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Oceani �nem iuxta solemque cadentem
ultimus Aethiopum locus est, ubi maxumus ATLAS
axem humero torquet stellis ardentibus aptum.

On Ocean's bound and next the setting sun
lies the last Aethiop land, where ATLAS tall
lifts on his shoulder the wide wheel of heaven,

studded with burning stars.

P. Vergili Maronis Aeneidos Liber Quartus, 480{482



Abstract

The �nal phase of preparations for the ATLAS experiment at the future Large
Hadron Collider (LHC) has begun. In the last decade the collaboration has car-
ried out various test-beam experiments to study and optimize prototypes of all
subdetectors under more and more realistic conditions. To enhance the detector-
physical understanding, these hardware activities were complemented by detailed
simulations. In parallel the development of reconstruction software has made
important progress.
The present work focusses on some advanced aspects of optimizing the Monitored
Drift Tube Chambers (MDT) for operation as precision chambers in the Muon
Spectrometer. It will be shown how this system has been tuned for maximum
performance in order to meet the ambitious goals de�ned by the objectives of
LHC particle physics (Chapter 2). After de�ning the basic detector parameters
(Chapter 4), the tubes' capability of running in ATLAS's high-rate gamma radi-
ation background was veri�ed (Chapter 5). Both tasks necessitated several years
of gathering experience in muon test beams to which the author has contributed
together with colleagues from institutes spread over the entire globe. Although
e�orts have been made to concentrate on issues for which the writer bore the
full responsibility, it was sometimes unavoidable { in view of a more coherent
treatment of sophisticated contexts { to also display results contributed by other
collaborators. This is particularly true for the analysis of the high-rate behaviour
of drift tubes which was shared with M. Aleksa (CERN), N. Hessey (LMU, now
NIKHEF) and W. Riegler (Harvard, now CERN).
The employment of a silicon microstrip tracker (Chapter 3) in the test-beam ex-
periments yielded an unprecedented precision in the understanding of the subtle-
ties of drift-chamber physics. Chapter 6 presents an approach for taking advantage
of this knowledge in the reconstruction of muon tracks through a multilayer of
tubes.
The momentum resolution and the track reconstruction eÆciency of the muon
spectrometer achieved with the optimized detector system were investigated in
a Monte Carlo simulation (Chapter 7). A central aspect of this study was the
impact of the non-Gaussian errors in the drift-tube response near the anode wires
on the spectrometer performance.

Finally, techniques for the calibration of the space-time relationship of drift tubes

were developed (Chapter 8). Since in ATLAS no external reference detector

will be available, the muon system has to be self-calibrating. This task will

be accomplished by exploiting muon tracks from normal LHC operation. For

each calibration method the attainable precision and the applicability for ATLAS

MDT chambers are discussed. Here again, the results from the beam tests proved

to be an indispensable input. Based on these insights a scenario for the in-situ

calibration of all ATLAS MDT chambers is outlined. This includes a strategy for

the de�nition of the spatial \autocalibration zones" in the spectrometer within

which a calibration of the space-time relationship is valid. A simple estimate of

the number of muons needed for a full calibration shows that approximately one

day of normal data-taking is suÆcient to collect the required statistics.



Kurzfassung

Die Vorbereitungen f�ur das ATLAS-Experiment am zuk�unftigen Hadronen-
Beschleuniger LHC be�nden sich im Endstadium. In den letzten zehn Jahren
f�uhrte die Kollaboration verschiedene Teststrahlexperimente durch, um Proto-
typen aller Teildetektoren unter immer realistischeren Bedingungen zu studieren
und zu optimieren. Zur Verbesserung des detektorphysikalischen Verst�andnisses
wurden die experimentellen Untersuchungen durch detaillierte Simulationen
erg�anzt. Inzwischen hat die Produktion von Detektorkomponenten begonnen.
Fortschritte wurden auch in der Entwicklung der Datenanalyseprogramme erzielt.

Die vorliegende Arbeit konzentriert sich auf die Detektorphysik von Driftrohrkam-
mern (Monitored Drift Tube Chambers MDT), die im ATLAS-Myonspektrometer
als Pr�azisionskammern zum Einsatz kommen werden. Es wird gezeigt, wie
dieses Detektorsystem im Hinblick auf die harten Anforderungen des LHC-
Teilchenphysikprogramms (Kapitel 2) optimiert wurde. Nach Festlegung des
Arbeitspunktes der Driftrohre (Kapitel 4) wurde ihre Tauglichkeit f�ur den Be-
trieb im Hochratenstrahlungsuntergrund des ATLAS-Detektors �uberpr�uft (Kapi-
tel 5). Beide Zielsetzungen erforderten mehrj�ahrige Erfahrungen aus Myonen-
Teststrahlexperimenten, zu denen der Autor zusammen mit Kollegen von Insti-
tuten aus der ganzen Welt beitrug. Wenn auch der Schwerpunkt des Textes
auf diejenigen Sachverhalte gelegt wurde, f�ur deren Erforschung der Verfasser
pers�onlich verantwortlich zeichnete, war es manchmal zur vollst�andigen Darstel-
lung der Zusammenh�ange unverzichtbar, auch Teilergebnisse darzustellen, die von
anderen Mitgliedern der Teststrahlgruppe erarbeitet wurden. Die entsprechen-
den Stellen sind durch Referenzen gekennzeichnet. Dies gilt haupts�achlich f�ur die
Analyse des Hochratenverhaltens von Driftrohren, die gemeinsam mit M. Aleksa
(CERN), N. Hessey (LMU, jetzt am NIKHEF) und W. Riegler (Harvard, jetzt
am CERN) durchgef�uhrt wurde.
Der Einsatz eines Silizium-Mikrostreifen-Strahlteleskops (Kapitel 3) als externer
Referenzdetektor in den Teststrahlexperimenten ergab eine bisher unerreichte
Pr�azision bei der Vermessung von Feinheiten in der Au
�osungsfunktion von
Driftrohren. Kapitel 6 stellt einen Ansatz vor, mit dem diese Detailkenntnisse
zur Verbesserung der Rekonstruktion von Myon-Spuren durch Multilagen von
Rohren genutzt werden k�onnen.
Die mit dem optimierten Detektorsystem erreichte Impulsau
�osung und
SpurrekonstruktionseÆzienz des Myonspektrometers wurden in einer Monte-
Carlo-Simulation untersucht (Kapitel 7). Ein zentraler Aspekt dieser Studie war
der Ein
u� der nicht-gau�ischen Fehler der Driftrohrau
�osungsfunktion in der
N�ahe des Anodendrahtes.
Schlie�lich wurden Algorithmen f�ur die Kalibration der Orts-Driftzeit-Beziehung
entwickelt (Kapitel 8). Da in ATLAS kein externer Referenzdetektor verf�ugbar
sein wird, mu� das Myonsystem selbst-kalibrierbar sein. Dies wird unter Aus-
nutzung von Myonenspuren aus dem normalen LHC-Betrieb bewerkstelligt. F�ur
jede der er�orterten Methoden werden die erreichbare Pr�azision und die Anwend-
barkeit f�ur ATLAS-MDT-Kammern diskutiert. Auch in diesem Zusammenhang
erwiesen sich die Ergebnisse der Pr�azisionsexperimente als sehr n�utzlich.

Auf der Grundlage dieser Erkenntnisse wird ein Szenario f�ur die Kalibration aller

MDT-Kammern in ATLAS skizziert. Dies beinhaltet eine Strategie f�ur die Fest-

legung der r�aumlichen Zonen (,,Autokalibrationszonen\), innerhalb derer eine

Kalibration der Orts-Driftzeit-Beziehung g�ultig ist. Eine einfache Absch�atzung

der Anzahl von Myonen, die f�ur die vollst�andige Kalibration des Spektrometers

notwendig ist, ergibt, da� die erforderliche Statistik innerhalb etwa eines Tages

normaler Datennahme angesammelt werden kann.
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Chapter 1

The ATLAS Detector:

An Experiment at the LHC

1.1 The Large Hadron Collider

In the year 2005 { if the ambitious schedule is realistic { the international scienti�c community
will welcome a new era of experimental particle physics at CERN. After more than a decade
of productive research at LEP and TEVATRON, whose highlights were the veri�cation of the
Standard Model up to an energy scale of about 200GeV, the precision measurement of the
W and Z masses and �nally the discovery of the top-quark, the Large Hadron Collider (LHC)
will open up an unprecedented range of collision energies. The acceleration of electrons and
positrons in ring colliders like LEP is practically limited by energy loss through synchrotron
radiation which increases with 
4=r where 
 is the Lorentz factor and r the radius of the storage
ring. This e�ect is less important for hadrons which { due to their larger mass { acquire much
more energy than electrons with the same 
. Thus the LHC, which will be installed in the
same 27 km long ring tunnel as LEP, will be able to reach centre-of-mass energies up to 14 TeV
in proton-proton collisions and up to about 1 PeV in Pb-Pb collisions. This is an increase of
a factor 7 in centre-of-mass energy with respect to the TEVATRON, today's most powerful
hadron collider, and a factor 70 compared to LEP2. At the TeV energy scale which will now
be accessible, a large potential for new physics is expected by theorists. In Section 1.2 a brief
summary of the most important predicted processes will be given.

Owing to the composite nature of the proton, only a fraction of the 14TeV will be available
for an elementary parton interaction. To enhance the observability of heavy particles originating
from infrequent hard encounters where the colliding constituents take a large fraction of the total
momentum, the LHC designers aim for a maximum luminosity as high as 1034 cm�2s�1. This
design luminosity will be achieved by having a bunch of 1011 protons every 25 ns in both colliding
beams whose transverse radii will be 15�m.

The LHC will make maximum use of the existing accelerator infrastructure at CERN
(Figure 1.1) to increase the proton energy step by step to 450GeV before injecting them into
the LHC. To accelerate particles of equal charge in opposite sense, two separate beam pipes are
placed in a common cryostat with superconducting dipole magnets of 8.4 T strength and oppo-
site �eld directions (Figure 1.2). At four positions along LHC the two proton beams will cross
each other. Around these interaction points the four detectors will be built (see Section 1.3).

1
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1.2.2 The Standard Model Higgs Boson

The most famous goal of the LHC experiments is the detection of the Higgs boson which is
the last missing member of the Standard Model's particle zoo. This boson ows its particular
importance to the still missing de�nitive explanation for the masses of the fermions and the Z0

and W� bosons. In the case of electroweak SU(2) � U(1) symmetry these masses are required
to vanish. However, assuming the existence of a complex isodoublet of scalar Higgs �elds with
a non-zero vacuum expectation value, the symmetry would be hidden in the vacuum state and
at energies lower than the Z mass, where only the remaining electromagnetic U(1)em symmetry
is observable. This mechanism is called \spontaneous symmetry breaking". Three of the four
degrees of freedom of the complex Higgs doublet are absorbed in the mass terms of the Z0 and
W� bosons, while the fourth corresponds to the real Higgs boson whose mass is predicted to
range between 104GeV and 1TeV. The lower limit is due to the non-observation of the Higgs
boson at LEP2, whereas the upper boundary is postulated by theorists in order to prevent a
strong self-coupling of the Higgs leading to non-perturbativity already at the TeV scale [SPI 95].

For both the production and the decay of the Higgs boson it is important to know that the
coupling between Higgs and fermions is proportional to the fermion mass (Yukawa coupling),
while the coupling between Higgs and gauge bosons is proportional to the square of the boson
mass. Therefore in Higgs physics preferentially heavy particles are involved.

