
in n+-in-n and eight in n+-in-p technology, containing
a variety of different structures, has been performed.

For the n+-in-n technology all four wafers have 75µm
thin active sensors, whereas for the n+-in-p technol-
ogy four wafers each have 150µm and 75µm thin ac-
tive sensors. These wafers were partly processed at the
HLL and partly at industrial companies.

The most important structures are firstly strip sen-
sors for CCE measurements, and secondly pixel de-
vices with the ATLAS pixel sensor geometry used to
either be connected to the present ATLAS pixel chips,
and read-out by the existing data acquisition system to
study system issues, or to investigate the ICV-SLID
technologies. To determine the implant parameters,
and to better understand the behavior of the pixels be-
fore and after irradiation as functions of the parameters
of the p-spray isolation, a simulation of a restricted
part of the pixel array has been set up [133] using the
DIOS/TeSCA silicon device simulation software.

The wafer production was very successful in terms
of device yield and properties of the diodes, strips
and pixel structures before and after irradiation with
26 MeV protons at the Karlsuhe Cyclotron up to flu-
ences of 1016 neq/cm2 (1 MeV neutron equivalent)
expected at the SLHC. Some results of the wafers

Figure 1.63:Capacitance-voltage characteristics of n+-in-
p diodes before irradiation.

made using the favored n+-in-p option are reported
below. The depletion voltage, which is indicated by
the kink in the inverse capacitance squared versus volt-
age behavior shown in Fig. 1.63 for the non-irradiated
diodes, is according to the expectation from the re-
sistivity of the silicon material used. The measured
values of about 20 V and 80 V also nicely exhibit the
predicted quadratic scaling with the sensor thickness.
The device yield for the FEI3 compatible pixel struc-
tures is 79 working structures out of 80 produced. This
yield is defined by the current voltage characteristics
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and requiring that the sensor can be biased well above
its depletion voltage. This is shown for a subset of
16 sensors in Fig. 1.64, and the one structure marked
as failing is displayed with red circles drawing much
more current than all the others with a steeply rising
behavior at around 150 V. The overall level of leakage
current in the plateau of about 5 nA/cm2 is very low
signaling a very high quality and low impurity pro-
cessing of the wafers. After irradiation with protons
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Figure 1.64: Current-voltage characteristics of n+-in-p
FEI3 pixel sensors before irradiation.
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Figure 1.65: Current-voltage characteristics of n+-in-p
FEI3 pixel sensors after irradiation to three fluences.

up to various fluences the devices show the expected
behavior, namely an increased current accompanied by
a higher depletion voltage but also a much increased
breakdown voltage. This is demonstrated in Fig. 1.65
for pixel sensors with 75µm active thickness.

A very important, and at present also much debated,
property of the sensors is the CCE, which is defined
as the collected charge after irradiation normalized to
the one obtained before irradiation. The conventional

description of the radiation damage of silicon predicts
very low CCE after large fluences. This leads to small
signals at increasing noise rendering operation of the
device more and more challenging due to a decreasing
signal-to-noise (S/N) ratio. The decrease of the col-
lected charge is caused mainly by radiation-induced
bulk defects acting as traps for the electrons and holes,
produced by the primary particle, on their drift path
to the electrodes. As a result it is predicted that only
charges from the close vicinity of the electrodes can
arrive in time and lead to a detectable signal. Exper-
imental observations from various groups are in clear
contradiction to the prediction of a strongly reduced
CCE, and rather show that for short collection dis-
tances, i.e. thin sensors or 3D sensors1, the CCE after
strong irradiation reaches unity or even surpasses it.
One model to account for this is charge multiplication,
which occurs in very high electric fields, and naturally
is more likely for thin sensors, since here the bias volt-
age drops over a shorter distance.

The MPP group investigated this effect experimen-
tally on n+-in-p strip sensors, and also by a Monte
Carlo simulation propagating the electrons through the
detailed electric field of the devices while simulating
charge trapping, but also the charge multiplication pro-
cess, both according to existing models.

The measured CCE as a function of the bias voltage
for various sensors and fluences is shown in Fig. 1.66.
Clearly sensors of both thicknesses largely surpass the
prediction from conventional trapping models (see be-
low), and for the 75µm thin devices the full charge can
be recovered within uncertainties, albeit at increasing
voltages for increasing fluences. This is a very im-
portant result since it means that the requirements on
the minimum signal charge for the newly designed FE-
I4 readout chip, to be used for the IBL and for outer
layers of the pixel detector for the SLHC, is less de-
manding than initially thought. However, only the ex-
perimental investigation of the module assemblies to
be performed later this year will tell whether the S/N
value will be high enough after strong irradiation.

The strip sensors used for the CCE measurements
shown in Fig. 1.66 are DC coupled to the readout elec-
tronics. After irradiation this causes high currents to
flow through the readout channels that prevent apply-

1In 3D sensors the electrodes are not implanted on the sur-
face as for planar sensors, but as columns through the bulk of the
sensor. This enables to achieve short collection distances inde-
pendent of the bulk thickness, at the expense of the need to use a
non-standard expensive production process, which at present has
only low yield.
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Figure 1.66:Charge collection efficiency of n+-in-p strip
sensors after irradiation.

ing higher bias voltages than the ones shown to not
damage the electronics. In future this limitation will
be avoided by an AC coupling of the strips. At present
for some of the sensors the use of decoupling pitch
adapters between the sensor and the chip effectively
leads to an AC coupling. With these measures higher
bias voltages can be applied to investigate, whether
also for the 150µm thin sensors after irradiation, the
full charge can be recovered at even higher voltages.

Figure 1.67:Sketch of the 2-dimensional area used for the
device simulation.

The simulation of the predicted CCE is done two-
dimensional, as shown in Fig. 1.67. In the MC sim-
ulation the electrons produced by an incident parti-
cle are individually followed through the sensor, and
at each step charge trapping and charge multiplication
are simulated based on the models available from the
literature, and according to the electric field as cal-

culated by the preceding DIOS/Tesca simulation de-
scribed above [133]. Indeed, at high bias voltage and
after large fluences, the electric field exceeds the value
needed for charge multiplication, especially so at the
boundaries of the p-type and n-type doping in the close
vicinity of the collecting electrodes, i.e. the boundaries
between the red and green regions close toz = 0 in
Fig. 1.67. The predicted CCE for 75µm thin diodes
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Figure 1.68:Predicted CCE for 75µm thin n+-in-p diodes
after irradiation.

presented in Fig. 1.68 reveals a strong rise in CCE for
fluences from 3· 1015 neq/cm2, however at very high
bias voltages well in excess of 1 kV. When compar-
ing this prediction to the experimental result two facts
are evident. The measured CCE in the plateau region
is much higher than the prediction, e.g. for the 75µm
thin diodes at 1· 1016 neq/cm2 and at 500 V the mea-
surement is about 0.8 with a prediction of slightly be-
low 0.3. The observed increase of the CCE with the
bias voltage is roughly linear, and the predicted steep
increase due to charge multiplication is not observed.
Further investigations are clearly needed before proper
predictions for the experimental observations can be
made.

For the IBL upgrade a reduction of the inactive re-
gion around the active pixel region from the present
width of about 1000µm to about 450µm is required.
To achieve this, sensors with a so called slim-edge de-
sign with 11 instead of 21 guard rings around the ac-
tive region have been produced. The high voltage be-
havior of the bare sensors with the slim edge design
before and after irradiation is not significantly worse
than that of the ones with the present guard ring de-
sign, proving that this requirement can be met.

In parallel to the MPP&HLL wafer production, n+-
in-p pixel sensors of the very same design have been
produced at CiS and bump bonded to FEI3 electronics.
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Initial tests of these single chip modules are promis-
ing, showing adequate noise and sufficient high volt-
age stability. After irradiation to large fluences they
will serve to verify that the passivation layer on top of
the sensor is sufficiently insulating. This is needed to
avoid sparking between the chip and the sensor which,
in the n+-in-p sensor technology, are only a fewµm
apart, but are kept at a potential difference of several
hundred Volt.

