Drift-Tube Chambers for Phase I Small Wheel Upgrade

Hubert Kroha MPI Munich

Muon Upgrade Meeting, CERN, 05/07/2011

Chamber Design for Small Wheels

- Combination of Small-Drift Tube (sMDT) Chambers (15 mm tube Ø) with fast trigger chambers (TGCs, RPCs, Micromegas) providing second-coordinate information.
- Chamber design easily matched to the present endcap small-large chamber layout and to the ex. alignment lines.
- Precision mounting of the alignment sensors on the sMDT chambers during chamber construction part of the design from the beginning (realized already for the elevator chambers).
- Efficient, robust and well understood solution for SW tracking and trigger upgrade.

05/07/2011

sMDT Chamber Design for Small Wheels

sMDT chambers with 15 mm \oslash drift tubes:

- 2 x 6 tube layers in CSC region (w. 140 mm spacer),
- 2 x 4 tube layers in rest of SW (w. 192 mm spacer)
- < 50 µm spatial and 0.3 mrad angular resolution in bending direction,
- > 99% tracking efficiency at < 15% occupancy</p>

for maximum background rates at 5 x LHC design luminosity of 9 kHz/cm²

96 chambers, 6 types EIL 0,1,2, EIS 0,1,2.

70000 tubes of 0.55 – 2.50 m length.

Electronics and services requirements well understood.

ASD, mezz. card, CSM upgrade development in progress.

Readout Channels and Power Consumption

Channel numbers for one Small		one Small Wheel			
Chamber	# Tubes	# 32-ch. mezz. / # CSM	# 24 ch. mezz. / # CSM	Current / A (32-ch. / 24-ch mezz.)	Power / W (3.5 V / 5 V supply)
EIL0	$72 \times 6 \times 2$	28/2	36 / 2	16 / 16	56 / 80
EIL1	$72\times 4\times 2$	18/1	24/2	10 / 11	35 / 55
EIL2	$96\times 4\times 2$	24/2	32/2	14 / 14	49 / 70
EIS0	$72 \times 6 \times 2$	28/2	36 / 2	16 / 16	56 / 80
EIS1	$88\times 4\times 2$	22/2	30 / 2	14 / 14	49 / 70
EIS2	72 imes 4 imes 2	18 / 1	24/2	10 / 11	35 / 55
Total	34816	1104 / 80	1456 / 96	-	2240 / 3280
			96 MRODs		

- Same current / power consumption per channel as present mezzanines / CSM assumed
- Power consumption of possible phase-2 trigger logic on mezzanines not taken into account

Worst case: power consumption factor 3.5 higher than present SW

Power Supplies

Numbers for one Small Wheel

Power Supply Boards per Detector Side

LV boards

Chamber	PS Channel	Current / A	
EIL0 + EIL1	2	14	
EIL2	1	14	
EIS0 + EIS2	2	13	
EIS1	1	14	
Total per side	48	max. 16 / channel	

8 CAEN A3016 boards (6 ch. each)

HV boards

Chamber	PS Channel / ML	Exp. Current per ML / mA (at 5 \times 10 ³⁴ cm ⁻² s ⁻¹)
EIL0 / EIS0	4	3.4
EIL1 / EIS1	1	0.7
EIL2 / EIS2	1	0.6
Total per side	192	max. 1 / channel

16 CAEN A3540 boards (12 ch. each)

Services

Numbers for one Small Wheel

Cables and Gas Pipes per Detector Side

Routing via patch panel in sector 13 BI level

LV cable: min. 40 — max. 48

CAN bus cable: 8

Routing in flexible chains

- TTC Fiber: min. 40 / 48 (on-chamber splitter) max. 80 / 96
- RO Fiber: min. 80 max. 96

HV cable: 192

Alignment cable: ?

Gas pipes: 16 input and 16 output lines (1 channel per ML per 2 sectors, same as present SW)

Drift Tubes, Gas Distribution, Readout Board Design

05/07/2011

Chamber Design and Construction

Basic sMDT chamber design ready.

Mechanical and electronics integration with trigger chambers in progress.

Full-scale prototype chamber constructed and tested in summer 2010.

Construction of sMDT chambers of same type for elevator regions.

Chamber Assembly Facilities

Automated drift- tube assembly facility

Chamber assembly tooling

Assembly of a whole multilayer in one day

Assembly clean rooms

17/03/2011

H.Kroha, J.Dubbert

Development of new rad. hard MDT readout and trigger electronics

10

Performance Prototype Chamber (GIF, H8)

Performance Prototype Chamber (GIF, H8)

S.Horvat et al., IEEE TNS Vol.53, No.2 (2006) 562

H. Kroha

MDT-Based L1 Muon Trigger: Barrel Phase II

Communication added between trigger and MDT chambers within a trigger tower via the TowerMaster, latency > 2.5 μ s, no problem for Phase II

MDT-Based L1 Muon Trigger: Endcaps Phase II

Drift–tube occupancies at 5 x design luminosity (safety factor 5)

- If the MDT-based trigger concept works in the barrel (no alternative) it should also work in the endcaps (incl. alternative scheme by O.Sasaki).
- Additional redundancy and optimum angular and momentum resolution for muon trigger in Phase II.
- Have to prepare already in Phase I SW upgrade (MDT on-chamber electronics).
- Replace MDT electronics in BWs in Phase II upgrade as for barrel. Inner BW MDT chambers have to be replaced then anyway.

Architecture of new MDT readout electronics

Test Program 2011

- June: Wire position measurement of prototype chamber in cosmic ray stand.
- July: High-rate test of prototype ch. with RPC and integrated readout in GIF.
- August: Integration test with TGCs in H8 beam.
- August: Integration test with RPCs in H8 beam.
- Accelerated aging tests started.
- Installation of prototype chamber in ATLAS cavern in winter shutdown 2011/12.

Resources and Funding

- MDT chamber construction for new Small Wheels can be performed by Freiburg, LMU, MPI and Würzburg in 2013-2016.
- Common funding request planned for full new SW MDT system including electronics and services in German funding periods 2012-2018.
 Submission deadline is in December 2011.
 Need decisions by Muon System and ATLAS.
- More collaborators are very welcome.
 Interest by NIKHEF/ Nijmwegen in new MROD development.
 Alignment system by Brandeis.