1.2.2.1 Higgs Production at the LHC

�����
�����
�����
�����

g g t t H

q q q q H

Hg g

q q Z H
q q W H

s = 16 TeV

200

150

100

100

200

Figure 1.4: Higgs production cross-sections at LHC [DEN 90]. This plot was published before the top
quark discovery. mtop was found to be 174 GeV. In this �gure the WW(ZZ) fusion channel
is labelled qq ! qqH.

The total Higgs production cross-section at LHC is predicted to range between 0.1 pb and
100 pb depending on the Higgs mass (Figure 1.4). Assuming a Higgs mass of 500GeV, about
105 Higgs particles would be produced per year.
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The dominant production mechanisms are gluon-gluon fusion, WW fusion and ZZ fusion
(Figure 1.5). Other less important processes are t�t fusion and Higgs bremsstrahlung from W
or Z.

H

H H

H

W,Z

W,Z

W,Z

W,Z

q

q

q

q

a)

c)

q

q
b)

d)

t

t

t

t

t

t
t

g

g

g

g

Figure 1.5: Channels for Higgs production at LHC: (a) gluon-gluon fusion, (b) WW(ZZ) fusion, (c) t�t
fusion, (d) Higgs bremsstrahlung. (a) and (b) are dominant.

1.2.2.2 Higgs Decay

Figure 1.6 shows the branching ratios of Higgs decay channels. Depending on the Higgs mass
di�erent processes o�er opportunities for observation:

� 80 GeV< mH < 120 GeV:
Since in this mass range the b-quark is the heaviest accessible particle for pair production,
the decay

H! b�b (1.1)

is dominant, but swamped by an enormous background because direct b�b production
has a big cross-section (cf. Figure 1.3). However, if the Higgs stems from an associated
production with W, Z or t�t, the background can be reduced by lepton tagging and the b�b
pair be detected by looking for secondary vertices.

Another promising channel in this mass domain is

H! 

 (1.2)

although it su�ers from its low branching ratio and big background. The detection requires
an electromagnetic calorimeter with high angular and mass resolution. As in the previously
discussed channel, the associated production of a W can help reducing the background.
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� 120GeV < mH < 2mZ � 180GeV:
The channel

H! Z Z� ! 4 `� (1.3)

o�ers a clean signature due to the high transverse momenta of the four leptons. Due to the
low width of the Higgs in this mass range, a high mass resolution (about 1%) is required.
The special cases where some of the leptons are muons is very relevant for the design of
the muon spectrometer. The main background comes from direct ZZ� or Z 
� production.

� 2mZ < mH < 800GeV:
Above the threshold for two real Z's the \gold-plated" channel

H! ZZ! 4 `� (1.4)

o�ers a large branching ratio and low background. In this mass range the natural width
of the Higgs boson grows rapidly with increasing mH, while the production rate decreases.
Therefore at high masses the detection potential is determined by the available integrated
luminosity. The signal from this process can be observed up to 800GeV. For higher masses
the rate becomes too low.

� mH > 800GeV:
At these high masses the channel

H! ZZ! `+ `� � � (1.5)

is six times more frequent than (1.4). It is characterized by the missing transverse energy
due to the neutrinos and by two leptons with high transverse momenta. Other promising
channels are

H ! ZZ! 2 `� 2 j (1.6)

H ! W+W� ! `� � 2 j (1.7)

where the energy and angular distribution of the jets j have to be measured with a hadronic
calorimeter.

At masses higher than 1TeV the Higgs is wider than 500GeV and thus very diÆcult to
separate from the background.

� 150GeV < mH < 190GeV:
For Higgs masses near 2mW � 160GeV the branching ratio of channel (1.3) is strongly
reduced because the decay mode

H!WW! `+ � `� � (1.8)

opens up. Like channel (1.6) this decay mode has the disadvantage that the Higgs peak
cannot be reconstructed due to the escaping neutrinos. Thus one has to identify the
kinematic characteristics of the two charged leptons and to measure precisely the missing
energy.
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Figure 1.6: Branching ratios of the Higgs based on mtop = 174GeV. The mass interval between 600GeV
and 1TeV which is missed out in the left hand plot, is covered by the right hand plot.

Figure 1.7: Natural width of the Higgs boson as a function of its mass [SPI 95].

1.2.3 Super-Symmetric Particles

In the minimal super-symmetric extension of the standard model MSSM (see e.g. [PDG 98], pp.
743�) the super-partners of the known particles are expected to have masses at the TeV scale
and thus to be observable at the LHC [TDR 99](chap. 20). Since super-symmetric particles can
only be produced in pairs (assuming the conservation of R-parity), the lightest super-symmetric
particle (LSP) must be stable. Since it is also expected to be electrically and colour neutral, it
will escape detectors without being directly observed. In order to infer its presence from missing
energy, detectors must have eÆcient calorimetry and high hermeticity.
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The Higgs sector of the MSSM contains two isodoublets of complex �elds:�
H+
u

H0
u

�
and

�
H0
d

H�
d

�
:

Three out of the eight degrees of freedom cause the masses of the Z and W� bosons. The
remaining degrees of freedom give rise to �ve particles: a charged boson pair (H�), two CP-even
neutral bosons (H0,h) and one CP-odd neutral boson (A). The current upper bound on the
lightest Higgs boson h from theory is mh < 125GeV.

The neutral MSSM Higgs bosons are predicted to be mainly produced by gluon-gluon fusion
and Higgs radiation o� W or Z. The charged Higgs bosons will be produced either by the top
decay t ! H+ b (if mH < mt �mb) or, if mH > mt �mb, mainly by the processes g b ! H+ t
and g g! H+ b t.

Some decay channels of the Standard Model Higgs exist also for the neutral MSSM Higgs
bosons (cf. Section 1.2.2.2):

h;H0;A ! 
 
 (1.9)

h;H0;A ! b �b (1.10)

H0 ! ZZ(�) ! 4` (less than in the SM) (1.11)

H0;A ! t�t!W+ bW� �b (in the SM low branching ratio) (1.12)

H0;A ! �+ �� (in the SM very low branching ratio) (1.13)

H0;A ! �+ �� (in the SM very low branching ratio). (1.14)

For decay (1.13) an eÆcient � -identi�cation algorithm involving secondary-vertex reconstruction
is needed. The process (1.14) is one of the benchmark reactions for the designed momentum
resolution of the ATLAS muon spectrometer (see Section 2.2.1).

On the other hand there are new processes like

H0 ! hh (1.15)

A ! Zh : (1.16)

where the secondary h bosons decay according to (1.9) or (1.10).
In addition, if other super-symmetric particles are light enough, decay channels into these

particles will compete with the ones mentioned above.
The most important decay channels for charged Higgs bosons are:

H� ! � �� (if mH < mt) (1.17)

H� ! c s (if mH < mt) (1.18)

H� ! t b!Wbb (if mH > mt) (1.19)

The cross-sections and branching ratios, hence the observability of channels in the MSSM Higgs
sector, depend strongly on the super-symmetric parametersmA and tan �.1 A detailed discussion
of the decay channels and their observability as a function of these parameters would be beyond
the scope of this work. It is fully explained in [TDR 99](19.3).

1mA is the mass of the CP-odd boson A; tan� is the ratio of the vacuum expectation values of the neutral
Higgs �eld components H0

u and H0
d .
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1.2.4 New Heavy Gauge Bosons Z', W'

Several extensions of the Standard Model postulate the existence of additional heavy gauge
bosons Z' and W'. They would be accessible to the LHC for masses up to 5 or 6TeV. Assuming
that the couplings of these bosons are similar to those of the Standard Model Z and W, the
models predict the following leptonic decay channels which are expected to be observable at
LHC experiments [SHA 97, PAU 90]:

Z0 ! `+ `� (1.20)

W0� ! `� � (1.21)

For the detection a high resolution lepton measurement and charge identi�cation up to transverse
momenta of a few TeV are required. The special case where ` = � de�nes the aims for the ATLAS
muon spectrometer at muon momenta in the TeV range. In particular the charge identi�cation
becomes more and more diÆcult as pT increases because the track curvature decreases and can
be reconstructed with the wrong sign.

1.2.5 Top and Beauty Physics

As visible in Figure 1.3, the production cross-section for b-quarks at LHC will be very high. Thus
precise measurements of the b-quark related elements of the CKM matrix and the veri�cation
of the predicted CP violation in the decays of B0

d and B0
s will be possible. For B-physics a

dedicated detector, LHCb, will be built. The omni-purpose experiments ATLAS and CMS will
do B-physics mainly during the initial low-luminosity period of LHC when secondary-vertex
identi�cation will not be impeded by outrageous particle rates.

Top quarks will also be abundant: at the design luminosity of 1034 cm�2s�1 there will be
36000 t�t pairs per hour. This will allow a precise measurement of the top quark mass and
detailed studies of the decay channels.

1.2.6 Other Searches

The LHC experiments will also be able to investigate predictions of other extensions of the
Standard Model, such as leptoquarks, magnetic monopoles or substructure of quarks and lep-
tons. There will also be searches for signatures of technicolour models which could provide an
alternative mechanism for electroweak symmetry breaking.

1.2.7 Heavy Ion Physics

The possibility to operate LHC as a Pb-Pb ion collider will o�er the opportunity of studying
matter at extreme energy densities. QCD thermodynamics predict that at suÆciently high
densities hadronic matter shows a phase transition to a plasma state where quarks and gluons
are no longer con�ned in colour singlets. Recently (Feb. 2000) the searches for this Quark Gluon
Plasma found new encouragement when seven experiments of CERN's Heavy Ion programme
reported about indications of a new state of matter at high densities. For heavy ion physics at
LHC a specialized detector is constructed: ALICE.
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1.3 Experiments at the LHC

Four experiments are being prepared for the LHC:

ALICE (A Large Ion Collider Experiment) is an experiment specialized to heavy ion physics
(mentioned in Section 1.2.7) in Pb-Pb collisions with centre-of-mass energies at the PeV
scale. For details see [ALI 95].

ATLAS (A Toroidal LHC ApparatuS) is a general-purpose experiment for the physics of
proton-proton collisions. The most characterisic feature of the detector is its magnet con-
�guration: the inner detector will be placed inside a solenoid, whereas muon spectrometry
in the outer detector will be done with a toroidal �eld. ATLAS is the detector on which
this thesis is focussed. An introduction to the general layout of the detector will be given
in the next section. The subsequent chapters are dedicated to the muon spectrometer and
the detector physics of its precision chambers.

CMS (Compact Muon Solenoid) is the second general-purpose experiment at the LHC. Its basic
design di�ers from ATLAS mainly in the uniform solenoidal magnetic �eld which covers
the whole detector including the muon chambers. The strong �eld of 4 T allows a compact
design for the muon spectrometer while preserving the necessary �eld integral

R
B dl. For

details see [CMS 94].

LHCb is an experiment specialized to B-physics. Since B mesons are most likely to emerge from
collisions close to the beam direction, the LHCb detector is designed as a forward detector
in order to catch low-angle particles. Its key elements will be its vertex detector, which
will measure charged particle tracks, and its Ring-Imaging Cherenkov (RICH) detectors,
that will identify particles. Details are described in [LHB 98].
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1.4 Overview about the Layout of the ATLAS Detector

A three-dimensional view of the entire ATLAS Detector is shown in Figure 1.8.

Figure 1.8: Three-dimensional view of the ATLAS detector.

Let us have a little tour through the detector subsystems starting in the centre.

1.4.1 The Inner Detector

The ATLAS Inner Detector [TDR 97a] covers the radial range from 4 cm to 1m around the
beam. Its task is a high precision tracking as close as possible to the primary vertex of a pp-
interaction with the aim of �nding secondary vertices and identifying particles. A solenoidal
magnetic �eld of 2 T on average allows charge identi�cation and momentum measurement.