Interconnection and vertical Integration

The SLID interconnection and ICV have been investi-
gated in collaboration with the IZM Munich. A num-
ber of wafers containing inactive structures consisting
of many long chains of aluminum traces, so called
daisy-chains, to be individually connected via SLID
have been designed and produced at MPP&HLL. The
wafer layout is divided into two halves, one serving
the sensor structures, the other half mimicking the
chips to be connected to the sensors. These wafers
were connected partly in a wafer-to-wafer approach,
i.e. one wafer was rotated by 180 degrees and SLID
connected to another wafer, and partly in a chip-to-
wafer approach, i.e. the chips of one wafer were sin-
gularized, individually attached to a handle wafer, and
this handle wafer was SLID connected to the sensor
wafer. The results shown below are from the wafer-to-
wafer connection. The chip-to-wafer approach yielded
worse results due to technical problems that have led
to an insufficient alignment of the chips on the handle
wafer, and consequently a large number of non suc-
cessful connections. The likely cause of this has been
understood, and will be addressed for the next SLID
connection run which is underway. The daisy-chains
feature different sizes and pitches of SLID connec-
tions. Resistance measurements on these chains indi-
cate if at least one connection of a chain is missing. By
assuming a binomial probability distribution the SLID
inefficiency is calculated from those resistance mea-
surements. It is found to be of the order of one per
mill for types where at least one connection was fail-
ing, and to be below three per mill for those where
all chains were fully intact. Small deliberate vertical
steps in the SLID connection, produced by omitting
some layers in the structure design, and amounting to
at most 1µm, did not deteriorate these results. From
the fully working chains the resistance per connection
was determined to be below 1.5Ω and likely domi-
nated by the contact resistance. These values are small
enough for SLID to be used for connecting individual

pixel cells.
In addition to the chains, these wafers contain ge-

ometrical structures that allow for the measurement
of the positioning accuracy again by performing resis-
tance measurements. The positioning accuracy of the
SLID connections can also be deduced from infrared
images of connected packages, see Fig. 1.69. The sili-
con bulk (grey area) is transparent to the infrared light,
but the SLID metal layers (dark structures) are not.
Consequently, these structures are visible both on the

Figure 1.69:Infrared image of SLID connections.

sensor and on the chip surface. Comparing their posi-
tion and overlap with the wafer design reveals the posi-
tioning accuracy. In this way the positioning accuracy
for the wafer-to-wafer connection was estimated to be
better than (5-10)µm, again precise enough for SLID
to be used for connecting individual pixel cells.

The ICVs are needed if vertical integration is at-
tempted. This can be done at two levels, either by con-
necting individual pixels by ICV, or by only routing
the signals from the wire bond pads via ICV to reduce,
or even avoid, the presently used balcony for the wire
bond pads. However, this needs a special design of
the read-out electronics that reserves inactive regions
in the chip layout, to allow etching the vias. In the
present design of the FEI3 chip such regions are not
available for individual pixels. To still show the feasi-
bility of ICV and to develop the processing steps, the
present R&D concentrates on etching vias only at the
read-out wire bond pads, that by design do not have
active parts below them, see Fig. 1.62 for a schematic
view. The location and layout of the vias have already
been defined, and the first test etching on FEI3 wafers
have been performed.

The progress of this R&D has been reported
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by members of the group at international confer-
ences [132, 134, 135], including overview presenta-
tions of the entire ATLAS R&D on planar silicon sen-
sors [136].

Summary and Outlook

The future steps of the pixel R&D consists of the
production of thin n+-in-p sensors for the IBL sen-
sor qualification. Here the MPP design competes
with the planar n+-in-n design, as well as with 3D-
and diamond sensors. The MPP&HLL thin n+-in-p
wafer production is partly done, and interconnection to
the newly developed FEI4 chip with the conventional
bump bonding process (the choice of interconnection
made for the IBL) at IZM Berlin [137] is planned later
this year. The SLID connection to FEI3 chips without
ICVs is underway. The preparation of the chip- and
sensor wafers has been done, the dicing and singular-
izing of the chips is presently ongoing, and SLID con-
nections are planned later this summer. For the SLID
connection to FEI3 chips with ICVs the design work
is finished and first test etchings for the ICVs are un-
derway.

1.3.2 Upgrade of the HEC: Motivation and
Options

The LAr system consists of a barrel region and two
endcap and forward regions. As seen from Fig. 1.70
the radiation levels increase in the forward direction
with proximity to the beam. From the barrel to the
endcap and from the endcap to the forward calorime-
ters the flux and average energy of the particles from
minimum bias events increases with the consequent
growth of multiplicity and density of shower parti-
cles. This results in a power density, and hence radia-
tion flux, deposited in the calorimeters reaching levels
not seen in previous collider detectors. The ATLAS
calorimeters are designed to cope with a peak lumi-
nosity of 1034 cm−2s−1 and an integrated luminosity
of about 700 fb−1 – sufficient for the currently forseen
300 fb−1 for LHC.

Under SLHC conditions both the maximum instan-
taneous luminosity of 1035 cm−2s−1 and the integrated
luminosity of about 3000 fb−1 luminosity collected
over an anticipated SLHC lifetime of 10 years will
typically increase by an order of magnitude. It is
safe to assume that the functioning of the LAr bar-
rel EM calorimeter will suffer neither at highest peak

Figure 1.70: The total ionising dose per year calcu-
lated by the GCALOR software package in one quarter
of the central part of the detector. The locations of the
inner detector sub-systems, of the different calorime-
ters and of the inner endcap muon stations are indi-
cated. The scale on the left gives the integrated dose
per year corresponding to the various iso-lines.

luminosities nor from the integrated luminosity col-
lected. Depending on the running conditions and the
actual level of radiation, the performance of the for-
ward calorimeter may be degraded due to the increased
peak luminosity. On the other hand, it is unclear how
much the endcap calorimeters (EMEC and HEC) will
be affected. To understand the effects of luminosity on
the endcap and forward regions, the so-called HiLum
experiment has been launched.

One element which might be affected by the inte-
grated luminosity is the front-end electronics of the
HEC which is installed at the perimeter of the HEC
in relatively high radiation fields.

In the vicinity of the HEC cold electronics a neutron
fluence of 0.2× 1014 n/cm2, a γ dose of 330 Gy and
a hadronic fluence of 3.1× 1011 h/cm2 are expected
after 10 years of LHC operation at high luminosity.
The radiation hardness against all three types of ra-
diation has been studied with both preproduction and
production versions of the HEC cold electronics chips
both at room temperature and submerged in liquid ni-
trogen [138]. It was found that neutron irradiation is
by far the most dangerous yielding the smallest safety
margin. Measurements in these tests showed that the
amplifiers start to degrade when the neutron fluence
exceeds∼ 3×1014 n/cm2. Compared to ATLAS re-
quirements this amounts to a safety margin of about
15 for 10 years of LHC operation.
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Assuming a ten times higher SLHC luminosity the
safety margin is essentially eliminated, i.e. the present
HEC cold electronics would be operated at its limit. It
is therefore planned to develop a new ASIC that will
be ten times more radiation hard. It would be available
to replace the present GaAs chips at the SLHC.

The HiLum experiment

In order to establish the operating limits of the
LAr endcap and forward calorimeters in conditions as
close as possible to those that will occur at the SLHC,
test modules of the EMEC, HEC, and FCal calorime-
ters were exposed to a proton high intensity beam
at the IHEP 70 GeV synchrotron in Protvino, Rus-
sia [139,140]. The beam intensities reached up to 1013

protons/spill. The performance of the ATLAS liquid-
argon endcap calorimeters has been studied over a
wide range of ionisation rates including those cor-
responding to SLHC luminosities and above. The
EMEC, HEC, and FCal test modules are each installed
in their own cryostats to help isolate potential poison-
ing of the liquid argon. They were installed one be-
hind the other in the proton beam with interspersed
shielding to spread the hadronic showers and to adjust
the ionisation rates to be in approximately the same
proportions as in ATLAS. The beam is extracted via
the bent crystal technique, offering the unique oppor-
tunity to cover intensities ranging from 106 protons per
spill (pps) up to 1012 pps. In addition, the machine has
been operated with the 6 MHz RF bunch structure pre-
served and with 5 empty bunches between each filled
bunch. This operation mode enables us to study the
high flux response of the calorimeter modules unaf-
fected by pile-up from previous bunches and thus re-
construct a clean signal of the response over the full
drift time of electrons in the liquid argon gaps.

The beam intensity was not constant within a spill
but varied from filled bunch to filled bunch. In order to
correlate the calorimeter signal with the actual bunch
intensity, a Cherenkov counter has been installed to
measure the beam intensity in each single bunch, filled
or not. The intensity ranges typically from 1 to 106

protons/bunch. The Cherenkov counter has been op-
erated with air at atmospheric pressure, varying the
PMT voltage to match the ADC dynamic range. The
read-out was VME based and allowed to measure up
to 6× 106 bunch intensities per second.

A low pressure ionization chamber was used to
monitor the proton flux per spill up to intensities of

about 1× 1011 pps. At higher intensities a secondary
emission chamber with segmented electrodes moni-
tored the flux and measured the beam profile in x and
y.

Refs. [139, 140] describe the measurements on the
degradation of the signal amplitude and shape as func-
tion of the beam intensity. Figure 1.71 shows the intact
pulse shape at low intensities and figure 1.72 the de-
graded shape at high intensities. The ionisation history
over several positive Ar ion drift times preceding the
trigger is also recorded to determine the space charge
buildup with the required accuracy. These data allow
an accurate determination of the positive ion mobility
and the bulk ion/electron recombination rate. Addi-
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Figure 1.71: Pulse shape at an intensity of 6× 107

protons per spill.
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Figure 1.72: Pulse shape at an intensity of 2× 1011

protons per spill.

tional tests include the measurements of the tempera-
ture rise due to beam heating, radiation damage stud-
ies, and performance studies of FCal electrodes with
smaller LAr gaps.

Hadronic endcap electronics

Requirements of the HEC cold electronics for the
SLHC upgrade. For an upgrade, the PSB boards
at the circumference of the HEC wheel would be re-
placed by new, pin-compatible PSB boards with more



48 CHAPTER 1. THE ATLAS EXPERIMENT AT THE LARGE HADRON COLLIDERLHC

radiation hard IC’s. This operation can be done with-
out disassembling the HEC wheels but does require
that the wheels be removed from the cryostat.

