sMDT chambers in ATLAS

Philipp Schwegler

philipp.schwegler@cern.ch

Max-Planck-Institut für Physik, Munich

Muon week November 14, 2012

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

sMDT chambers installed in the ATLAS cavern

Small Wheel A, CSC region

- 1 multilayer consisting of 4 tube layers
- 96 tubes in total
- 4 high voltage segments for rate measurement in the small wheel as a function of r

H0 structure, side A, level 6

- 2 multilayer consisting of 8 tube layers each
- 1152 tubes in total
- ²/₃ equipped with electronics

Installation and operation

Both sMDT chambers were installed during the last winter shutdown

chamber

- Data acquisition in a seperate partition
 - needs be started manually and synchronously to a combined ATLAS run in order to get same Level 1 IDs (for offline event matching).
- Running with Level 1 trigger and a pre-scale factor of 0.01 ⇒ several kHz during stable beams.
- Several runs taken two weeks ago. Went very smoothly, the only issue observed is some missing data files.

Time

Rate measurement methods

Main goal:

Measure the rate in the CSC region with (s)MDT technology to better understand background sensitivities of different detector technologies and validate the rate extrapolation to small r and large \mathcal{L} .

Therefore use two independent methods:

Hit counting method:

- Count number of hits n_{hits} in a time window of length t_{window} in individual tubes
- *n*_{events}: total number of events/triggers, *l*_{tube}: tube length, *d*_{tube}: tube diameter

$$\Rightarrow | \text{Hitrate}[\text{Hz/cm}^2] = \frac{n_{\text{hits}}}{t_{\text{window}} \cdot n_{\text{events}}} \cdot \frac{1}{l_{\text{tube}} \cdot d_{\text{tube}}}$$

High voltage current method:

- The current drawn by n_{tubes} tubes is: $l_{\text{tube}} = n_{\text{tubes}} \cdot R \cdot q_{\text{prim}} \cdot G$
- R: hit rate, q_{prim}: primary ionization charge, G: gas gain

$$\Rightarrow \quad \mathsf{Hitrate}[\mathsf{Hz}/\mathsf{cm}^2] = \frac{n_{\mathsf{tubes}} \cdot I_{\mathsf{tube}}}{q_{\mathsf{prim}} \cdot G}$$

Rate measurement in the Small Wheel(s)

HV current method

- The chambers were operated since their installation in February.
- Three high voltage modes, essentially automatically controlled by means of the LHC beam mode:

```
HV READY 2730 V, toggled by STABLE BEAMS
HV STANDBY 1000 V, toggled by PRECYCLE
HV OFF 0 V
```

Delayed transition to STANDBY for measurement of the cavern background afterglowing.

Example of HV current in tubes experiencing the highest rates:

Rate measurement in the Small Wheel(s)

Hit counting method

Some workarounds in the assembly owing to the tight time schedule.

- wire crimping not perfect
- some missing ground pins

which resulted in

- probably 1 broken wire (\Rightarrow short)
- noisy tubes where the ground pins are missing

The few noisy tubes, together with the long search window (2.5 μ s), causes L1 buffer overflows in the AMT. \Rightarrow loss of hits at high luminosity.

Can be cured by reducing the length of the search window or disabling the noisy channels.

For now: fit linear range $(\mathcal{L} < 3.5 \ \times \ 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1})$ and extrapolate

Background rate in the Small Wheel(s)

- The two measurement methods agree very well
- sMDT rate follows the CSCs and is slightly higher (expected, due to higher background sensitivity) . . .
- ... however not as much as one would expect from the MDT
- Some uncertainties to be followed up (e.g. 2011 vs. 2012 data, primary ionization)

Background rate on the H0 structure

EOL2A05 rates from HV current measurement (J. Dubbert):

ML1: $12.96 \pm 1.07 \text{ Hz/cm}^2$ ML2: $11.69 \pm 1.21 \text{ Hz/cm}^2$

- Flux decreases from multilayer to multilayer.
- Factor 2 decrease in flux from EOL chamber to sMDT chamber (distance \approx 2 m).
- \Rightarrow EO chambers not a good reference for measuring background sensitivity in this place.

Afterglow measurement

Measurement of the decay constant(s) of the cavern background

Fit the current before and after the beam dump (t = 0):

t < 0: with a 1st order polynomial $I_{before}(t)$ and

 $t \ge 0$: with two exponential decay functions and constant dark current:

$$I_{\text{after}}(t) = A \cdot \exp(-t/\tau_1) + B \cdot \exp(-t/\tau_2) + C$$

Did this for several runs with the high voltage kept at its operating value for up to four hours after the beam dump.

Results:

 $\langle \tau_1 \rangle = (204 \pm 3) \,\text{s}$ $\langle \tau_2 \rangle = (13755 \pm 577) \,\text{s}$ Afterglow rate $= \frac{l_{\text{before}}(0)}{l_{\text{afer}}(0)} = (5.5 \pm 0.1)\%$

Possible isotopes are $^{13}_{28}$ Al ($\tau = 194$ s) and $^{56}_{25}$ Mn ($\tau = 13392$ s). Both can be produced in fast and thermal neutron activation and occur in the steel parts of the mounting and shielding material.

Summary and Outlook

- Successful operation of two sMDT chambers in the ATLAS cavern for several months.
- First data used to measure the background rates, additional measurement with HV currents.
- Found surprising differences in the background rate with respect to neighbouring MDTs.
- Data taking has just started, hope to take some more runs during the next couple of weeks.
 - · Take runs with shorter search window and noisy channels disabled
 - Match events with ATLAS data for efficiency measurement

 Thanks to: Tatiana Klioutchnikova, Preema Rennee Pais, Mathieu Aurousseau, Enrico Pasqualucci, Tiesheng Dai, Jörg Dubbert!