Due to the intense particle background the development of detectors with suÆcient radiation
hardness is a particular challenge.
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Figure 1.9: Longitudinal cross-section of the Inner Detector engineering layout.
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The following detector technologies are applied (see Figure 1.9):

� The Pixel Vertex Detector is designed to provide a set of measurements with high
granularity from 4 to 14 cm from the beam pipe. It consists of three barrel layers and four
forward disks of silicon detectors segmented in pixels with a size of 50�m � 300 �m. The
�ner segmentation is oriented in the bending direction of the solenoid, i.e. along �. On
this coordinate a resolution of 12�m will be achieved, while the second coordinate (along
the beam in the barrel layers, radial in the forward disks) will be measured with 70�m
precision.

� The Semi Conductor Tracker (SCT) has to contribute four measurements per track
in the radial range between 30 and 55 cm. It will consist of silicon microstrip detectors
with an 80�m pitch. The barrel part will have four double layers, while the forward
domain will be equipped with nine double disks. The resolution in the azimuthal direction
(perpendicular to the strips) will be 16�m. A second coordinate resolution of 580 �m is
obtained by tilting the two detector planes of each double layer by 40mrad with respect
to each other.

� The Transition Radiation Tracker (TRT) will cover the radial range from 55 cm to
1m. Its components will be straw tubes with 4mm diameter, �lled with the gas mixture
Xe/CF4/CO2 (70/20/10). Their orientation will be axial in the barrel and radial in the
forward detector. A typical track will cross about 40 tubes and be measured with 170 �m
by each of them. The transition radiation which gave the system its name, will be generated
in polypropylene or polyethylene radiators between the straw tubes. Since it depends on
the Lorentz factor 
, it provides information about the identity of a particle. A double-
threshold read-out will allow the distinction between ionization signals from the particle
tracks and the photon signals from the transition radiation.

1.4.2 The Calorimeters

We will now travel further away from the beam and enter the Calorimeter [TDR 96] whose
global layout is shown in Figure 1.10. Its inner part, the Electromagnetic (EM) Calorimeter,
is designed to stop electrons and photons and to measure their deposited energy with high
angular resolution. It covers the pseudorapidity region j�j < 3:2. The outer part, the Hadronic
Calorimeter, has the same task as the EM Calorimeter, but for hadrons. It extends from � = 0
up to the very forward domain with � = 4:9. This design provides an excellent hermeticity.

1.4.2.1 The Electromagnetic Calorimeter

The EM Calorimeter is a detector made of accordion-shaped lead absorber plates alternating
with copper read-out electrodes on Kapton carriers. The gaps between absorbers and elec-
trodes are �lled with liquid argon. The total thickness of the EM Calorimeter corresponds
to more than 24 radiation lengths. With a granularity of �� � �� � 0:025 � 0:025 an an-
gular resolution of 50mrad /

p
E=GeV will be obtained. The expected energy resolution is

�E=E = 10%=
p
E=GeV.
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Figure 1.10: Three-dimensional view of the ATLAS calorimeter system.

1.4.2.2 The Hadronic Calorimeter

The barrel hadron calorimeter (Tile Calorimeter) is a cylinder divided in three sections: the
central barrel and two extended barrels. It uses iron plates as absorbers and scintillating tiles
as active material. The tiles are read out by wavelength-shifting �bres leading the signal to
photo-multipliers.

The end-cap and forward regions will have a liquid argon calorimeter with copper absorbers.
The granularity of the hadronic calorimeters will range between �� � �� � 0:1 � 0:1

(� < 2:5) and ����� � 0:2�0:2 (� > 2:5). It will provide an energy resolution �E=E between
50%=

p
E=GeV and 100%=

p
E=GeV. The total thickness will be around 11 interaction lengths.

Leaving the calorimeters at their outer radius of 4.2m, we �nally arrive at the outermost
subdetector which is the topic of this thesis: the Muon Spectrometer.



Chapter 2

The Design of the ATLAS Muon

Spectrometer

2.1 The Basic Ideas

The Muon Spectrometer dominates ATLAS by its impressive dimensions of 22m in diameter
and 44m in length. The overall layout is shown in Figures 2.1 and 2.2.
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Figure 2.1: Longitudinal cut through a sector of the ATLAS muon spectrometer.

The idea underlying the design is to de
ect the muon tracks with a toroidal magnetic �eld of
0.4 T on average, and to measure each track in at least three chambers. Knowing the magnetic
�eld map one can infer the momentum from the sagitta of the track.

The magnet system consists of a barrel toroid and two smaller end-cap toroids (Figure 2.3).
Each of them has eight superconducting coils with an air core in order to avoid resolution
degradation by multiple scattering in a massive core.

The precision chambers { Monitored Drift Tube chambers and Cathode Strip Chambers (see
Section 2.4) { will measure the bending coordinate: in the barrel (pseudorapidity � < 1) this

15
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Figure 2.2: Transverse cut through the barrel of the ATLAS muon spectrometer.

coordinate is oriented parallel to the beam line, whereas in the forward region (� > 1) it is
radial. The \second coordinate" (along the magnetic �eld lines) needs to be measured only with
a precision of about 1 cm because it is mainly important for pattern recognition but not essential
to the momentum measurement. The chambers measuring the second coordinate also serve as
trigger chambers. In the barrel they are technically realized by Resistive Plate Chambers which
are positioned below and above the middle MDT station and below the outer MDT station
(see detailed view in Figure 2.7). In the forward region the same task is taken by Thin Gap
Chambers behind and in front of the outer MDT station of the end-cap.
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End-Cap Toroid

Barrel Toroid

Figure 2.3: The super-conducting air-core toroid magnet.

2.2 Performance Requirements

Up to this point we have only presented the basic design principles. To decide on the details
of the technical realization we have to de�ne the performance requirements imposed on the
chamber development.

2.2.1 Physics Requirements

The desired spectrometer performance was de�ned by the requirements of some important
reactions [TDR 97b](2.1):

1. H ! Z Z� ! �� ` ` : This process is important for Higgs masses between 120 and
180GeV where the natural width is below 1GeV (Figure 1.7). Given this small width and
the high background it was found that for an adequate signal sensitivity the mass resolution
should be of the order 1%. Thus the aim for the momentum resolution of the Higgs
decay muons with typical transverse momenta between 5 and 50GeV is dpT =pT � 2%.
In this low momentum region resolution is dominated by energy loss 
uctuations (up to
20GeV) and multiple scattering. Limitation of the latter contribution was the decisive
argument for choosing an air core magnet system with the lowest possible amount of
matter. As demonstrated in Figure 2.4a, the muon spectrometer achieves a momentum
resolution between 2% and 3.5% in the considered momentum range. Combining the
tracks reconstructed in the muon spectrometer with those found in the inner detector,
the performance at low momenta strongly improves (Figure 2.4b). In the range from 5 to
50GeV the 2% requirement is met.

2. H0, A ! �+ �� : This MSSM process which plays a role for H0 or A masses between
100 and 200GeV and tan � > 10, de�nes similar requirements on the muon momentum
resolution as the previously discussed Standard Model channel.
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3. Z' ! �� and muonic decays of heavy supersymmetric particles: New heavy
vector bosons with masses up to 5TeV have decay channels with muons in the TeV range.
The resolution in this momentum range should be on the 10% scale. It is dominated by
the spatial resolution of the precision chambers and by the alignment (Figure 2.4a). Given
that the sagitta of a 1TeV muon track in the toroidal magnetic �eld is typically 0.5mm,
a resolution of 10% is equivalent to a spatial resolution of 50�m on the sagitta. This
requires a single tube resolution of 80�m.

4. Beauty physics: The typical momentum of muons from b-decays lies below 30GeV. In
that range the resolution of the inner detector is better than that of the muon spectrometer.
Therefore in b-physics the muon chambers are mainly used as a level 1 trigger (for the
ATLAS trigger strategy see Section 2.3). The implication for the muon system is that
pattern recognition should work down to the softest muons which reach the spectrometer,
i.e. about 3GeV.
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Figure 2.4: (a) Contributions to the standalone muon momentum resolution as a function of pT assuming
a single tube resolution of 80 �m. (b) Muon momentum resolution of a combined track �t in
the muon spectrometer and the inner detector compared with the individual resolutions.

Furthermore the detection eÆciency of all the processes mentioned above is enhanced by a
good geometrical acceptance, i.e. a high coverage in �. This is particularly important for the
Higgs decay process (1). which due to to the low transverse muon momenta requires a good
hermeticity in the forward region. The actual rapidity coverage j�j < 2:7 yields an acceptance
of 62% for the Higgs boson. Extending the coverage up to j�j = 3 would only improve this
acceptance to 68%, but would increase the rates in the forward chambers because the radiation
shield would have to be reduced in thickness to make space for the additional chambers.

The high hermeticity is also important to avoid fake missing energy which might suggest the
escape of neutrinos or stable super-symmetric particles.
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Of course a very high intrinsic detector eÆciency is desirable. This wish is well complied with
by using pressurized drift tubes which have an eÆciency of more than 99.9% (Section 4.6.2.1).
The resulting muon tracking eÆciency will be discussed in Chapter 7.

2.2.2 The Radiation Background Environment

The ambitious performance requirements discussed in the previous section will have to be met
in an environment with high particle 
uxes. The radiation conditions de�ne the speci�cations
for rate capability and ageing robustness of the muon chambers.
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Figure 2.5: Simulated inclusive cross-section for primary collision products [CHE 93]: (a) as a function
of the rapidity, integrated over 3 < pT < 50GeV; (b) as a function of pT , integrated over
j�j < 2:7.

One can distinguish two categories of background:

1. Primary collision products are still associated in time with a p-p interaction. Only
muons and hadrons with momenta above 3GeV can contribute to this correlated back-
ground. Softer particles are stopped before the spectrometer. As we can see in Figure 2.5a,
the primary background is dominated by muons from the decay of low-pT pions and kaons
in the inner detector and the calorimeter. The second most important contribution comes
from prompt muons produced in the decay of hadrons with b and c quarks. For pT > 8GeV
they even dominate the inclusive muon cross-section (Figure 2.5b).

Less important are muons from gauge boson and t quark decay.

Finally there is a contribution from \punch-through" hadrons, i.e. hadrons which do not
interact in the calorimeters and penetrate into the muon spectrometer. However, the
absorptive power of the calorimeter system is suÆcient to suppress this hadronic debris
down to a negligible amount.
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From the point of view of particle rate the primary background is negligible compared to
the uncorrelated radiation which will be discussed next. The maximum expected 
ux is
at the scale of 10Hz/cm2 in the innermost precision chambers.

In Chapter 8 we shall see that the background muons with pT > 6GeV are not a nuisance at
all: they are even essential for the autocalibration of the Monitored Drift Tube chambers.
Note that the background muon cross-section is almost 
at in rapidity, which is important
for calibrating the entire spectrometer.

2. Radiation background: In interactions of primary collision products with various de-
tector and machine elements huge quantities of low-energy photons and neutrons are pro-
duced. By frequent rescattering these particles lose any correlation with the initial p-p
collision and form a permanent background with energies mainly between 0.1 and 10MeV
(Figure 2.6a). Although the photon and neutron sensitivities of MDTs are only 0.45%
and 0.1% respectively [BAR 94a, CHL 93], counting rates up to 100 Hz/cm2 are expected
(Figure 2.6b), corresponding to 300 Hz per centimeter tube length. In the inner station
the region � > 2 will be equipped with Cathode Strip Chambers which can operate at
higher rates than MDTs. They will have to cope with up to 1 kHz/cm2 near the beam
pipe.
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Figure 2.6: (a) Simulated background photon energy spectrum for three pseudo-rapidity ranges.
(b) Pseudo-rapidity dependence of the total counting rate in the three precision-chamber sta-
tions at the nominal LHC luminosity of 1034 cm�2 s�1 [TDR 97b]. The dash-dotted line
represents the boundary between MDT and CSC chambers in the inner station.