The requirements for the new IC’s are:

• Radiation hardness for neutrons up to a fac-
tor of 10 better, i.e. up to a fluence of
∼ 2× 1015n/cm2.

• Low power consumption to stay safely away from
the LAr boiling point at the operational pressure
and temperature of the liquid argon. This means
that the power consumption of the entire chip
should not exceed the present level of< 0.2 W.

• As most of the quality control (QC) tests have
to be done at room temperature, the gain of the
preamplifiers and summing amplifiers should not
vary by more than a factor of two from room to
LAr temperature.

• The noise has to stay low, i.e. it should not exceed
the present level of 50 nA with 0 pF input load
or 100 nA with 200 pF load at each preamplifier
input; the maximum signal for one preamplifier
input is 250µA, the dynamic range of the pream-
plifier has to be∼ 5 × 103, that of the summing
amplifier∼ 104.

• As only the summed signal from the full read-out
channel can be electronically calibrated, the gain
variation of the individual preamplifiers within
the IC has to be below 1 %.

• The IC has to be safe against HV discharges in
the gaps of the HEC modules.

• The input impedance has to be(50±2) Ω to cope
with the existing cabling scheme.

Table 1.1: Characteristics of the SiGe technologies
(transistors) studied for radiation hardness using neu-
tron irradiation.

Material SiGe SiGe SiGe
Transistor Bipolar Bipolar Bipolar

HBT HBT HBT
Foundry IHP IBM AMS
Process SGB25V 8WLBiCMOS BiCMOS

250 nm 130 nm 350 nm
MB and HB

Type npn npn npn

Technologies studied. The radiation hardness
against neutron irradiation has been studied for

Table 1.2: Characteristics of the Si and GaAs tech-
nologies (transistors) studied for radiation hardness
using neutron irradiation.

Material Tran- Foundry Process Type
sistor

Si CMOS IHP SGB25V nmos
FET 250 nm

Si CMOS IHP SGB25V pmos
FET 250 nm

Si CMOS AMS BiCMOS nmos
FET 350 nm

GaAs FET Triquint CFH800 pHEMT
250 nm

GaAs FET Sirenza 250 nm pHEMT

transistors of SiGe (Table 1.1), Si and GaAs (Table
1.2) technologies.

Typically four structures have been bonded in one
ceramic package, which was mounted on a small test
board. Up to 8 boards have been aligned in the neu-
tron beam of the cyclotron at Rez/Prague. 37 MeV
protons impinge on a D2O target to generate a neu-
tron flux up to 1011ncm−2s−1. The energy spectrum
peaks at low energies (1 MeV) with a steep decline to-
wards higher energies. The flux falls off steeply with
the distance from the target. The typical integrated
flux obtained was of the order of 2× 1016n/cm2 for
the closest position relative to the D2O target. The
performance of the transistors was continuously mon-
itored with a network analyzer recording the full set
of S-parameters. In addition, DC parameters (voltages
and currents) were also recorded. Fig. 1.73 shows the
dependence of the gain on the neutron flux for four
IHP bipolar transistors. The two transistors which
are in slot one (black and red lines), i.e. closest to
the D2O target, were exposed to a neutron fluence of
2.2× 1016n/cm2. They show some degradation above
a fluence of∼ 2× 1015n/cm2. The corresponding
neutron fluence for the equivalent transistors located in
slot seven (green and blue lines) is∼ 6× 1014n/cm2.
They don’t show any degradation. In the region of
overlap all four transistors show a similar dependence
of the gain on the fluence within the systematic error.
The results show that the gain is rather stable in the
range required for SLHC (including the safety factor
of 10), i.e. up to 2× 1015n/cm2.

Table 1.3 shows the loss of gain for the transistors
for two different frequencies, studied at a neutron flu-
ence of 2× 1015n/cm2. The errors are dominated by
systematic effects and are at the few percent level. All
technologies investigated show only a small degrada-
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Figure 1.73: Dependence of the gain of four bipo-
lar IHP transistors on the neutron fluence in units of
n/cm2. The vertical dotted lines indicate the expected
SLHC irradiation level, the requirements for the HEC
cold electronics including the safety factor of 10 and
the upper limit of the fluence reached in the irradiation
runs.

Table 1.3: Loss of gain of the transistors studied for
a neutron fluence of 2× 1015n/cm2 at two different
frequencies.

Material Tran- Foundry Type 10 40
sistor MHz MHz

SiGe Bipolar IHP npn 5% 3%
SiGe Bipolar IBM npn 5% 2%
SiGe Bipolar AMS npn 5% 5%

Si CMOS IHP nmos 4% 2%
FET

Si CMOS IHP pmos 4% 3%
FET

Si CMOS AMS nmos 3% 3%
FET

GaAs FET Triquint pHEMT 0% 2%
GaAs FET Sirenza pHEMT 4% 2%

tion of the gain up to the irradiation level expected for
SLHC.

Another important aspect is the variation of the gain
with temperature. This dependence has been studied
for all technologies in the required range down to liq-
uid N2 temperatures. All bipolar technologies show a
strong dependence of the operation point with temper-
ature, therefore, to be used at the SLHC, they would
require a voltage adjustment when going from room to
liquid N2 temperatures. This is different for the FET’s
where the gain variation is rather small within the tem-

perature range studied.
Based on these studies both options, bipolar SiGe

as well as CMOS FET technologies, are sufficiently
stable under neutron irradiation and are being inves-
tigated further. Presently preamplifiers in both tech-
nologies are being developed. Studies of the dynamic
range and noise performance are ongoing. We plan to
irradiate these prototype preamplifiers in cold in the
near future.

From the present studies a feasible concept for the
design of the future HEC cold electronics IC is evolv-
ing, preferentially based on CMOS technology.

1.3.3 Upgrade of the Muon system for High
Luminosities

The muon system will face two main challenges with
luminosities beyond the design value:

(a) maintenance of excellent tracking efficiency of
the MDT drift tube chambers in the presence of
high background hit rates, due to converted neu-
trons and gammas and

(b) limitation of trigger rates for high-pT muons at a
level of about 20–30% of the overall ATLAS trig-
ger rate, which is planned to remain at the present
level of 100 kHz.

In the following chapters we present (a) a R&D
project for the upgrade of drift tube chambers to cope
with high background rates at the SLHC and (b) a
method to upgrade the muon trigger by combining
the high position accuracy of the MDT chambers with
the high time resolution of the existing muon trigger
chambers, decisively improving the selectivity of the
muon trigger for high-pT tracks.

Drift tube chambers for tracking in a
high–background environment

The outer region of the ATLAS detector, where the
muon chambers are located, receives high rates of low-
energy neutrons, mainly due to shower leakage from
calorimeters and shielding structures in the high-η re-
gion. At the nominal luminosity gammas from neutron
capture and related conversion electrons are expected
to generate hit rates in the range 50–300 kHz in each
MDT tube. A conversion electron may mask a muon
hit if the signal arrivesbeforethe muon signal, which
leads to a muon detection efficiency of exp(-τ×f) ≈ 1
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Figure 1.74: Illustration of the tracking quality in 30 mm
and 15 mm drift tubes in a region of high n/γ background, as
expected at the SLHC. The occupancies from background
hits (red dots) are 50 % in the 30 mm tubes but only 7 % in
the 15 mm tubes due to shorter drift time and smaller area.

Figure 1.75: In this test setup the coordinates of a cos-
mic track are measured in 12 layers of 30 mm tubes (blue).
The efficiency of the 15 mm tubes (yellow) is defined with
respect to the fitted track, as explained in the text. Two scin-
tillators below the setup are used for triggering.

- τ×f, whereτ is the average drift time in the MDT
tubes and f the rate of hits due to gamma conversions.

At high rates of n/γ background, the efficiency may
be further reduced by a decrease of the gas amplifica-
tion due to space charge from slowly drifting positive
ions in the tubes, while thefluctuationsof the space
charge tend to degrade the spatial resolution by up to

about 20 % at the highest rates.
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Figure 1.76: Comparison of the drift-time spectra of
30 mm and 15 mm diameter drift tubes at standard gas mix-
ture, gas pressure and gas amplification. The maximum
drift times are 700 and 200 ns, respectively, well reproduced
by GARFIELD simulation.

The effects of gamma conversions in the MDT tubes
have been studied in detail using a muon beam in the
presence of intenseγ-irradiation of up to 500 Hz/cm2

(i.e.∼300 kHz/tube), as delivered by the Gamma Irra-
diation Facility at CERN (GIF) [59]. While theγ-rates
at the GIF correspond to only about 30% of the back-
ground levels expected for the hottest regions at the
SLHC, the results of these measurements already al-
low to define the baseline of a chamber design with
much improved tracking capability: MDT drift tube
with only half the tube diameter offer a reduction of
the drift time by a factor 3,5, due to the non-linear
relation between track distance from the central wire
and drift time (r-t relation) and in addition by a factor
2 from the exposed area, thus yielding a factor of 7
in the reduction of the hit rate due to n/γ background.
Moreover, up to two times more tube layers can be
accommodated in the available space, leading to im-
proved track finding efficiency and position resolution
(see Fig. 1.74).

