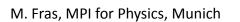
The MDT Trigger Project - Outline

- New Mezzanine Card for Generation of Trigger Data Using an FPGA
- Readout Hardware: TestSetup Board
- Next Setup: Based on GLIB V3 from CERN
- Explanation of TDC Mechanism
- Limitation and Possible Improvements

MDT FPGA R2 **TestSetup Board** FPGA: Infrastructure: 40-pin-connector Actel ProASIC3E **ROI-data** Clock (A3PE600) Lemo "Fast" Read-out Simple TDC (25 ns resolution) Power Simple output FIFO buffer. Testpulse 40-pin-connector Basic zero-suppression. • JTAG to ASD interface. FPGA: ASD L1-Trigger Actel ProASIC3 (8 channels) (A3P600) Clock, EC-, BC reset T ASD MDT tubes HPTDC (8 channels) Read-out (32 channels) USB to UART: FTDI FT2232HL ASD T (8 channels) USB


New Mezzanine Card for Trigger Data Generation

Achievements:

- Successful operation and data taking at GIF at CERN.
- HPTDC data and fast readout data match well.

Limitations:

- Track-finding algorithm running off-line on PC.
- No hit input buffering. No ROI-data used.
- Limited bandwidth due to USB.

PC (Windows)

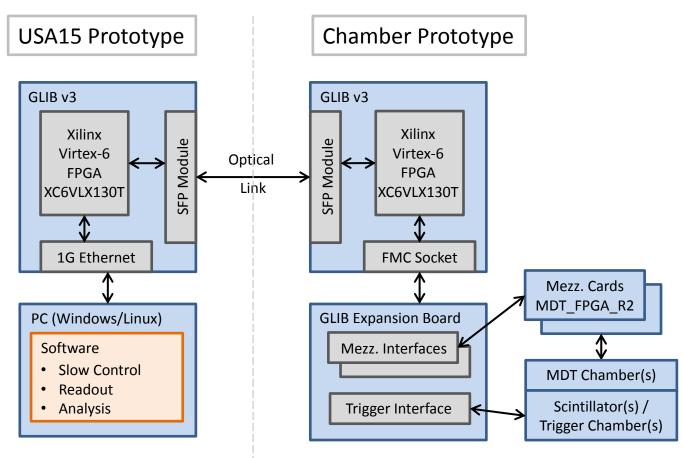
Readout

• Analysis

Slow Control

Software

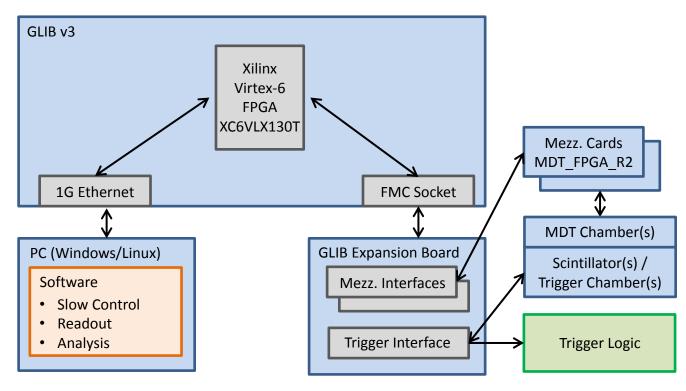
TestSetup Board (TSB) with "Old" Mezzanine Card



The TSB is used to characterize the AMT/HPTDC and to read out the first trigger data.

M. Fras, MPI for Physics, Munich

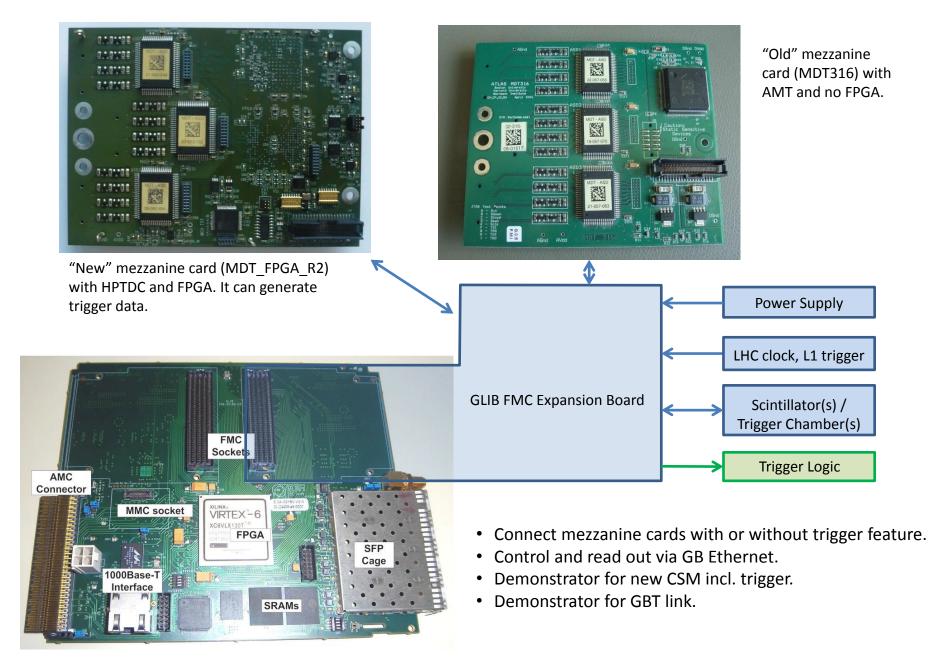
MDT Trigger Project


MDT Trigger Prototype Scheme Using the GLIB v3

Use cases of the setup:

- Prototype of new CSM with GBT optical interface for read-out + slow control.
- Light-weight test system for old and mezzanine cards.
- Demonstrator for MDT trigger with 2 mezzanine cards. **Status:**
- Concept-level. 2 GLIB v3 boards available, 8 additional have been ordered.