Presently the background counting rate is still subject to uncertainties: due to a limited
knowledge of the shower processes in the calorimeters and of the (n,
) cross-section, the
simulated photon and neutron 
uxes might be wrong by a factor up to 2.5. Furthermore
the chamber sensitivities are uncertain by a factor up to 1.5. To minimize the risk of
underestimating the background rates, the ATLAS collaboration decided to design the
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muon system for a �ve times higher background than expected. Thus MDTs must be able
to operate at rates up to 500Hz/cm2 or 1500 Hz per centimeter tube length which means
total count rates up to 300 kHz for the most irradiated EIL1 chambers with tube lengths
up to 2m.

To study the e�ects of the high-rate radiation background on drift chamber operation, a dedi-
cated test-beam experiment with a strong gamma source was carried out. It will be discussed
in Chapter 5.

2.3 The ATLAS Trigger Strategy

The ATLAS trigger algorithm has three levels which successively reduce the event rate starting
from the bunch-crossing rate of 40MHz to about 100 Hz which can be recorded.

� The Level 1 trigger (LVL1) searches for basic signatures of interesting physics in the
data. Criteria of this preselection are the multiplicities of muons, electromagnetic clusters
and jets as well as global information like missing transverse energy. Only events accepted
by LVL1 will be investigated further. After this trigger step the event rate is reduced to
75 kHz.

For the special case of the Level 1 muon trigger the decision scheme is sketched in
Figure 2.7:

When LHC will run on high luminosity (1034 cm�2 s�1), the amount of data can only be
coped with if a suÆciently high muon threshold is chosen: therefore the so-called high-pT
trigger is set to 20GeV. For low luminosity (1033 cm�2 s�1) on the other hand, muons
down to 6GeV can be accepted. This is called the low-pT trigger.

low pT

high p
T

5 10 15 m0

RPC 3

RPC 2

RPC 1

TGC 1

TGC 2

TGC 3

low pT

high p
T

BOS

BMS

BIS

Figure 2.7: The positions of the muon trigger chambers. Also shown is the scheme of the level 1 muon
trigger (see text).
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In the barrel region the low-pT trigger is satis�ed if in the stations RPC1 and RPC2 a
combination of hits in both coordinates can be found which ful�ll the condition that the
hits in RPC2 lie within a tolerance window from the straight line de�ned by the interaction
point and the hit in RPC1. Since low energy muons are likely to be stopped before the
outer station or to be strongly de
ected, no hit is required in RPC3. For the end-cap
low-pT trigger an analogous hit combination is required in TGC3 and TGC2. For the
high-pT trigger an additional hit is required in RPC3 (barrel) or TGC1 (end-cap), again
within a coincidence window.

� The Level 2 trigger (LVL2) focuses on regions of interest (RoI) identi�ed by LVL1.
While these RoI are further analyzed in more detail, the full event information is kept in
a bu�er. If LVL2 con�rms the event, the data are passed on to LVL3. At this stage the
event rate is about 1 kHz.

� The Level 3 trigger (LVL3) or Event Filter (EF) performs a global analysis combin-
ing the information from the di�erent subsystems. Events which satisfy the �nal criteria
are stored.

2.4 Technical Realization of the Muon Precision Chambers

In the major part of the muon spectrometer the technology of Monitored Drift Tube (MDT)
chambers was adopted for the precision chambers. Only for a very small forward domain (� > 2),
where the background rate is beyond the capability of MDTs, the technology of Cathode Strip
Chambers was chosen [POL 94, GOR 00].

In this work we shall focus on the MDT chambers. We start the discussion with their smallest
element, the single drift tube.

2.4.1 The Single Drift Tube

This section will give a short introduction to the operation principles of drift tubes. The para-
meter values mentioned here, will be justi�ed in Chapter 4.

ATLAS drift tubes have a diameter of 3 cm and a length between 1 and 6m. They are made
of an Al/Mn alloy. In the centre they have a 50�m thick gold-plated W/Re anode wire which
is connected to positive high voltage (Figure 2.8). Through the tubes there will be a gas 
ow
with one volume exchange per day. The gas will have an absolute pressure of 3 bar.

A muon crossing a drift tube (Figure 2.9) ionizes the detector gas. The charge produced
along the track is stochastically distributed [BLU 93]:

� The interactions of the muon with gas particles being independent, the number of ioniza-
tion clusters per unit length is governed by a Poisson distribution. In Argon at 3 bar the
mean number of clusters per cm of track is about 105 corresponding to a mean cluster
distance of 95 �m.

� The number of electrons in a cluster depends on the details of the various contributing
ionization mechanisms and cannot be expressed in a closed form. It can however be simu-
lated with HEED [SMI 97], a programme for computing energy loss of particles in gases,
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Figure 2.8: Electric circuitry of a drift tube. The termination resistor R matches the tube impedance
Ztube to avoid re
ections. For a wire diameter of 50�m and a tube diameter of 3 cm we have
Ztube = 382
 (see Equation (4.4)).
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Figure 2.9: Ionization of the gas along a muon track crossing a drift tube.

which not only involves the cross-sections for muon collisions with gas atoms, but also
takes into account secondary ionization processes and delta-ray production. Figure 2.10
shows the cluster-size distribution for Ar/N2/CH4 (91/4/5) [RIE 97a]. Ignoring clusters
above 500 e the mean number of electrons per cluster is about 3.

In Section 6.2 we shall see that this statistical behaviour has consequences for the drift-time
distributions if a particle track approaches the wire closer than 2mm.
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Figure 2.10: Cluster-size distribution for Ar /N2 /CH4 (91 / 4 / 5) at 3 bar calculated with HEED

The clusters of ionization electrons will now drift towards the anode wire, guided by the
radial electric �eld

E(r) =
V

r ln b
a

; (2.1)

where a is the wire radius, b the inner cathode radius and V the high voltage applied to the anode.
In the high-�eld region near the wire the charge is multiplied in an avalanche process creating
new electron-ion pairs. The anode voltage is chosen such that the avalanche ampli�cation factor
(gas gain) is 2 � 104. Typically this voltage is about 3 kV. The precise value depends on the
detector gas (Section 4.3) and the wire diameter (Section 4.5).

The positive ion cloud moves from the avalanche zone towards the cathode, inducing a current
signal in the anode wire. There is also a signal induced by the drifting electrons. However, since
the drift distance of the electron avalanche is only as big as the ampli�cation zone near the wire
(i.e. about 150 �m) the electron signal is a sharp spike of only about 100 ps length containing
very little charge. Therefore this electron pulse is negligible compared to the ion signal.

The pulse of a single ion is given by

I(t) =

(
e

2 ln b
a

� 1
t+t0

for 0 � t � tmax

0 otherwise:
(2.2)

with the decay time constant

t0 � a2

2�V
ln
b

a
: (2.3)

tmax is the arrival time of the ion at the cathode (some ms):

tmax �
Z b

a

dr0

�E(r0)
=
b2 � a2

2�V
ln
b

a
: (2.4)
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Figure 2.11: Typical muon pulse measured with a fast preampli�er [REW 86] (4 ns peaking time) and a
Flash ADC.

The ion mobility � is approximated to be constant which is justi�ed outside the avalanche region.
A solution taking into account the �eld dependence of � can be found in [DEI 96b].

A typical muon signal with two dominant cluster spikes is shown in Figure 2.11.

The current signal is read out on one side of the tube, ampli�ed and shaped, then presented
to a discriminator. The logical output pulse of the discriminator is given to a TDC which
measures the time di�erence between the muon pulse and a trigger signal. This time di�erence
is the drift time plus a constant o�set due to the signal propagation time in the electronics.

Now the drift time is converted into the radius of closest approach of the track using the
space-time relationship (r-t relationship) obtained by autocalibration (Chapter 8). Thus a single
tube can only determine the circle to which the muon track was tangent. For reconstructing
tracks the tubes are arranged in multilayers as it will be shown in the next section.

2.4.2 Monitored Drift Tube Chambers

An MDT chamber consists of two close-packed multilayers of tubes with a support structure
between them (Figure 2.12).

Depending on the position in the muon spectrometer, a multilayer has three or four layers of
tubes: The four-layer chambers are located in the inner stations where the gamma and neutron
radiation rates are highest and thus the background hits most frequent. By adding another layer
of tubes the diÆcult pattern recognition in these regions is made more reliable.

To cover the whole spectrometer area of 5500m2, 1194 MDT chambers with 370000 tubes
are needed.

Given the large scale of the spectrometer and the big number of chambers, it would be
extremely diÆcult or even impossible to keep the geometry of the chambers and their positions
stable on the scale of the tracking accuracy of 50�m. Therefore a di�erent approach was chosen



26 Chapter 2. The Design of the ATLAS Muon Spectrometer
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In-plane alignment

Multilayer

Cross plate

Figure 2.12: To build an MDT chamber two multilayers of drift tubes are glued to a spacer structure.

for alignment: the chambers will be positioned only with low precision, i.e. on the millimeter
scale. Instead, the chamber movements and deformations will be continuously monitored1 with
an optical alignment system [TDR 97b] to a precision of better than 20�m. Then the measured
deviations from the ideal geometry can be used as corrections for the muon tracking procedure.

1This geometry monitoring is the origin of the name \Monitored Drift Tube Chambers".



Chapter 3

ODYSSEUS { A Silicon Microstrip

Tracker for Test-Beam Experiments

For reliable measurements of drift tube resolution and eÆciency and for unambiguous veri�cation
of reconstructed tracks through chamber prototypes a state-of-the-art reference tracker with well
understood detector technology is indispensable. Given the typical drift tube resolution of 80�m,
the reference system ought to have a precision of the order of 10�m.

Our group's choice was to use silicon microstrip detectors. In this chapter we shall brie
y
present the SiliconMicrostrip Tracker \ODYSSEUS" { a tool which was used in all our test-beam
experiments as external reference detector. More details can be found in [DEI 99, DUB 96].

3.1 Set-up of the Silicon Microstrip Tracker

Our beam telescope consists of six silicon microstrip detectors1 and two trigger scintillators
aligned along the beam axis (Figure 3.1).

z

y y1 2 3y x y x
1 24

Scintillator 2Scintillator 1

Box 1 Box 2 Box 3 Box 4

x: Second Coordinate
y: Precision Coordinate
z: Beam Direction

Figure 3.1: Set-up of the silicon telescope ODYSSEUS.

1donated by the MPI Semiconductor Laboratory in Munich
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Each detector has 996 strips with a pitch of 50 �m and covers an area of 51 � 51 mm2.
Figure 3.2 shows a simpli�ed drawing of the detector cross-section. For the detector physics of
semicondutor microstrip detectors the reader is asked to consult the literature, e.g. [LEO 94,
HYA 83, BEL 83].

not to scale
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+ VBias
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n Si
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0.2 µm

Al1 µm

50 µm  

Charge sensitive Preamplifier

p  Si+

-2V Guard Rings

43 µm

Figure 3.2: Schematic cut through a Silicon microstrip detector. In our system all strips are read out.