The reduction of the tube diameter of the MDT
tubes allows to maintain the main advantages of the
drift tube concept:

• independence of the position resolution from the
angle of incidence onto the chamber plane (con-
trary to drift chambers with rectangular drift ge-
ometry)

• operational independence of each tube, where
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Figure 1.77: Efficiency vs. hit rate per tube for 30 mm
and 15 mm drift tubes. For this measurement cosmic muon
tracks were detected in the presence of gamma irradiation
with adjustable intensity at the GIF facility at CERN.

any malfunction of a tube can only generate a
negligible inefficiency

• modularity of chamber construction

Figure 1.78: Structure of a small drift tube with gas
connection and decoupling capacitor in the longitudinal di-
rection (green cylinder). The plastic parts are injection
moulded.

Another advantage of maintaining the drift tube
concept is that it allows to use the extensive experi-
ence with design and operation of the present MDT
chambers with 30 mm tube diameter.

To verify the performance of 15 mm (”small”) tubes
a number of tests was executed, using cosmic muon
tracks. A pair of 30 mm (”large”) drift tube cham-
bers was used as reference, defining the position of the

Figure 1.79: Integration of gas distribution system and
readout electronics with the small tubes.

muon track, while a layer of small tubes was the de-
vice under test (see Fig. 1.75). Tubes along the track
are called ’efficient’ when the hit is detected inside a
3σ road, as defined by the reference tubes.

This measurement was done in the presence of var-
ious levels of gamma background due to a close-
by, adjustable source (GIF test area at CERN). First
tests [145] confirmed the expectation that by reducing
the drift tube diameter by a factor of two whilst leav-
ing all operational parameters unchanged, the maxi-
mum drift time is reduced by a factor of 3.5 (Fig. 1.76).
Fig. 1.77 shows the efficiency of small and large tubes
vs. hit rate from conversions, small tubes providing a
much better performance, as expected. The efficiency
at rate zero deviates from 100 % due to tracks passing
across or close to the tube walls and due toδ-electrons
shifting the position of the hit outside the 3σ accep-
tance road.

Going from large to small tubes as construction ele-
ments for MDT chambers poses a number of technical
challenges, as the higher tube density requires more re-
fined electrical and gas connections on the same avail-
able service area. This is a particular problem for the
supply of the tubes with the operating voltage of 2750
V, requiring isolation distances which cannot be re-
alised on the area available for the readout boards. The
integration of the HV decoupling condensers into the
end-plugs of the tubes was therefore a central require-
ment for the tube design. In a similar way, gas sup-
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Figure 1.80: Distribution of the wire displacement from
the nominal position, the decisive parameter for the mea-
suring accuracy of the MDT chambers.

ply of each MDT tube by individual tubules, as imple-
mented for the 30 mm tube MDTs, did not seem fea-
sible for the production of chambers with four times
higher tube density.

Figure 1.81: Design of a full prototype for a chamber
to be implemented into the forward region of the ATLAS
detector (”Small wheel”).

Development work for small tube chambers started
early in 2008 with an innovative tube design, where

HV decoupling and gas distribution are integrated into
the design of the end-plug (Fig. 1.78). Fig. 1.79 shows
the integrated gas distribution scheme plus readout
electronics for a 4-layer module of small tubes.

Figure 1.82: Precision placement of the small MDT tubes
in high accuracy ’combs’ before glueing with epoxy.

The integration of tubes into chambers is achieved
by bonding tubes layer by layer with epoxy glue. This
requires a high level of positioning accuracy and fix-
ation during the curing. In production tests the tar-
get accuracy of 20µm (Fig. 1.80) was obtained by
placing the tubes into special supports (”combs”), see
Fig. 1.82. All 8 tube layers were glued in a time span
of a few hours, curing was overnight, such that the as-
sembly of a tube package took only one day.

Presently, a full prototype of a MDT cham-
ber in small tube technology is under construction
(Fig. 1.81). It consists of 2×8 tube layers and is de-
signed to fit into the inner part of the muon detector
in the very forward direction, where rates are highest.
This prototype will be available for tests at the GIF fa-
cility by fall 2010. The readout will be achieved with
available electronics for the large tube chambers, spe-
cially adapted for use with the new chamber geometry.

Development of new electronics for small drift
tube readout

The readout architecture of the present MDT system
is described in [141]. While this proven concept is
also applicable to the small tube system, the four times
higher channel density is dictating a higher level of
integration, more on-board data storage capacity and
higher band width for data transfer to the counting
room.

In addition, due to the ten times higher target for the
integrated luminosity of the SLHC, electronics com-
ponents have to survive correspondingly higher irradi-
ation doses. Together with the Electronics Division
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Figure 1.83: The small tube prototype chamber after assembly, consisting of two packages of 8 tube layers, with 72
tubes per layer and 1152 tubes in total.

of the MPP we are currently developing a new 16-
channel Amplifier-Shaper-Discriminator (ASD) chip
in IBM 130 nm technology, known to be radiation
hard beyond what is expected for the Muon detector
at SLHC.

Figure 1.84: Performance of two channels in an ASD
chip to be used in the frontend electronics of the MDT drift
tubes. Gain and pulse shape of both channels correspond
closely to the design parameters and to predictions from
simulation.

To study the analog performance of the 130 nm

technology in our application a prototype chip for the
ASD with four channels was produced in 2009, show-
ing excellent matching with the design parameters as
well as of the gains among the four channels. Fig. 1.84
shows the response of two channels to the injection of
a delta-charge.

For the TDC, measuring the drift times in the MDT
tubes, a faster, radiation hard technology is introduced,
based on developments of the CERN Micro Electron-
ics Group.

For the on-chamber FPGAs, responsible for data
formatting and transmission to the counting room, a
new firmware is developed by MPP’s Electronics Divi-
sion. The aim is to reduce the sensitivity of the config-
uration code to single event upsets from ionising par-
ticles by the implementation of a high level of code
redundancy (Triple Modular Redundancy). Finally,
optical data transmission to the counting room will
be based on the Gigabit Optical Link (GOL) chipset,
developed by CERN. In this transmission scheme 5
Gbit/s will be available, about three times more than
in the present SLINK scheme. A schematic diagram of
the readout architecture of large and small tube cham-
bers is given in Fig. 1.85.
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Figure 1.85: Present readout scheme for large MDT
tubes, 24 tubes being served by one TDC (’AMT’) on a
readout card (top). In the future architecture 96 small tubes
will be served by a card of comparable size, requiring a
higher level of integration (bottom).

Sharpening of the trigger threshold for high-pT

tracks

The capability to trigger on muon tracks with a trans-
verse momentum (pT) above a certain threshold was
one of the principal requirements for the design of the
muon spectrometer. MDT chambers with their long
drift time of up to 750 ns, spanning 30 beam crossings,
are not suited for this task and had to be complemented
by specialised trigger chambers, capable of identifying
tracks belonging to a given beam crossing.

In the barrel region of the muon detector, the Re-
sistive Plate Chamber (RPC) technology was selected
for this purpose. This detector type uses pick-up
strips perpendicular to the z-direction to sense the
avalanches generated by traversing particles in the
chamber gas, delivering the coordinates of the tracks
along the bending direction of the magnetic field [45].
The time resolution of about 20 ns of the RPC cham-
bers is sufficient to tag the beam crossing with about
95% confidence. Fig. 1.86 shows the schematics of
the muon Level-1 triggering system in the barrel re-
gion. RPC trigger chambers (marked in green) are
positioned at three radial positions of the barrel, one
in the outer detector layer (BO) and two in the mid-

Figure 1.86:Implementation of the Level-1 trigger in the
muon barrel region.

dle layer (BM), below and above the middle MDT.
This way, three coordinate measurements are obtained
along the track, defining the sagitta and thuspT .

The implementation of the Level-1 trigger in the
muon barrel uses a system of fast coincidences be-
tween the pick-up strips of the three RPC layers, esti-
matingpT from the bending of the track in the toroidal
magnetic field. Due to the width of the RPC strips of
30 mm the pT resolution for tracks above 15–20 GeV
is not very sharp, the sagitta of a 20 GeV track being
only 24 mm. Fig. 1.87 depicts the situation in a quan-
titative way. With a threshold setting of 20 GeV (red
curve) the trigger is still accepting about 60% of the 15
GeV and 15% of the 10 GeV tracks. The correspond-
ing, unwanted extra trigger rates from muons below
threshold are by far not negligible, as the cross sec-
tions for most muon channels are strongly decreasing
with pT , while those of the more interesting physics
channels (e.g. from W/Z decays) are roughly constant
or even increasing, see Fig. 1.88.

For practical and cost reasons the maximum Level-
1 trigger rate for ATLAS at the SLHC is planned to
remain at the present value of 100 kHz, and therefore
the efficient rejection of triggers from low-pT muon
tracks is a prime requirement for the upgrade towards
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Figure 1.87: Acceptance of the Level-1 trigger vs. pT

for three typical trigger thresholds. For the 20 and 40 GeV
thresholds the transitions from 90–10% efficiency cover a
wide pT -range, leading to high rates of unwanted triggers.