MDT Trigger Prototype Simplified Scheme Using the GLIB v3


Use cases of the setup:

- Light-weight test system for two mezzanine cards (maybe more in future version).
- Prototype for track-finding and trigger algorithm in hardware.

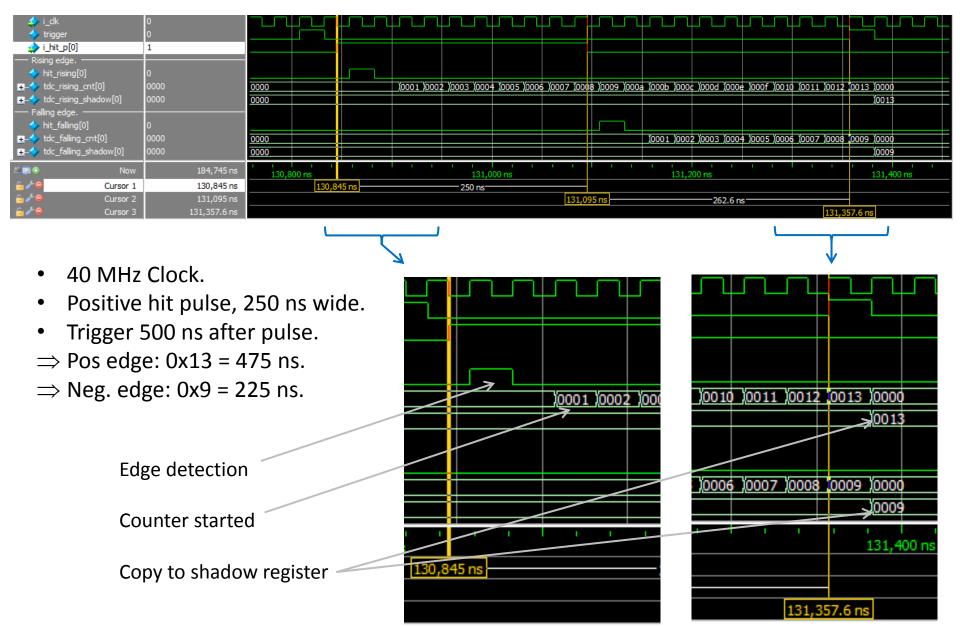
Status:

- Schematic of expansion board ready, layout starting.
- Firmware development started, first basic features implemented, FPGA ~25% full.
- Concept for new software ready. Coding ongoing with HW/FW development.

GLIB FMC Expansion Board for Trigger Demonstrator

M. Fras, MPI for Physics, Munich

Simple TDC implementation:


- Verilog code, ~ 1300 lines of code (total FPGA: ~ 3100 lines).
- It measures the time in 25 ns steps (40 MHz clock) between the rising/falling edge of a MDT hit and the L1 trigger (or any other) signal.
- 24 channels, all working in parallel, i.e. indenedently of each other.
- Rising and falling edges are handled independently.
- Simple zero-suppression implemented: Counter values of 0 can be ignored.

Simple TDC working scheme:

- When a rising/falling edge of a hit signal is detected, a counter is started.
- On a L1 trigger, the counter value is copied to a shadow register.
- The counter is re-armed to react on the next rising/falling hit signal.
- The value is sent to the readout-buffer.
- If there is no L1 trigger within a programmable the time-out limit, the counter value is discarded and the counter is re-armed.

Example simulation shown on next slide.

Trigger Data Generation on the Mezzanine Card – Simple TDC Simulation

Simple TDC – Improvements and Alternatives

Limitations:

• There are no TDC buffers.

=> After a hit, the channel is "blind" until it is re-armed. Thus, hits can get lost.

- No region-of-interest (ROI) information is used for data reduction.
- For the first test, the setup was completely stopped after a L1 trigger until all values had been read.
- => Limited trigger rate.

Possible Improvement:

• Implement buffering scheme in order to cope with a given number of hits within a certain time window.

=> Much more complicated, danger of bugs.

Use ROI-information for further data reduction.
 => Interface to trigger chambers necessary + more complex.

Possible Alternatives:

• A new TDC chip with a second, independent "fast" data channel with lower time resolution.

=> TDC development required, big effort!

- Store hit data in a memory for a certain time. On request, copy a given part of the memory to an output buffer and transmit the data.
- Continuous streaming of hit-data in real-time.
 => Simple solution + no hits will be lost.

Conclusions

- First tests done with "new" mezzanine card and TestSetup Board. But too "small" for further steps.
- New hardware: GLIB v3 + expansion board
- Next big step: Implementation of track finding and trigger algorithm on FPGA
- Evaluate improvements/alternatives for fast TDC on mezzanine cards