Four planes measure the precision coordinate of particle tracks (called \y") while the two
remaining detectors measure the second coordinate (called \x"). In test-beam experiments
with drift tube chambers the precision coordinate is oriented perpendicular to the anode wires,
whereas the second coordinate is parallel to them.

The six detectors are arranged in four frames (Figure 3.3) covered with light-tight lids. These
boxes are mounted on a support plate with a precision of 10 �m. The boxes 1 and 4 contain
one x- and one y-plane each, whereas in the boxes 2 and 3 there is only a y-plane. The physical
orientation of the (x-y) coordinate system (x horizontal, y vertical or vice versa) can be changed
by turning the detector boxes around the z-axis (beam direction). This possibility is convenient
because the reference tracker can be easily adapted to the wire direction of the MDT chambers
which is in some cases vertical, in others horizontal.

In the front-end electronics (VA-chips [IDE 94]) the signal pulses of all individual strips are
ampli�ed and shaped with a time constant of about 2 �s. At the peaking time the signal values
of all channels are simultaneously sampled and held constant (sample & hold circuit) while
waiting for being sequentially read out. The multiplexed signal values of all strips in a box (one
or two detectors) are fed into an FADC (CRAMS2). Each CRAMS can consecutively read 2016
channels, which is suÆcient for a box with two detectors. The full readout chain is drawn in
Figure 3.4.

If the signal value of a CRAMS channel exceeds a certain threshold, the pedestal of that
channel (measured and stored in a CRAMS memory before data taking) is subtracted from the

2Caen Readout of Analog Multiplexed Signals [CAE 94]
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Figure 3.4: The Silicon telescope read-out.

signal. Finally the pedestal-subtracted signal value is given to the VME bus and recorded by
the DAQ.
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3.2 System Performance

The performance of the reference tracker can be characterized by three quantities: the spatial
resolution, the signal/noise ratio and the eÆciency.

The passage of an ionizing particle through a silicon microstrip detector creates signals in a
cluster of 1 to 5 adjacent strips. Our detectors have a mean cluster size of about 3 strips. The
most pessimistic number for the spatial resolution is obtained by just using the centre of the
strip with the highest deposited charge as the track position. This worst-case resolution is given
by

�worst =
pitchp
12

=
50�mp

12
= 14:4�m (3.1)

By determining the particle hit position as the centre of mass of the charge deposited on the
strips near the track, a single detector resolution of 7 �m is obtained.

Without multiple scattering a linear track �t through the 4 y-planes would yield a tracking
precision of r

�2

4
=

7�m

2
= 3:5�m: (3.2)

in the centre of the detector set-up (between the boxes 2 and 3). With multiple scattering
however it is limited to 5 �m for muons with energies of the order 100GeV.

The main contribution to the noise of a semiconductor detector is caused by the leakage
current which is a strong function of the temperature:

Ileak � T 3=2e�
Egap
2kT (3.3)

High leakage currents have to be avoided not only to limit the noise, but also to prevent detector
damage. In order to compensate the heat produced by the readout chips and components on
the repeater cards, we added a Peltier cooling system which stabilizes the detector temperature
at about 20oC. Thus the leakage current is kept below 100 nA per detector. The achieved
signal-to-noise ratio, de�ned as

S=N � maximum of pulse-height spectrum

rms spread of pedestal spectrum
; (3.4)

is 62 � 1 averaged over all strips in all detectors.

The eÆciency of the total reference system has several components:

� The intrinsic eÆciency of semiconductor detectors is very close to 100% [LEO 94].

� The geometrical acceptance is given by the ratio

detector surface

trigger scintillator surface
=

51mm� 51mm

51mm� 53mm
= 96% ;

provided that the scintillators and the silicon detectors are perfectly aligned with respect
to each other and parallel to the beam.
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� An important contribution to ineÆciencies comes from dead or noisy channels, mostly
caused by broken or damaged bonds or preampli�ers. Very noisy channels which produce
hits in almost every event must be discarded from the analysis and therefore have to be
considered as dead.

Figure 3.5 shows a typical eÆciency plot for \ODYSSEUS".

Events x-Clusters ok y-Clusters ok Good Tracks
0

10000

20000

30000

40000

50000

Figure 3.5: EÆciency plot for \ODYSSEUS" (see text).

The �rst bin contains the total number of events, i.e. scintillator triggers.
In the second bin only those events enter which have exactly one good hit cluster in both

planes measuring the second coordinate. This selection cut is necessary because through two
planes a unique track can only be determined if each plane has one measured track position.
Even after elimination of generally noisy channels, 20% of all events have more than one valid
cluster in an x-plane, which explains the strong drop from the �rst to the second bin in the
�gure.

The third bin requires in addition at least one good cluster in at least three of the four
planes measuring the precision coordinate. These three points are necessary to �t a track by
least-squares minimization. Only very few events fail this selection test.

To be considered a \good track" (fourth bin in Figure 3.5), a track has to pass a cut on
�2. This cut is chosen such that the con�dence level of the measured �2 (upper tail probability
of the �2-distribution for 2 degrees of freedom) is greater than 0.05. By applying this cut we
discard mainly events whose real hit positions coincide with bad strips and remain undetected,
while the track �t uses noise hits, resulting in a bad �2. Another contribution to losses at this
cut is made by acceptance ineÆciencies, i.e. tracks passing through the scintillators but not
through the slightly smaller detectors.

Finally the silicon telescope has a typical yield of 60% good tracks relative to the total
number of events.



Chapter 4

Optimization of the Operating

Parameters of Drift Tubes

To meet the ambitious performance speci�cations for the ATLAS drift tubes, detailed studies of
the operating parameters had to be performed. In Section 4.1 we shall give a brief description of
the chosen operating point. The subsequent sections will treat the most important parameters
in more detail.

4.1 Overview

The working point of MDTs chosen by the ATLAS collaboration is the result of a multidimen-
sional optimization which was done during the last four years. These studies include test-beam
measurements as well as detector simulations. Table 4.1 shows the qualitative in
uence of the
operating parameters on the quantities characterizing the performance:

� The Mechanical stability is determined by the anode wire diameter and the wall thick-
ness.

� Low ageing: ATLAS drift tubes have to survive ten years of operation. Since they
are glued together in the chambers, it is impossible to replace single tubes. Replacing
entire chambers is possible, but has to be avoided for �nancial reasons. Therefore the
minimization of ageing e�ects has the highest priority in the optimization process. This
concerns mainly the choice of the gas mixture, where detector-physical desires had to be
subordinated to a long life time (Section 4.3). Ageing depends strongly on the total charge
accumulated in a tube during its life time, which sets an upper limit on the product of
pressure and gas gain (Section 4.2). The total charge is also a function of the tube volume
per unit length which is exposed to the radiation. Therefore the tube radius should not
be too big.

� Good spatial resolution is necessary to achieve the required momentum resolution. The
dependence on pressure and gas gain will be discussed in Section 4.2. Section 4.4 will treat
the optimization of read-out aspects like shaping time and trigger electron. The impact of
the wire diameter will be thoroughly investigated in Section 4.5. A slight improvement of
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resolution with increasing tube diameter is due to the fact that near the anode wire the
resolution is much worse than far from the wire (see Figure 4.13). Since for a bigger tube
diameter the average distance of tracks from the wires will be longer than for a smaller
diameter, the typical resolution will be better.
For a detailed description of all the e�ects contributing to tube resolution see [RIE 99a].

� Small Lorentz E�ect: In the presence of a magnetic �eld parallel to the anode wire the
drifting electrons are de
ected from the radial direction by the Lorentz angle

�L = arctan(�eB) ;

where �e is the electron mobility. Thus the drift time for a given radius increases, which
means that the r-t relationship changes. In ATLAS MDT chambers the magnetic �eld
component parallel to the wires will range between 0 and 1Tesla. To limit the variations
of the r-t relationship within a chamber, the Lorentz angle has to be kept small. This
requires a low electron mobility which can be achieved by choosing a slower gas mixture
(Section 4.3) and by increasing the pressure (Section 4.2). On the other hand, with regard
to a minimized dead time the drift velocity should not be too small.
The tube diameter also has an impact on tube operation in a magnetic �eld. Ionization
electrons originating from distant tracks are subject to a bigger drift time change than
those from tracks passing near a wire. This provides an argument in favour of a smaller
tube diameter because the average distance of tracks from the wire decreases.

� Suppression of noise hits requires a suÆciently high discriminator threshold. Further-
more a longer shaping time is advantageous because the integration removes short noise
spikes. More details about read-out optimization are given in Section 4.4.

� Low hit multiplicity: The ionization along a particle track is not continuous but dis-
tributed in clusters (Section 2.4.1). Each electron cluster produces a spike in the signal
pulse (see Figure 2.11). This can result in several threshold crossings for one muon pulse
which would increase the amount of (unnecessary) data and slow down the read-out. The
number of hits per pulse depends crucially on the pulse shape which is a function of many
parameters:
By increasing the wire diameter we would broaden the individual electron pulse (see Equa-
tion (2.3)), thereby avoiding that the signal dives below the threshold between cluster
spikes.
Another way of preventing the pulse going below threshold is to reduce the separation be-
tween the arrival times of individual clusters by either choosing a higher pressure (higher
ionization density) or by choosing a gas with a bigger drift velocity.
Reducing the threshold would also help keeping the signal above threshold between
clusters.
By geometry the clusters from distant tracks arrive all within a short time interval, which
reduces the spikiness of the pulse. Consequently a bigger tube diameter with more tracks
at big radii would help reducing the number of signal spikes.
Finally we could keep the number of spikes small by smoothing the pulse with a longer
shaping time.
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� High eÆciency: The most obvious way of maximizing the eÆciency is to increase the
primary ionization and thus the pulse height by increasing the pressure.
Another possibility would be to reduce the discriminator threshold, which is however con-
strained by the need of good noise rejection.
As we shall show in Section 4.6, for the chosen threshold and pressure a signi�cant ineÆ-
ciency is only measured in and near the tube walls. Therefore the walls should be as thin
as tolerable from the mechanical point of view. Furthermore the tube diameter should
not be too small in order to limit the number of tubes per chamber volume and thus the
fraction of space �lled with wall material.
There is also a slight dependence of eÆciency on the pulse shape: A longer shaping time
helps to sum up the charge of individual clusters which would not exceed the threshold on
their own.

� Low dead time: The read-out electronics for ATLAS MDTs will have a �xed arti�cial
dead time starting with the leading edge of the pulse and ending after the maximum drift
time (Section 4.4). The maximum drift time decreases with increasing drift velocity which
is speci�c to the gas mixture, and increases with the maximum drift distance, i.e. the tube
radius.

� Linear r-t relationship: The linearity of the r-t relationship is a property of the drift
gas and will be discussed in Section 4.3.

The following sections will focus on those operating parameters for whose optimization more
detailed studies had to be performed.

4.2 Choice of Gas Pressure and Gain

Aiming for an excellent spatial resolution we would like to operate drift tubes at a high gas gain
and a high pressure [RIE 99a, RIE 97a]:

A higher gas gain increases the pulse height allowing to trigger on an earlier primary elec-
tron while keeping the absolute discriminator threshold constant at the level required for noise
rejection. Triggering on a low primary electron is advantageous in view of reducing time slewing
e�ects which deteriorate the resolution (Section 4.4).

Strictly speaking the detector-physical properties depend on the gas density rather than on
the pressure. If we still de�ne our working point in terms of pressure for a temperature of 293K,
this is done with the purpose of a more intuitive number. For ATLAS practice it is envisaged
to keep the density constant, not the pressure. We have shown that this compensates variations
of the temperature [DEI 97].