SLHC.
Improving the pT-selectivity of the muon trigger

means improving the precision of the track coordi-
nates available for the Level-1 trigger decision. In
the present ATLAS trigger hierarchy tracking infor-
mation of the MDT is only used at the Level-2 trigger
stage, where muon tracks are reconstructed using the
precise MDT coordinates, leading to the rejection of
more than 90% of the Level-1 muon triggers. Due to
considerable computing and data transfer overheads,
however, this result is only available after a latency of
about 10 ms, three orders of magnitude beyond what
is acceptable for the latency of the Level-1 trigger. If
a Level-1 trigger arrives later than the maximum al-
lowed latency, information in the front-end buffers of
the ATLAS subdetectors may be lost.

The challenge for an improvement of the Level-1
trigger is to design a MDT readout scheme, able to
deliver a refined pT-value inside a latency of a few mi-
croseconds. The present latency budget of 2,5µs was
adapted to the situation at the original LHC and is in-
sufficient for any refinement of the trigger decision.

For SLHC, however, an increase of the latency to
6,4µs or even 10µs will be implemented for the fron-
tend data storage of all subdetectors, providing con-
siderable design freedom for Level-1 trigger improve-
ments.

The implementation of an improved muon bar-
rel trigger requires an additional readout path of the
MDT, in parallel and independent of the existing non-
synchronous, ’standard’ readout path (Fig. 1.89).

For this fast MDT readout path the following design

Figure 1.88:Transverse momentum distribution of muons
in the ATLAS muon spectrometer for various production
channels.

concept is pursued:

(a) Readout is only activated when a high-pT candi-
date is flagged by the RPC trigger logic, saving
occupancy and readout bandwidth.

(b) All MDT tubes but those close to the trajectory of
the high-pT muon candidate, as supplied by the
RPC, will be ignored in the fast readout, saving
data transfer and processing time.

(c) The resolution of the MDT drift time will be re-
duced from 12 to 7 bit. The corresponding posi-
tion resolution of the MDT of about 1 mm (RMS)
being still about a factor 10 better than the one of
the RPC, sufficient for a decisive sharpening of
the Level-1 trigger threshold. This way data vol-
umes and transmission delays are reduced. For
the same reason, data redundancy and format
overheads will be reduced to the strict minimum.

(d) Separate fast communication lines will be in-
stalled to reduce transmission delays, while fast
local processors will be used for the sagitta and
pT estimates.

An analysis of the time behaviour of such a read-
out model shows that a latency of 4,5–5,5µs could
be achieved and thus would be a realistic option for
the upgrade of the muon Level-1 trigger at the LHC.
A significant advantage of this scheme would be that
the existing RPC trigger chambers would not need an
modifications (except electronics).
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Figure 1.89: Readout architecture to combine the pre-
cision track coordinates determined in the MDT chambers
with the ’fast’ trigger flag supplied by the RPC’s.

A similar upgrade scheme could also be applied to
the Level-1 trigger in the end-cap region where trigger
chambers of the TGC type are used [45]. Because of
the different geometry of the toroidal magnetic field
and the different location of trigger and MDT cham-
bers, however, a modified architecture and specialised
algorithms will have to be used.

In the context of this research program we have
submitted four proposals to the ATLAS upgrade co-
ordinator: (a) development of improved muon drift
tube detectors [142] (b) development of radiation tol-
erant readout electronics [143] and (c) development of
methods to reduce the data volume [144] or, alterna-
tively, increase the bandwidth of the data acquisition
system of the MDT chambers [143] for operation at
very high luminosities.
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[21] T. Göttfert, ATLAS Inner Detector alignment, HEP 2007
Conference, Manchester July 2007, J. of Physics: Conf. Se-
ries 110 (2008) 092012, MPP-2008-216.

[22] G. Cortiana,Alignment of the ATLAS Inner Detector Track-
ing System, IEEE 2009, Nuclear Science Symposium, Or-
lando Florida USA 2009, ATL-INDET-PROC-2009-020,
MPP-2009-292.



1.3. DETECTOR UPGRADE 57

[23] The ATLAS Collaboration, ATLAS Calorimeter Perfor-
mance, CERN/LHCC/96-40, ATLAS TDR 1 (1996).

[24] The ATLAS Collaboration, ATLAS Liquid Argon
Calorimeter Technical Design Report, CERN/LHCC/96-
41, ATLAS TDR 2 (1996).

[25] D. M. Gingrichet al., Construction, assembly and testing of
the ATLAS hadronic end-cap calorimeter, JINST2 P05005
(2007).

[26] The ATLAS Liquid Argon HEC Collaboration, Perfor-
mance of the ATLAS Hadronic End-Cap Calorimeter in
Beam Tests, Nucl.Instr.& Meth.A482,94-124 (2002).

[27] A.E. Kiryunin et al., GEANT 4 Physics Evaluation with
Testbeam Data of the ATLAS Hadronic End-cap Calorime-
ter, Nucl. Instr.& Meth.A560,278-290 (2006).

[28] H. Bartko, Performance of the Combined ATLAS Liquid
Argon End-Cap Calorimeter in Beam Tests at the CERN
SPS, MPP-2003-186, Diploma Thesis, Technical Univer-
sity Munich (2003).

[29] The ATLAS Liquid Argon EMEC/HEC Collaboration,
Hadronic Calibration of the ATLAS Liquid Argon End-Cap
Calorimeter in the Region 1.6 <| η |< 1.8 in Beamtests,
Nucl.Instr.& Meth.A531,481-514 (2004).

[30] The ATLAS Liquid Argon EMEC/HEC Collaboration,
Muon Results from the EMEC/HEC Combined Run cor-
responding to the ATLAS Pseudorapidity Region 1.6 <|
η |< 1.8, ATL-LARG-2004-006 (2004).

[31] J. Pinfoldet al., Performance of the ATLAS Liquid Argon
End-Cap Calorimeter in the Pseudorapidity region 2.5 <|
η |< 4.0 in Beam Tests, Nucl.Instr.& Meth.A593,324-342
(2008).

[32] B. Andrieuet al., Results for pion calibration runs for the
H1 liquid argon calorimeter and comparisons with simula-
tions, Nucl. Instrum. Meth.A336,499 (1993).

[33] I. Abt et al., The tracking, calorimeter and muon detec-
tors of the H1 experiment at HERA, Nucl. Instr.& Meth.
A386,348 (1997).

[34] W. Lampl, S. Laplace, D. Lelas, P. Loch, H. Ma,
S. Menke, S. Rajagopolan, D. Rousseau, S. Snyder,
G. Unal, Calorimeter Clustering Algorithms: Description
and Performance, ATL-LARG-PUB-2008-002 (2008).

[35] The ATLAS Collaboration, Local hadronic calibration,
ATL-LARG-PUB-2009-001 (2009).

[36] The ATLAS Collaboration, Jet Reconstruction Perfor-
mance, ATL-PHYS-PUB-2009-012 (2009).

[37] The ATLAS Collaboration, Detector Level Jet Corrections,
ATL-PHYS-PUB-2009-013 (2009).

[38] The ATLAS Collaboration, Measurement of missing tran-
verse energy, ATL-PHYS-PUB-2009-016 (2009).

[39] The ATLAS Collaboration, Light jets in t̄t events, ATL-
PHYS-PUB-2008-CSC-T2 (2008).

[40] G. Aad et al. [The ATLAS Collaboration], Expected Per-
formance of the ATLAS Experiment - Detector, Trigger and
Physics, arXiv:0901.0512 [hep-ex] (2009).

[41] John Paul Archambaultet al., The simulation of the
ATLAS liquid argon calorimetry, ATL-LARG-PUB-2009-
001 (2009).

[42] The ATLAS Collaboration, G. Aadet al., Readiness of
the ATLAS Liquid Argon Calorimeter for LHC Collisions,
arXiv:0912.2642 [physics.ins-det] (2009).

[43] J. Erdmann, Analysis of the Hadronic Calibration of the
ATLAS End-Cap Calorimeters using Test Beam Data,
MPP-2008-162, Diploma Thesis, LMU Munich (2008).

[44] E. Rauter, Top Quark Mass Measurement: Prospects of
Commissioning Studies for Early LHC Data in the ATLAS
Detector, MPP-2009-132, PhD Thesis, TU Munich (2009).

[45] The ATLAS Collaboration. Technical Design Report for
the ATLAS Muon Spectrometer. Cern/lhcc/97-22, CERN,
1997.

[46] J. Dubbert, S. Horvat, O. Kortner, H. Kroha S. Kotov,
S. Mohrdieck-M̈ock, and R.Richter. Final Evaluation of
the Mechanical Precision of the ATLAS Muon Drift Tube
Chambers. InProceedings of the 2006 IEEE Nuclear Sci-
ence Symposium, San Diego, USA, 29 October–4 November
2006. MPP report MPP-2006-167, November 2006.

[47] F. Bauer et al. Construction and Test of MDT Chambers for
the ATLAS Muon Spectrometer.Nucl. Instr. and Methods,
A(461), 2001.
F. Bauer et al. Construction and Test of the Precision Drift
Chambers for the ATLAS Muon Spectrometer.IEEE Trans.
Nucl. Sci., 48:302, 2001.
F. Bauer et al. The First Precision Drift Tube Chambers for
the ATLAS Muon Spectrometer.Nucl. Instr. and Methods,
A(478):153, 2002.
F. Bauer et al. The First Precision Drift Tube Chambers for
the ATLAS Muon Spectrometer.Nucl. Instr. and Methods,
A(518):69, 2004.