A higher gas pressure has several advantages: It enhances the primary ionization which
improves the eÆciency, reduces the hit multiplicity and improves the resolution near the wire
by reducing cluster position 
uctuations. Another consequence of higher pressure is the shorter
mean free path which reduces the Lorentz angle and { most important { improves the resolution
by impeding the di�usion of the drifting electron cloud.

However, to keep ageing problems small, the total amount of charge per unit tube length
accumulated during the 10 years of operation has to be limited to at most 0.6 C/cm. For the
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Figure 4.1: Simulated resolution for di�erent gas pressures and the same amount of charge
deposit [RIE 99a].

inner regions of the muon spectrometer with radiation background rates up to 100Hz/cm (see
Section 2.2.2) this charge limit translates into a maximum value of 6� 104 bar for the product
of gain and pressure. Another reason for keeping the total charge low is the build-up of space
charge which deteriorates the resolution (Section 5.2.1.2). Keeping this constraint in mind, we
have to optimize gas gain and pressure for constant deposited charge. Figure 4.1 shows the
simulated resolution for di�erent gas pressures and gains, but with their product kept constant.
One notices a major improvement from 1 to 3 bar but only a slight change for the step from 3
to 5 bar [RIE 99a].

Based on this result the gas gain of ATLAS drift tubes was set to 2� 104 and the pressure
to 3 bar.

4.3 Choice of the Gas Mixture

The choice of a drift gas is subject to several { sometimes contradictory { detector-physical
desires:

� First of all the set of possible gas mixtures is strongly restricted by the safety requirement
of non-
ammability.

� For the drift velocity a compromise has to be made: on one hand the maximum drift time
should be smaller than 1�s to keep the occupancy lower than 25%. On the other hand
fast gases su�er from big Lorentz angles.

� Low di�usion is desired to enhance the resolution.
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� Since streamer pulses have up to 100 times the charge of proportional pulses, their fraction
must not exceed the 1% level.

� Afterpulsing also contributes to a higher occupancy and has to be avoided [DEI 96a].

� To ensure stability of the r-t relationship against slight changes of pressure, temperature
and voltage, the drift velocity should not show a strong dependence on the reduced electric
�eld E=p. A constant drift velocity is equivalent to a linear r-t relationship.

� The decisive selection criterion which has priority over all the mentioned aims is low ageing.
This problem strongly concerns gases with hydrocarbonic quenchers [KAD 91].

With these criteria in mind, several gas mixtures were studied in test beams [DEI 96c]. The
favourite candidate was Ar/N2/CH4 (91/4/5). It is appreciated due to the very linear r-t
relationship (see Figure 4.2a), the high drift velocity (maximum drift time = 480 ns) and the
good spatial resolution of typically 80�m (see Section 4.6). This gas was used for all further
test beam experiments until summer 1998. However, at the time when the decision for this gas
was taken, the ageing studies had not been completed yet. Finally those lifetime investigations
yielded the disappointing result that already after an accumulated charge of about 0.1 C/cm
some tubes showed strong damage, i.e. a dramatic gain drop due to hydrocarbonic polymere
deposits on the wires [SPE 98].
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Figure 4.2: Measured r-t relationships (a) for Ar/N2/CH4 (91/4/5) and (b) for Ar/CO2 (93/7) at
B = 0T and a gain of 2�104.

As replacement for the old baseline gas di�erent mixtures without hydrocarbons were con-
sidered [KOL 97, PAS 00]. Finally Ar/CO2 (93/7) { a gas which doesn't show any ageing even
at 0.7 C/cm { was found to be a viable solution, despite its strongly non-linear r-t relationship
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(Figure 4.2b) and the longer drift times (up to 680 ns) [ALE 98b]. The lower drift velocity leads
to a higher occupancy, but reduces the Lorentz angle.

Due to the very low di�usion the resolution is better than that of Ar/N2/CH4 (see Sec-
tion 4.6). However, as we shall see in Section 5.2.1.2, the strong E-�eld dependence of the drift
velocity makes the r-t relationship very susceptible to space-charge e�ects which �nally deteri-
orates the resolution in a high-rate background. The resulting resolution in a background ends
up at a level comparable to the old linear gas.

Table 4.2 summarizes the central properties of the old and the new MDT gas.

Property Ar/N2/CH4 (91/4/5) Ar/CO2 (93/7)

Maximum drift time at B = 0 480 ns 680 ns
Occupancy at the rate 300 kHz/tube 14% 19%
Lorentz angle averaged over r at B = 0.5 T 19.0 o 9.3 o

Linearity good poor
Operating voltage for the gain 2 �104 3280 V 3080V

Table 4.2: Properties of the old and the new ATLAS MDT gas.

4.4 Optimization of the Read-out Electronics

This section will give a brief overview about the design of the MDT read-out electronics. More
details have been published in [RIE 99b, RIE 99c].

4.4.1 Discriminator Threshold

The discriminator threshold in
uences the resolution as well as the suppression of noise hits.

The former criterion would imply a rather low threshold level. There is an optimum at a level
equivalent to the charge induced by the avalanche of about 4 primary electrons. Triggering on an
earlier electron would make us more susceptible to cluster-size and cluster-distance 
uctuations
resulting in a resolution deterioration. For a later trigger electron the resolution would su�er
more from di�usion and from time slewing due to gain variations.

The latter criterion pushes us towards a higher threshold. As a compromise the ATLAS
collaboration opted for a threshold level of �ve times the rms of the intrinsic electronics noise
which is mainly determined by the termination resistor at the high-voltage end of the tube
(Figure 2.8 and Equation (4.3)). Given that this intrinsic noise is equivalent to about 3.3 primary
electrons, the chosen threshold corresponds ideally to about 16.5 primary electrons. However,
in real life there are additional noise contributions from all stages of the read-out electronics.
Therefore the trigger threshold corresponding to �ve times the actual noise is usually at 20 to
25 primary electrons. In the �nal ATLAS electronics one will try to push the noise down to the
intrinsic limit.
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4.4.2 Pulse Shaping

The shaping of a signal pulse in a drift tube has two major aspects: the peaking time which
determines the steepness of the pulse's leading edge, and the treatment of the long tail of the
ion signal which decays only according to a (t+ t0)

�1 law (see Equation (2.2)).

4.4.2.1 Peaking Time

The peaking time a�ects the resolution through the time slewing e�ect: ionization charge 
uctu-
ations entail variations of the leading edge slope of the pulse resulting in a jitter on the threshold
crossing time and thus in a resolution degradation. This jitter is further enhanced by longer
shaping times (Figure 4.3).

(b)

time jittertime jitter

ThresholdThreshold

(a)

Figure 4.3: Resolution degradation by the time slewing e�ect: (a) for short peaking times, (b) for long
peaking times. The consequence of varying pulse slopes is a jitter on the threshold crossing
time.

Apparently this mechanism provides an argument in favour of a fast shaping. However, short
shaping times also increase the sensitivity to pick-up noise. Furthermore, longer shaping times
can help reducing the hit multiplicity of a pulse by integrating over the spikes of the individual
ionization clusters.

The resolution deterioration by time slewing can partly be compensated by measuring the
charge contained in the leading edge of every pulse. Then one can work out a correction for
the threshold crossing time using the correlation between the charge and the time: large pulses
shift the crossing towards earlier times, while small pulses shift it to later times. Details of this
technique are given in [ALE 98a]. The MDT electronics in ATLAS will provide the necessary
charge information using ADCs with short gates (length up to 2 � peaking time).
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4.4.2.2 Tail Cancellation and Baseline Restoration

Every signal pulse has a long tail due to the slow ion drift to the cathode. Leaving this tail
untreated would cause signal pile-up and thus increase the dead time. In addition { as we shall
further discuss in Section 5.2.1.1 { high background rates produce shifts and 
uctuations of the
signal baseline which aggravate resolution degradation by time slewing. To avoid this, there are
two techniques of baseline restoration (Figure 4.4), which have both their advantages [RIE 99c]:

� Unipolar pulse shaping with an active baseline restoration circuit: This shaping
scheme was favoured at the time when Ar/N2/CH4 was the baseline gas. The reasons were
the following:

{ The trailing edge of the signal is resolved with a precision of about 25 ns. This time
doesn't depend on the track distance from the anode wire because it is given by the
last arriving ionization electrons which are always created at the tube wall and thus
have a �xed drift distance. Therefore at ATLAS the trailing edge will be the same
for all tracks belonging to a given pp-bunch crossing. This time information can be
used by pattern recognition to correlate the event to the correct bunch crossing and
to eliminate out-of-time background events.

{ A second threshold at 100 - 150 electrons can be used to separate pile-up pulses
(double-track separation; see Section 5.2.2.3). This threshold has to be carefully
chosen in order to avoid counting late spikes of the �rst pulse.

{ A hit multiplicity close to 1 can be achieved by an appropriate adjustment of the
circuit's �lter time constants and by introducing a threshold hysteresis1.

� Bipolar pulse shaping: At the time of the old gas Ar/N2/CH4 the bipolar shaping
scheme was considered to be less advantageous:

{ The trailing-edge information is lost.

{ The separation of pile-up pulses with a second threshold has a lower eÆciency than
for unipolar shaping because the second pulse can sit in the undershoot of the �rst
pulse and remain undetected.

{ Since each spike of the signal is bipolar, the hit multiplicity is greater than 1.

The main advantage of this shaping scheme is its simplicity: it doesn't need the complicated
active baseline restoration circuit nor adjustable �lter constants nor threshold hysteresis.
The only way to achieve a hit multiplicity of 1 is the introduction of an arti�cial dead time
which has to be as long as the maximum pulse length, i.e. the maximum drift time.

1Hysteresis: A new hit is only counted if the signal falls below the 12th electron after the preceding hit.
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4.5 Choice of the Anode Wire Diameter

This section will describe the measurement of spatial resolution and the fraction of streamer
signals for drift tubes with di�erent anode wire diameters (see also [DEI 00a]).

The choice of the anode wire diameter is not only driven by performance considerations,
but also by the need for good mechanical strength. Therefore the decision was in favour of the
thickest wire diameter which still complies with the physics requirements.

4.5.1 Experimental Set-up

The measurement set-up is shown in Figure 4.5.

Preamp.

Shaper

&

Y

ZX

TDC

Trigger 

Muon

Silicon Detectors

Drift Tubes

Y X

Scintillator Scintillator

ADC

YYYX

Disc.

Figure 4.5: Experimental set-up in the M2 muon test beam at CERN.

Five drift tubes with di�erent wire diameters were operated in the halo of the SPS beamline
M2 at CERN. The muon energy was about 170GeV. Table 4.3 shows a summary of the funda-
mental properties and operating conditions of these drift tubes. Parameters speci�c to the wire
diameter are given in Table 4.4.

Since the measurements were made before the �nal decision on the drift gas for ATLAS
MDTs, the old baseline gas Ar/N2/CH4 (91/4/5) was used. Also the anode wire material was
di�erent from the one now chosen (gold-plated W/Re 97/3). We assume however that our
conclusions about the dependence of drift-tube performance on the wire diameter will not be
a�ected by these changes.

For the resolution measurements an ampli�er/shaper combination [BNL 73] with 15 ns
peaking time and a unipolar shaping scheme was used. With the same set-up the tube eÆciency
was measured. It doesn't depend on the wire diameter and will be presented in Section 4.6.

The streamer rate was measured with a slightly di�erent set-up which had also served for the
calibration of the relationship between voltage and gas gain [DEI 96a]. Here a preampli�er with
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Tube length 1m
Anode wire material Cu/Be (50, 70, 100, 150 �m)

INOX (30 �m)
Gas Ar/N2/CH4 (91/4/5)
Pressure 3 bar absolute
Gas gain (1; 2; 6) � 104

Maximum drift time 480 ns
Peaking time of the shaper 15 ns
Discriminator threshold 5 � rms noise

Table 4.3: General parameters of the drift tubes in the test set-up

Wire Tube Voltage [V] Threshold [p.e.]
diameter [�m] impedance [
] for G = 2� 104

30 413 2750 10.5
50 382 3280 16.3
70 362 3760 20.6
100 340 4335 27.2
150 316 4960 42.2

Table 4.4: Tube and operating parameters depending on the wire diameter. The voltages for a gain of
2�104 are taken from [DEI 96a]. The discriminator threshold always corresponds to �ve times
the noise level which is a function of the wire diameter (see Equation (4.5)).

4 ns shaping time [REW 86] and a charge sensitive ADC were used. The set of tubes contained
a 160 �m wire instead of the 150�m wire; no 100�m wire was available.

As external reference system the silicon microstrip tracker (Chapter 3) was employed.

4.5.2 Tube Resolution

Figure 4.6 shows the space-time distribution for the tube with the 50�m wire. The space
coordinate r is the minimum distance of the muon track from the anode wire as given by the
silicon tracker. The drift time t is measured by the TDC. The entries below the \V"-shaped
band correspond to electromagnetic secondaries (mainly delta-rays) produced by the muon: if
a delta-ray is emitted towards the anode wire of the tube, its own ionization signal can hide the
muon pulse, and the measured drift time is too short.

The r-t relationship which is used for reconstructing track radii, is de�ned as the centre of
the band in Figure 4.6. The resolution corresponds to the width of this band. It is determined
together with the r-t relationship in the following iterative way: We start with a �rst-guess r-t
relationship �0(t) and plot the residuals �r = �0(tdrift)� rsilicon as a function of the drift time
tdrift, where rsilicon is the track radius given by the silicon tracker. Then we project time slices
of this two-dimensional distribution onto the �r axis and �t them with Gaussians. The means
of these Gaussian �ts are used as corrections to �0(t) which yields a better estimate �1(t). After
about �ve iterations the centre of the residual distribution converges at zero (Figure 4.7). Its
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Figure 4.6: Drift time measured with the TDC versus track distance from the anode wire given by the
silicon tracker.

Gaussian width is de�ned as the resolution. Far from the wire this Gaussian approximation
is quite good whereas for r < 2mm the cross-sections of the r-t-distribution have considerable
non-gaussian tails due to the cluster statistics of the ionization process (Section 6.2). Deviations
from the Gaussian shape are the main contribution to the error of the resolution measurement
because the width of the Gaussian �t depends on the range around the maximum in which the
�t is done. It was found empirically that acceptable �ts are obtained for a range of two standard
deviations around the peak.

Figure 4.9 shows the resolution as a function of the track radius for each wire diameter
studied. In addition to the measurements a simulation with the program GARFIELD [VEE 99]
is displayed. At every millimeter of radial distance from the wire 2000 muon tracks were simu-
lated. The ionization of the muons was generated according to the exponential cluster-distance
distribution and the cluster-size distribution calculated with the program HEED [SMI 97] which
is interfaced to GARFIELD. Then the drift of the ionization electrons was simulated using the
transport properties of the gas calculated with MAGBOLTZ [BIA] which is also interfaced to
GARFIELD. The charge ampli�cation process near the anode wire was modelled with a Polya
distribution. Then the signal induced on the wire by the drift of the positive ions from the wire
to the wall was calculated. Finally the signal was convoluted with the delta-response of the
read-out electronics, and the threshold-crossing time was determined.

For the ion drift the �eld-dependent mobility of Ar+ in Ar was used. This is a simpli�cation
because in reality charge transfer processes take place, and not only Ar+ ions but also other
ions like [CH4]

+ are drifting. Their mobility might be di�erent. Also not taken into account are
the sharp electron pulse before the ion pulse and the fact that the ions are not produced exactly
on the wire surface but in the whole avalanche region. The details of the ampli�cation process
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Figure 4.7: Residuals �(tdrift) � rsilicon versus drift time at the end of the iterative determination of the
r-t relationship �(t).
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Figure 4.8: Projections of time slices of Figure 4.7. Left: 0 < t < 10ns; right: 100 ns < t < 110ns.
Superimposed are Gaussian �ts to a range of two standard deviations around the peak.

are very diÆcult to simulate. Nevertheless the simulation is in fairly good agreement with the
measurements.

To facilitate the resolution comparison of the wires with di�erent diameters, we calculate
the quadratic mean resolution

< � >�
s

1

R

Z R

1mm
[�(r)]2 dr : (4.1)
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Figure 4.9: Spatial resolution as a function of the distance of the muon track from the wire for di�erent
wire diameters. The gas gain was 2 � 104. The triangles represent the measurements, the
diamonds show a simulation using GARFIELD [VEE 99]. The errors are typically between
5�m (far from the wire) and 10�m (near the wire, where the resolution is non-Gaussian).
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Following the convention in [TDR 97b], the �rst millimeter is excluded from the
average because near the wire the resolution is so bad that hits in this range will often not
be taken into account by track �ts through an MDT chamber. Furthermore, the quadratic
average would be dominated by the large �(r) in this small interval and would not be a repre-
sentative number. The results are presented in Figure 4.10. In addition to our measurements
(solid markers) the Gar�eld simulation is shown.
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Figure 4.10: Dependence of the quadratic mean resolution as de�ned in (4.1) on the wire diameter for
di�erent gas gains.

The resolution deterioration with increasing wire diameter is a consequence of the higher
threshold in terms of primary electrons (see Table 4.4): In [RIE 99a] we have shown that the
resolution is approximately proportional to the trigger electron nthr which is given by

nthr =
Vthr
V1e

; (4.2)

where Vthr is the threshold voltage and V1e the height of a single primary electron pulse at the
output of the shaper. To avoid noise hits, Vthr is required to be �ve times the rms noise voltage,
which is dominated by the thermal Equivalent Noise Charge (ENC) of the termination resistor
Rt = Ztube at the high-voltage end of the tube:

ENC =

r
kT

Rt
� ; (4.3)

where k is the Boltzmann constant, T the temperature and � = 15 ns the preampli�er peaking
time [RIE 99a]. The tube impedance Ztube and thus Rt depends on the wire diameter:

Rt = Ztube =

r
L

C
=

1

2�

r
�

"
ln
b

a
; (4.4)
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where L and C are the inductance and capacitance per unit tube length, � the magnetic
permeability and " the permittivity of the gas. From (4.3) and (4.4) follows

ENC � 1q
ln b

a

; (4.5)

i.e. the noise decreases slowly with decreasing wire diameter a.
The height V1e of the pulse created by a single ionization electron is proportional to

I1e =
Ge�V

a2 (ln b
a)

2
(4.6)

with the gas gain G, the anode voltage V and the ion mobility � which is approximated to be
independent of the electric �eld [BLU 93]. Thus the signal height increases with decreasing wire
diameter a.

From (4.2), (4.5) and (4.6) follows

nthr � a2

G
�
�
ln b

a

�3
2

V (G; a)
: (4.7)

The dependence of the operation voltage V (G; a) on both the gain and the wire radius is less than
linear. Therefore one expects the trigger electron and thus the resolution to have approximately
a quadratic dependence on the wire radius a and an inverse proportionality to the gain G, which
is in qualitative agreement with the measurements and the simulation. However, the saturation
of the resolution for decreasing wire diameter is more accentuated in the measurements than in
the simulation.

The important conclusion for the development of ATLAS drift tubes is that from the point
of view of resolution optimization there is no signi�cant advantage in choosing a wire diameter
thinner than 50�m.

4.5.3 Streamer-Pulse Probability

To minimize ageing, ATLAS drift tubes have to be operated in proportional mode. Since
streamer pulses deposit up to 100 times the charge of a proportional pulse, a streamer fraction
of 1% could double the total deposited charge. The ATLAS collaboration de�ned 1% as the
upper limit [ATL 94].

To distinguish streamer pulses from events in the Landau tail of signals in proportional mode,
a feature of our read-out electronics was used (Figure 4.11): Generally the charge of a streamer
pulse is far beyond the range of our ADC, and their entries in the ADC spectrum lie in the
over
ow together with events belonging to the Landau tail. However, the gate of the ADC was
only 600 ns long. Thus signals with long drift times are not integrated over the whole gate length,
and even streamers remain in the range of the ADC. In Figure 4.11 this mechanism produces,
for drift times greater than about 270 ns, a clear gap between proportional and streamer signals,
the latter visible as a narrow band due to ampli�er saturation. Therefore the streamer-pulse
probability was determined by counting the entries above and below the cut line for drift times
> 270 ns. This limit biases us to tracks far from the wire for which the charge density in the
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Figure 4.11: ADC channel (proportional to the charge) versus drift time for the 70 �m wire at 4.2 kV.

ampli�cation region is higher than for tracks near the wire. Measurements with gamma-sources
of di�erent energy (55Fe: 5.9 keV, 241Am/Mo: 17 keV) showed that the streamer probability
increases with this charge density [DEI 96a]. Therefore the streamer fractions measured for
distant tracks can be considered as an upper limit for all tracks.
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Figure 4.12: (a) Fraction of streamer pulses as a function of the gas gain for di�erent wire diameters.
(b) Fraction of streamer pulses as a function of the wire diameter for di�erent gas gains.
The values have been interpolated from the measurements shown in (a). The connecting
lines are drawn to guide the eye.
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Figure 4.12a shows the fraction of streamer pulses as a function of the gas gain for di�erent
wire diameters. Figure 4.12b shows the variation of streamer rate with wire diameter. For the
three thinner wires there is a tendency to an increase of streamer fraction with increasing wire
diameter, which was also reported by other groups about other gases (e.g. [BOY 95]); for the
160 �m wire however this tendency seems not to hold anymore. We have no explanation why the
streamer probability has a maximum at a wire diameter somewhere between 70�m and 160�m.

The important conclusion for our purpose is that streamer tendency does not provide a
strong selection argument for the wire diameter. At gas gains below 4� 104 { the relevant do-
main for ATLAS drift tubes { no streamers were observed at all. Given our statistics, at 2�104

the upper limit for the streamer rate is 10�4 with a con�dence level of 90% for all wire diameters.

Based on the results presented above the ATLAS Muon Collaboration has decided to use
wires with 50�m diameter in the MDT chambers.

4.6 Single Tube Performance at the Chosen Operating Point

In the preceding sections we have explained how an appropriate operation point for ATLAS
MDTs was determined. In the following the tube performance for the chosen parameter settings
(Table 4.1) will be summarized. In addition to the resolution for the old and the new MDT gas,
we shall show the measured eÆciency.

4.6.1 Spatial Resolution

Figure 4.13 shows the resolution as a function of the distance from the wire; part (a) represents
the old gas Ar/N2/CH4 (91/4/5), part (b) the new gas Ar/CO2 (93/7) [ALE 99a].
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Figure 4.13: Resolution as a function of the distance r from the wire: (a) for Ar/N2/CH4 (91/4/5),
(b) for Ar/CO2 (93/7).
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The main reason for the qualitatively di�erent radial dependence of the resolution for the two
gases is the higher di�usion in Ar/N2/CH4 which causes the deterioration for
r > 4mm [RIE 99a]. In the quadratic mean de�ned in Eq. (4.1) the resolution of Ar/CO2

is 69�m compared to 80�m for Ar/N2/CH4. However, note that these numbers refer to
operation without radiation background. The in
uence of a high-rate environment as it is
expected for ATLAS, will be investigated in Chapter 5.