[48] J. Dubbert et al. Integration, Commissioning, and Installa-
tion of Monitored Drift Tube Chambers for the ATLAS Bar-
rel Muon Spectrometer. A(572):53, 2007. Proceedings of
the 10th Pisa Meeting on Advanced Detectors, Isola d’Elba,
Italy, 21.–27.5.2006, MPP report MPP-2006-164.
J. Dubbert et al. Integration, Commissioning and Installa-
tion of Large Drift-Tube Chambers for the ATLAS Barrel
Muon Spectrometer. InProceedings of the 2006 IEEE Nu-
clear Science Symposium, San Diego, USA, 29 October–4
November 2006, volume 3, pages 1368–1372. MPP report
MPP-2006-163.

[49] J. v.Loeben. Test und Kalibrierung der Präzisionsdrift-
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Möck; J. Yuan,Search for the SM Higgs boson in the
H → bb̄ decay channel in associated production withtt̄ us-
ing neural network techniques, ATLAS internal note, ATL-
PHYS-INT-2008-027, CERN, Geneva, 2010.

[106] S. Horvat, O. Kortner, H. Kroha, S. Kotov, J. Yuan,Fea-
sibility study of the observability of theH → bb̄ in Vector
Boson Fusion production with the ATLAS detector, ATLAS
internal note, ATL-PHYS-INT-2008-048, CERN, Geneva,
2010.

[107] G. Aad et al., The ATLAS Collaboration,Search for
the Standard Model Higgs Boson via Vector Boson Fu-
sion Production Process in the Di-Tau Channels, in Ex-
pected performance of the ATLAS experiment - Detector,
Trigger and Physics, p. 1271-1305, CERN-OPEN-2008-
020 (2009), arXiv:hep-ex/0901.0512, MPP-2009-1; ATL-
PHYS-PUB-2009-055, MPP-2009-311.

[108] Georgios Dedes,Study of the Higgs Boson Discovery Po-
tential in the Processpp → H/A → µ+µ−/τ+τ− with
the ATLAS detector, Dissertation, Technische Universität
München, 2008, MPP-2008-32.

[109] G. Aad et al., The ATLAS Collaboration,Search for
the Neutral MSSM Higgs Bosons in the Decay Channel
A/H/h → µ+µ−, in Expected performance of the ATLAS
experiment - Detector, Trigger and Physics, p. 1391-1418,
CERN-OPEN-2008-020 (2009), arXiv:hep-ex/0901.0512,
MPP-2009-1; ATL-PHYS-PUB-2009-060, MPP-2009-312.

[110] S. Stern,Measurement of theµ+µ− Background for Neutral
MSSM Higgs Searches with the ATLAS Detector, Diplo-
marbeit, Technische Universität München, 2009, CERN-
THESIS-2009-135, MPP-2009-211.

[111] S. Horvat, O. Kortner, H. Kroha, S. Stern,Prospects for
data-driven estimation of theµ+µ− background for neutral
MSSM Higgs searches in the decay channelh/H/A →
µ+µ−, ATLAS internal note, ATL-PHYS-INT-2010-058,
CERN, Geneva, 2010.

[112] S. Horvat, O. Kortner, H. Kroha, S. Stern,ATLAS sensi-
tivity prospects for the neutral MSSM Higgs bosons in the
H/A → µ+µ− decay channel at

√
s= 7 TeV, ATLAS inter-

nal note, ATL-PHYS-INT-2010-057, CERN, Geneva, 2010.

[113] G. Aadet al., The ATLAS Collaboration,Charged Higgs
Boson Searches, in Expected performance of the ATLAS
experiment - Detector, Trigger and Physics, p. 1451-1479,
CERN-OPEN-2008-020 (2009), arXiv:hep-ex/0901.0512,
MPP-2009-1; ATL-PHYS-PUB-2009-062, MPP-2009-313.

[114] Thies Ehrich,Search for Light Charged Higgs Bosons in
Hadronic Final States with the ATLAS Detector, Disserta-
tion, Technische Universität München, 2010.

[115] T. Ehrich, S. Mohrdieck-Moeck, S. Horvat, O. Kortner,
H. Kroha, Data-driven measurement of the fake tau con-
tribution from light jets and application for the ttbar back-
ground estimation in charged Higgs Searches, ATLAS in-
ternal note, ATL-COM-PHYS-2009-662 (under approval),
CERN, Geneva, 2010.

[116] T. Ehrich, Searches for light charged Higgs bosons de-
caying to a hadronic tau and a neutrino in the one lep-
ton mode with ATLAS, Prospects for Charged Higgs
Discovery at Colliders, Uppsala, Sweden, Sep 16 -
19, 2008, PoS CHARGED2008:037 (2008), ATL-PHYS-
PROC-2008-066.

[117] A. D’Orazio, SM Higgs search in the 4-lepton final state
with ATLAS, Physics at the LHC Conference, Split, Croa-
tia, Sep 29 - Oct 4, 2008, PoS 2008LHC:107 (2008), ATL-
PHYS-PROC-2009-019.

[118] S. Horvat, Non-SM Higgs searches at the LHC,
DIS 2009 Conference, Madrid, Spain, Apr 26-30,
2009, doi:10.3360/dis.2009.53, ATL-PHYS-PROC-2009-
063, MPP-2009-284.

[119] G. Aad et al., The ATLAS collaboration,Data-driven
determinations ofW, Z and top background to super-
symmetry searches at the LHC, in Expected Perfor-
mance of the ATLAS Experiment - Detector, Trigger
and Physics, p. 1525, CERN-OPEN-2008-020 (2009),
arXiv:hep-ex/0901.0512, MPP-2009-1; ATL-PHYS-PUB-
2009-064, MPP-2009-314.

[120] The ATLAS collaboration,Data-Driven Determination of
tt̄ Background to Supersymmetry Searches in ATLAS,
Atlas public note, ATL-PHYS-PUB-2009-083, CERN,
Geneva, 2009.

[121] The ATLAS collaboration,Early supersymmetry searches
without leptons with the ATLAS Detector, ATLAS in-
ternal note, ATL-COM-PHYS-2010-411 (under approval),
CERN, Geneva, 2010.



1.3. DETECTOR UPGRADE 61

[122] F. Legger,Data-driven estimation of Standard Model back-
grounds to SUSY searches in ATLAS, SUSY08, Seoul , Ko-
rea, Jun 16-21, 2008, ATL-PHYS-PROC-2008-008, MPP-
2008-184.

[123] F. Legger, New Developments in Data-driven Back-
ground Determinations for SUSY Searches in ATLAS,
SUSY09, Boston, Massachusetts, Jun 5 - 10, 2009, AIP
Conf.Proc.1200:297-300 (2010), ATL-PHYS-PROC-2009-
080.

[124] V. Zhuravlov,Extracting backgrounds to SUSY searches
from LHC data, Europhysics Conference on High Energy
Physics, Krakow, Poland, Jul 16 - 22 2009, ATL-PHYS-
PROC-2009-082, MPP-2009-233.

[125] V. Zhuravlov, Estimation of Top Background to SUSY
Searches from Data, 24th International Symposium on Lep-
ton Photon Interactions at High Energies, DESY, Hamburg,
Germany, Aug 17 - 22, 2009, ATL-PHYS-PROC-2010-012.

[126] N. Hesseyet al., Layout Requirements and Options for a
new Inner Tracker for the ATLAS Upgrade, ATLAS internal
document, ATL-P-EP-0001, (2007).

[127] R. Nisiuset al., R&D on a novel interconnection technol-
ogy for 3D integration of sensors and electronics and on
thin pixel sensors, ATL-P-MN-0019, ATLAS internal doc-
ument, (2007).

[128] L. Andriceket al., Processing of ultra-thin silicon sensors
for future linear collider experiments, IEEE Transactions on
Nuclear Science 51 (2004) 1117-1120.

[129] E. Fretwurstet al., High energy proton damage effects in
thin high resistivity FZ silicon detectors, Nucl. Instr. and
Meth. A552 (2005) 124-130.

[130] A. Klumpp et al., Vertical System Integration by Using
Inter-Chip Vias and Solid-Liquid InterDiffusion Bonding,
Japanese Journal of Applied Physics 43, No 7A.

[131] Fraunhofer-Institut f̈ur Zuverl̈assigkeit und Mikrointegra-
tion IZM, Institutsteil München, Hansastraße 27d, 80686
München, Germany.

[132] A. Macchioloet al., Development of thin pixel sensors and
a novel interconnection technology for the SLHC, 9th Inter-
national Workshop on Radiation Imaging Detectors, Erlan-
gen, Germany 22-26 July 2007, Nucl. Instr. and Meth. A591
(2008) 229-232.

[133] M. Beimforde,Investigations towards a pixel detector for
the Super LHC, PhD thesis, MPP and Technical University
München (2010) MPP-2010-??.

[134] A. Macchioloet al., Application of a new interconnection
technology for the ATLAS pixel upgrade at SLHC, TWEPP-
09, Topical Workshop on Electronics for Particle Physics,
Paris, France, 21–25 Sep 2009, CERN-2009-006 (2009)
216-219.

[135] L. Andriceket al., Development of thin sensors and a novel
interconnection technology for the upgrade of the ATLAS
pixel system, 7th International Hiroshima Symposium on

Development and Applications of Semiconductor Tracking
Devices, Hiroshima, Japan, Aug. 29-Sep.1, 2009, Nucl. In-
str. and Meth. A (2010) to be published.

[136] M. Beimforde, The ATLAS Planar Pixel Sensor R&D
project, 7th International Hiroshima Symposium on Devel-
opment and Applications of Semiconductor Tracking De-
vices, Hiroshima, Japan, Aug. 29-Sep.1, 2009, Nucl. In-
str. and Meth. A (2010) to be published.

[137] Fraunhofer-Institut f̈ur Zuverl̈assigkeit und Mikrointegra-
tion IZM, Institutsteil Berlin, Gustav-Meyer-Allee 25,
13355 Berlin, Germany.

[138] J. Ban et al., Cold Electronics for the Liquid Argon
Hadronic End-cap Calorimeter of ATLAS, Nucl. Instr.&
Meth.A556, 158-168 (2006).

[139] P. Schacht for the Hilum and HECPAS collaboration,
ATLAS Liquid Argon Endcap Calorimeter R & D for
sLHC, Proceedings of the 11th ICATPP Conference on As-
troparticle, Particle, Space Physics, Detectors and Medical
Physics Applications, Como, 5-9 October 2009.

[140] Hilum Collaboration, A proposal for R & D to estab-
lish the limitations on the operation of the ATLAS end-
cap calorimeters at high LHC luminosities, INTAS Project
INTAS-CERN 05-103-7555, INTAS Progress Report 2008
(2008) and INTAS Final Report (2009).

[141] Y. Arai et al.,ATLAS Muon Drift Tube Electronics, JINST
3 P09001 (2008)

[142] O. Biebel, J. Dubbert, S. Horvat, O. Kortner, H. Kroha,
R. Richter, D. Schaile,Expression of Interest: R&D on
Precision Drift Tube Detectors for Very High Background
Rates at SLHC, ATLAS document, ATL-M-MN-0006,
March 2007.

[143] O. Biebel, J. Dubbert, S. Horvat, O. Kortner, H. Kroha,
R. Richter, D. Schaile,Upgrade of the MDT Readout
Chain for the SLHC, ATLAS document, ATL-M-MN-0003,
March 2007.

[144] O. Biebel, J. Dubbert, S. Horvat, O. Kortner, H. Kroha,
R. Richter, D. Schaile,Upgrade of the MDT Electronics
for the SLHC Using Selective Readout, ATLAS document,
ATL-M-MN-0005, March 2007.

[145] J. Dubbert, S. Horvat, O. Kortner, H. Kroha, F. Legger,
R. Richter, F. Rauscher,Development of Precision Drift
Tube Detectors for the Very High Background Rates at the
Super-LHC, proceedings of the 2007 IEEE Nuclear Sci-
ence Symposium, Honolulu, Hawaii, USA, 28 October–2
November 2007, MPP report, MPP-2007-172, November
2007, to be published in the IEEE Transactions on Nuclear
Science.



Chapter 2

Publications

I. Abt, A. Caldwell, D. Gutknecht, K. Kr̈oninger, M. Lam-
pert, X. Liu, B. Majorovits, D. Quirion, F. Stelzer, and
P. Wendling. Characterization of the first true coaxial 18-
fold segmented n-type prototype detector for the GERDA
project. Nucl.Instrum.Meth.A577, (2007), 574. MPP-
2007-1,nucl-ex/0701004.

I. Abt, A. Caldwell, K. Kröninger, J. Liu, X. Liu, and
B. Majorovits. Identification of photons in double
beta-decay experiments using segmented germanium detec-
tors - studies with a GERDA Phase II prototype detector.
Nucl.Instrum.Meth.A583, (2007), 332–340. MPP-2007-2,
nucl-ex/0701005.

I. Abt, M. Altmann, A. Caldwell, K. Kr̈oninger, X. Liu,
B. Majorovits, L. Pandola, and C. Tomei. Background
reduction in neutrinoless double beta decay experiments
using segmented detectors - a Monte Carlo study for the
GERDA setup. Nucl.Instrum.Meth.A570, (2007), 479–
486. MPP-2007-3.

Béla Majorovits. The GERDA Neutrinoless-Double-Beta
decay experiment433–438. MPP-2007-4.

Johanna Erdmenger, Rene Meyer, and Jeong-Hyuck Park.
Spacetime Emergence in the Robertson-Walker Universe
from a Matrix model. Phys.Rev.Lett.98, (2007), 261301.
MPP-2007-5,arxiv:0705.1586.

G. G. Raffelt and G. Sigl. Self-induced decoherence
in dense neutrino gases. Phys.Rev.D75, (2007), 083002.
MPP-2007-6,hep-ph/0701182.

Gabriel Lopes Cardoso, Johannes M. Oberreuter, and Jan
Perz. Entropy function for rotating extremal black holes
in very special geometry. JHEP0705, (2007), 025. LMU-
ASC 01/07, MPP-2007-7,hep-th/0701176.

Helmut Rechenberg.Kopenhagen 1941 und die Natur des
deutschen Uranprojektes(Saechsische Akademie der Wis-
senschaften, Leipzig). MPP-2007-8 (2005).

Sean Fleming, Andre H. Hoang, Sonny Mantry, and Iain W.
Stewart. Jets from Massive Unstable Particles: Top-Mass
Determination. Phys.Rev.D77, (2008), 074010. MIT-CTP
3791, CALT-68-2624, MPP-2007-9,hep-ph/0703207.

Georg G. Raffelt. Supernova neutrino observations: What
can we learn?MPP-2007-10,astro-ph/0701677.

Daniel Mazin and Martin Raue. New limits on the
density of the extragalactic background light in the op-
tical to the far-infrared from the spectra of all known
TeV blazars. Astron.Astrophys.439-452. MPP-2007-11,
astro-ph/0701694.

Dimitrios Tsimpis. Fivebrane instantons and Calabi-Yau
fourfolds with flux. JHEP0703, (2007), 099. MPP-2007-
12,hep-th/0701287.

N. Otte. Constraints on the steady and pulsed VHE
gamma-ray emission from observation of PSR B1951+32
/ CTB 80 with the MAGIC Telescope. Astrophys.J.669,
(2007), 1143–1149. MPP-2007-13,astro-ph/0702077.

J. Albert et al. (MAGIC). Variable VHE gamma-ray emis-
sion from Markarian 501. Astrophys.J.669, (2007), 862.
SLAC-PUB-12334, MPP-2007-14,astro-ph/0702008.

J. Barranco, O. G. Miranda, and T. I. Rashba.Low en-
ergy neutrino experiments sensitivity to physics beyond the
Standard Model. Phys.Rev.D76, (2007), 073008. MPP-
2007-15,hep-ph/0702175.

Riccardo Apreda, Johanna Erdmenger, Dieter Lust,
and Christoph Sieg. Adding D7-branes to the
Polchinski-Strassler gravity background. Fortschr.Phys.
55, (2007), 639–643. IFUM 887-FT, MPP-2007-16,
hep-th/0701246.

Monika Blanke, Andrzej J. Buras, Bjoern Duling, Anton
Poschenrieder, and Cecilia Tarantino.Charged Lepton
Flavour Violation and (g-2)mu in the Littlest Higgs Model
with T-Parity: a clear Distinction from Supersymmetry.
JHEP0705, (2007), 013. TUM-HEP-657/07, MPP-2007-
17,hep-ph/0702136.

Steen Hannestad and Yvonne Y. Y. Wong.Neutrino mass
from future high redshift galaxy surveys: sensitivity and de-
tection threshold. JCAP0707, (2007), 004. MPP-2007-19,
astro-ph/0703031.

Monika Blanke and Andrzej J. Buras.A Guide to Flavour
Changing Neutral Currents in the Littlest Higgs Model with
T-Parity. Acta Phys.Polon.B38, (2007), 2923. TUM-HEP-
664/07, MPP-2007-20,hep-ph/0703117.

Stefan Berge, Wolfgang Hollik, Wolf M. Mosle, and
Doreen Wackeroth. SUSY QCD one-loop effects

62



63

in (un)polarized top-pair production at hadron collid-
ers. Phys.Rev.D76, (2007), 034016. MPP-2007-21,
hep-ph/0703016.

Florian Gmeiner, Dieter Lust, and Maren Stein.Statis-
tics of intersecting D-brane models on T6/Z6. JHEP0705,
(2007), 018. NIKHEF/2007-006, LMU-ASC 14/07, MPP-
2007-22,hep-th/0703011.

S. Dittmaier, P. Uwer, and S. Weinzierl. NLO QCD
corrections to t tbar + jet production at hadron collid-
ers. Phys.Rev.Lett.98, (2007), 262002. MPP-2007-23,
hep-ph/0703120.

Kathrin A. Hochmuth, Manfred Lindner, and Georg G. Raf-
felt. Exploiting the directional sensitivity of the Dou-
ble Chooz near detector. Phys.Rev.D76, (2007), 073001.
MPP-2007-24,arxiv:0704.3000.

R. Mirzoyan, B. Dolgoshein, P. Holl, et al. SiPM
and ADD as advanced detectors for astro-particle physics.
Nucl.Instrum.Meth.A572, (2007), 439–494. MPP-2007-
25.

I. Britivitch, E. Lorenz, et al. Development of scintilla-
tion detectors based on avalanche microchannel photodi-
odes. Nucl.Instrum.Meth.A571, (2007), 317–320. MPP-
2007-26.

K. A. Hochmuth, S. T. Petcov, and W. Rodejohann.UPMNS

= Uell dagger Unu. Phys.Lett.B654, (2007), 177–188.
SISSA 44/2007/EP, MPP-2007-27,arxiv:0706.2975.

C. Cattadori, O. Chkvorets, M. Junker, K. Kröninger,
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Carmona, S. Cebrián, S. A. Cetin, J. I. Collar, T. Dafni,
M. Davenport, L. Di Lella, O. B. Dogan, C. Eleftheri-
adis, N. Elias, G. Fanourakis, E. Ferrer-Ribas, H. Fischer,
P. Friedrich, J. Franz, J. Galán, T. Geralis, I. Giomataris,
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V. G. Lüth, K. Maltman, W. J. Marciano, E. C. Mar-
tin, G. Martinelli, F. Martinez-Vidal, A. Masiero, V. Ma-
teu, F. Mescia, G. Mohanty, M. Moulson, M. Neubert,
H. Neufeld, S. Nishida, N. Offen, M. Palutan, P. Para-
disi, Z. Parsa, E. Passemar, M. Patel, B. D. Pecjak, A. A.
Petrov, A. Pich, M. Pierini, B. Plaster, A. Powell, S. Prell,
J. Rademaker, M. Rescigno, S. Ricciardi, P. Robbe, E. Ro-
drigues, M. Rotondo, R. Sacco, C. J. Schilling, O. Schnei-
der, E. E. Scholz, B. A. Schumm, C. Schwanda, A. J.
Schwartz, B. Sciascia, J. Serrano, J. Shigemitsu, I. J.
Shipsey, A. Sibidanov, L. Silvestrini, F. Simonetto, S. Sim-
ula, C. Smith, A. Soni, L. Sonnenschein, V. Sordini,
M. Sozzi, T. Spadaro, P. Spradlin, A. Stocchi, N. Tantalo,
C. Tarantino, A. V. Telnov, D. Tonelli, I. S. Towner, K. Tra-
belsi, P. Urquijo, R. S. Van de Water, R. J. Van Kooten,
J. Virto, G. Volpi, R. Wanke, S. Westhoff, G. Wilkinson,
M. Wingate, Y. Xie, and J. Zupan. Flavor Physics in
the Quark SectorBNL-90299-2009-BC, CERN-PH-TH-
2009-112, FERMILAB-PUB-09-323-T, LAL, MPP-2009-
88,arxiv:0907.5386.

Karsten Berger, Pratik Majumdar, Elina Lindfors, Fabrizio
Tavecchio, and Masahiro Teshima.MAGIC observations
of the distant quasar 3C279 during an optical outburst in
2007MPP-2009-89,arxiv:0907.1046.

P. Colin, D. Borla Tridon, D. Britzger, E. Lorenz, R. Mir-
zoyan, T. Schweizer, and M. Teshima.Observation of
shadowing of the cosmic electrons and positrons by the
Moon with IACTMPP-2009-90,arxiv:0907.1026.

T. Y. Saito, R. Zanin, P. Bordas, V. Bosh-Ramon, T. Jogler,
J. M. Paredes, M. Ribo, M. Rissi, J. Rico, and D. F. Torres.
Microquasar observations with the MAGIC telescopeMPP-
2009-91,arxiv:0907.1017.

E. Carmona, M. T. Costado, L. Font, and J. Zapatero.Ob-
servation of selected SNRs with the MAGIC Cherenkov
TelescopeMPP-2009-92,arxiv:0907.1009.

E. Carmona, J. A. Coarasa, and M. Barcelo.A Flexible
High Demand Storage System for MAGIC-I and MAGIC-II
using GFSMPP-2009-93,arxiv:0907.1003.

Markus Garczarczyk, Markus Gaug, Angelo Antonelli,
Denis Bastieri, Josefa Becerra-Gonzalez, Stefano Covino,
Antonio La Barbera, Alessandro Carosi, Nicola Galante,
Francesco Longo, Valeria Scapin, and Susanna Spiro.GRB
Observations with the MAGIC TelescopesMPP-2009-94,
arxiv:0907.1001.

R. Zanin and J. Cortina.The Central Control of the MAGIC
telescopesMPP-2009-95,arxiv:0907.0946.

D. Borla Tridon, F. Goebel, D. Fink, W. Haberer, J. Hose,
C. C. Hsu, T. Jogler, R. Mirzoyan, R. Orito, O. Reimann,
P. Sawallisch, J. Schlammer, T. Schweizer, B. Steinke, and

M. Teshima. Performance of the Camera of the MAGIC II
TelescopeMPP-2009-96,arxiv:0906.5448.

B. Steinke, T. Jogler, and D. Borla Tridon. MAGIC-
II Camera Slow Control SoftwareMPP-2009-97,
arxiv:0906.5259.

D. Tescaro, J. Aleksic, M. Barcelo, M. Bitossi, J. Cortina,
M. Fras, D. Hadasch, J. M. Illa, M. Martinez, D. Mazin,
R. Paoletti, and R. Pegna. The readout system
of the MAGIC-II Cherenkov TelescopeMPP-2009-98,
arxiv:0907.0466.

Ignasi Reichardt, Javier Rico, Emiliano Carmona, Jose Luis
Contreras, Juan Cortina, Roger Firpo, Lluis Font, Abelardo
Moralejo, Daniel Nieto, Igor Oya, and Raquel de los
Reyes. The MAGIC Data CenterMPP-2009-99,
arxiv:0907.0968.

A. Moralejo, M. Gaug, E. Carmona, P. Colin, C. Del-
gado, S. Lombardi, D. Mazin, V. Scalzotto, J. Sitarek, and
D. Tescaro. MARS, the MAGIC Analysis and Reconstruc-
tion SoftwareMPP-2009-100,arxiv:0907.0943.

Daniel Britzger, Emiliano Carmona, Pratik Majumdar, Os-
car Blanch, Javier Rico, Julian Sitarek, and Robert Wagner.
Studies of the Influence of Moonlight on Observations with
the MAGIC TelescopeMPP-2009-101,arxiv:0907.0973.

P. Colin, D. Borla Tridon, E. Carmona, F. De Sabata,
M. Gaug, S. Lombardi, P. Majumdar, A. Moralejo,
V. Scalzotto, and J. Sitarek. Performance of the
MAGIC telescopes in stereoscopic modeMPP-2009-102,
arxiv:0907.0960.

R. Orito, E. Bernardini, D. Bose, A. Dettlaff, D. Fink,
V. Fonseca, M. Hayashida, J. Hose, E. Lorenz,
K. Mannheim, R. Mirzoyan, O. Reimann, T. Y. Saito,
T. Schweizer, M. Shayduk, and M. Teshima. Devel-
opment of HPD Clusters for MAGIC-IIMPP-2009-103,
arxiv:0907.0865.

M. Lopez, N. Otte, M. Rissi, T. Schweizer, M. Shayduk,
and S. Klepser.Detection of the crab pulsar with MAGIC
MPP-2009-105,arxiv:0907.0832.

T. Jogler, N. Puchades, O. Blanch Bigas, V. Bosch-Ramon,
J. Cortina, J. Mold́on, J. M. Paredes, M. A. Perez-Torres,
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K. Scḧaffner, J. Schmaler, S. Scholl, W. Seidel, L. Stodol-
sky, A. J. B. Tolhurst, I. Usherov, and W. Westphal.
Electron and Gamma Background in CRESST Detectors.
Astropart.Phys. 32, (2010), 318–324. MPP-2009-189,
arxiv:0905.4282.

R. F. Lang, G. Angloher, M. Bauer, I. Bavykina, A. Bento,
A. Brown, C. Bucci, C. Ciemniak, C. Coppi, G. Deuter,
F. von Feilitzsch, D. Hauff, S. Henry, P. Huff, J. Imber,

S. Ingleby, C. Isaila, J. Jochum, M. Kiefer, M. Kimmerle,
H. Kraus, J. C. Lanfranchi, M. Malek, R. McGowan, V. B.
Mikhailik, E. Pantic, F. Petricca, S. Pfister, W. Potzel,
F. Pr̈obst, S. Roth, K. Rottler, C. Sailer, K. Schäffner,
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Karoline Scḧaffner, Godehard Angloher, Dieter Hauff,
Franz Pr̈obst, and Wolfgang Seidel.Inductive Method for
Measuring the Local Transition Temperature of Thin Tung-
sten Films. AIP Conf.Proc.1185, (2009), 187–190. MPP-
2009-296.

T. Bergauer, M. Dragicevic, M. Frey, P. Grabiec, M. Grod-
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czarczyk, M. Gaug, N. Godinovic, D. Hadasch, A. Her-
rero, D. Hildebrand, J. Hose, D. Hrupec, C. C. Hsu,
T. Jogler, S. Klepser, T. Krähenb̈uhl, D. Kranich, A. La
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M. Ribó, J. Rico, M. Rissi, S. R̈ugamer, A. Saggion,
T. Y. Saito, M. Salvati, M. Śanchez-Conde, K. Satalecka,
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