4.6.2 EÆciency

Drift tube eÆciency has two aspects: The �rst one is the simple probability for detecting a
crossing particle at all; we call it the hit eÆciency which is described in Section 4.6.2.1. For
pattern recognition in a high-rate background it is important to have a very high hit eÆciency.

To get a relevant eÆciency for track reconstruction it is appropriate to apply a quality
cut on the detected hits, because a reconstructed hit radius which is far from the true impact
radius doesn't provide any information for the track �t. Therefore we introduce the so-called
3�-eÆciency which is discussed in Section 4.6.2.2.

The eÆciency measurements were made with the same set-up as the study of resolution as
a function of wire diameter, described in Section 4.5 (see in particular Figure 4.5).

4.6.2.1 Hit EÆciency

The hit eÆciency �hit is de�ned as the fraction of events with a hit registered in the total
drift-time window, when the silicon tracker indicates that a track has passed through the tube.
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Figure 4.14: Hit ineÆciency at the tube walls for a gas gain of 2� 104 and a pressure of 3 bar.

The measurement showed for all tubes that the ineÆciency is only signi�cant for tracks
within 200�m of the wall (Figure 4.14). This is due to the fact that near the wall the track
length within the gas volume becomes short and in some cases the primary ionization is too small
for obtaining a pulse greater than the discriminator threshold. The �gure also demonstrates that
even some tracks passing only through the aluminium wall without entering the gas volume are
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detected, leading to an ineÆciency < 1 for r > 14:6mm. This e�ect is caused by delta-rays
knocked out of the aluminium and 
ying into the gas volume where they create an ionization
signal.

In order to separate the geometry-related ineÆciency at the tube walls from the ineÆciency
of the gas volume, we apply a cut at r = 14:4mm and consider only the eÆciency inside this
radius. The resulting hit ineÆciency is only

1� �hit = (4:30 � 4:28) � 10�5 (4.8)

i.e. one missed hit in 23000 events. The almost perfect eÆciency can be understood taking into
consideration the high primary ionization of about 700 electrons in our argon-based gas mixture
at a pressure of 3 bar absolute and the low discriminator threshold of less than 50 electrons for
all wires.

4.6.2.2 3 �-EÆciency

For track reconstruction only hits within typically three times the spatial resolution will be used.
The amount of successfully reconstructed hits can be quanti�ed by the 3�-eÆciency de�ned as

�3� =
number of hits reconstructed with �(t)� rsilicon < 3�(rsilicon)

number of tracks through the tube at a radius rsilicon
: (4.9)

Again the silicon tracker is used as external reference. Since �(rsilicon) is the Gaussian approxi-
mation to the spatial resolution of the tube at the distance rsilicon from the wire, �3� quanti�es
the importance of non-Gaussian tails in the drift-time distribution for a given radius. Figure 4.15
shows �3� as a function of r.
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Figure 4.15: 3�-EÆciency for a gas gain of 2� 104 and a pressure of 3 bar.
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The decrease of �3� from the tube centre towards the wall can be explained by the increasing
probability for the muon being hidden by a delta-ray (see Figure 4.2) creating a hit outside 3 �.
Note that this result applies to the case where only the �rst hit in the tube within the total
drift-time window is considered. For multihit electronics one can try to recover the muon hits
after preceding delta-ray hits.

The little hollow near the wire is a consequence of the non-Gaussian errors due to clustering
e�ects which are important in that domain (see Figure 4.8b and Section 6.2).



Chapter 5

Drift-Tube Operation in a High-Rate

Radiation Background

In the previous chapter we have shown that with pressurized drift tubes adequate spatial resolu-
tion and eÆciency can be achieved in test-beam conditions. However, up to this point our studies
neglected an important factor characterizing the chamber environment in ATLAS: the high-rate
radiation background with rates up to 100 Hz/cm2 or 300Hz per centimeter tube length (see
Figure 2.6b). From this background various detector-physical complications are to be expected,
such as chamber ageing (which is not subject of this work), high occupancies and resolution de-
terioration via space charge e�ects and problems related to the read-out electronics. To improve
the understanding of those e�ects and to test and optimize drift tubes in a realistic environment,
an area around a muon beam line was equipped with a strong gamma source simulating ATLAS
conditions.

5.1 Set-up of the Gamma Irradiation Facility in a

Muon Test Beam

To study the e�ects of a high-rate radiation background on chamber performance, the collabora-
tions ATLAS and CMS created the common Gamma Irradiation Facility (GIF) in the SPS beam
line X5 at CERN (Figure 5.1).

In addition to the 100GeV muon beam, the GIF has a 137Cs source with an activity of
740GBq emitting 662 keV Gammas, which deposit on average an energy of about 36 keV in our
tubes [BOY 97], simulating well the photon background in ATLAS. The actual gamma rate can
be adjusted by choosing an appropriate combination of several lead �lters. In addition there is
a convex lead �lter (\collimator") permanently �xed in front of the source. It has the task to

atten the planes of equal gamma 
ux perpendicular to the beam axis.

Figure 5.2a shows the full gamma spectrum of the source with only the collimator �lter
in place [VIT 98]. The dominant contribution is the primordial 662 keV Cs line at the upper
edge of the spectrum. At lower energies one sees a continuum due to Compton scattering in the
collimator and in the lead walls of the source box. This continuum extends down to the Compton
edge at a gamma energy of 184.3 keV where the photons are back-scattered. At 72.1 keV we see
a characteristic Pb peak.

54
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Figure 5.1: The set-up in the X5-GIF zone. Our studies were based on an End-Cap (station EMS) MDT
chamber prototype with two triple layers of horizontal tubes and on single tubes between the
planes of a silicon tracker. The CSC chamber shown in the picture is not subject of this work.

Putting more �lters in front of the source not only attenuates the emission but also smears
the spectrum to lower energies by Compton scattering (Figure 5.2b).

Two series of experiments have been carried out in the GIF; the �rst one with the old MDT
gas Ar/N2/CH4 (91/4/5), the second one with di�erent Ar/CO2 mixtures and a slightly modi�ed
set-up. In the following two sections the experimental layouts of both measurement series will
be described. The results will be treated afterwards in common.

5.1.1 The Experiments with Ar/N2/CH4 (91/4/5)

The tubes that we used for our investigations with the old MDT gas Ar/N2/CH4 (91/4/5) were
part of an EMS End-Cap chamber prototype built by the universities of Seattle and Boston.
The chamber consists of two triple layers of horizontal drift tubes with a typical length of 2m.
The operating parameters were the standard ones as explained in Chapter 4. The noise level
was such that the discriminator threshold (�ve times rms of the noise) corresponded to the 25th

primary electron.

The external reference system for the resolution and eÆciency measurements was the silicon
tracker ODYSSEUS, described in Chapter 3. By extrapolation of the silicon telescope track to
the chamber we get a prediction accuracy of 15�m. The 5.1 � 5.1 cm2 window de�ned by the
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Figure 5.2: Gamma spectrum at 117.4 cm from the source in free air [VIT 98]: (a) Spectral contributions
with collimators but without �lters. (b) Spectra for di�erent �lter con�gurations. The spectra
were determined in bins of 50 keV width. The connecting lines between the points are only
drawn to guide the eye.

silicon detectors was centred on the beam. It covered in each multilayer of the MDT chamber
seven tubes, three of them fully, the other four only partly (Figure 5.3). For our purposes we
only used the downstream multilayer.

As front-end electronics (Figure 5.4) we used BNL preampli�ers [BNL 73] and di�erent
kinds of shapers which will be discussed in Section 5.2.1.1 together with rate e�ects related to
the read-out electronics.

The signals from tubes no 1, 3, 4, 6 and 7 were split and discriminated with two dif-
ferent thresholds (25 and 100 primary electrons) before being registered by TDCs. The high
threshold was used for time-slewing corrections [ALE 98a] and double-track separation studies
(Section 5.2.2.3).

The signals from tubes no 2 and 5 were also split, but here the second signal half was fed
into a FADC allowing us to look at pulse shapes.
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Figure 5.4: The read-out chain of the seven tubes analyzed in this study.

The following paragraphs are dedicated to the rate environment created by the Cs source.

The total gamma count rate of a tube as a function of the attenuation factor adjusted by
using appropriate combinations of the lead �lters is shown in Figure 5.5 (right scale). This total
rate per tube is the relevant number for electronics e�ects (see Section 5.2.1.1).

We also wanted to study space charge e�ects (Section 5.2.1.2) which depend on the local rate
per unit tube length at the position of the silicon tracker (i.e. in the centre of the beam). By
dividing the total count rate by the tube length we only get the average rate per tube length (left
scale of Figure 5.5). To get knowledge about the local rate we need to measure the variation of
the gamma 
ux along the tube, e.g. by moving a scintillator along the line [A,B] in Figure 5.6a.
The 
ux pro�le �(x) can then be used to calculate the local count rate RC of the tube in the



58 Chapter 5. Drift-Tube Operation in a High-Rate Radiation Background

60
70
80
90

100

200

300

400

500
600
700
800
900

1000

2000

3000

1 10
Nominal Attenuation Factor

G
am

m
a 

C
ou

nt
 R

at
e 

pe
r 

U
ni

t T
ub

e 
Le

ng
th

 
[H

z/
cm

]

Maximum ATLAS rate × safety factor 5 333.5

188.5

81.3

43.8

23.8

11.6

T
ot

al
 G

am
m

a 
C

ou
nt

 R
at

e 
[k

H
z]

Figure 5.5: Average gamma count rate per unit tube length (left scale) and total count rate of a 1.90m
long tube (right scale) as a function of the nominal attenuation factor. For this measurement
tube 4 (see Figure 5.3) in the downstream multilayer was used. The maximum rate, for which
ATLAS drift tubes have to be designed, is 1500 Hz/cm (horizontal line) or 300 kHz per tube
including a safety factor 5 due to uncertainties in the knowledge of the ATLAS background
as explained in Section 2.2.2. This maximum rate is well within the scope of the X5 set-up.

centre of the beam:

RC = hRi[A;B] �
�C

h�i[A;B]
(5.1)

where hRi[A;B] is the measured average count rate per unit tube length and

h�i[A;B] =
1

AB

Z B

A
�(x) dx (5.2)

the average over the 
ux pro�le measured with the scintillator.
Due to space problems in the test zone the pro�le measurement could not be done immedi-

ately at the chamber, but only at a distance of 1.70m, i.e. along the horizontal line [A',B']. The
fact that the rate varies along [A',B'] (Figure 5.6b) shows that the collimator �lter in front of
the source is not perfect.

The relative intensities of the pro�le along [A,B] follow from the measured pro�le along
[A',B'] by projection:

�C
h�i[A;B]

=
�C0

h�i[A0;B0]
(5.3)

Analogous equations apply to the other interesting points along the tube: the ends A and B
and the position of maximum rate, D. Calculating the ratios (5.3) for all attenuation factors we
get Figure 5.7.
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Figure 5.6: Measurement of the rate pro�le. (a) Schematic view of the set-up from the top. The pro�le
was measured along [A'B']. (b) Pro�le measured with a 6�6 cm2 scintillator. The solid lines
represent quadratic �ts to the measured points.

Since the source is not centred on the beam, the rates at the tube ends A and B are di�erent
by almost 30%. The centre of the beam (point C) which is the most important position for us,
is still in the 
at part around the maximum of the pro�le (point D). The rate in C di�ers from
the mean rate by less than 5%.

The strong dependence of the rate ratio in A on the attenuation factor can be explained by
the fact that the absorption �lters disturb the 
attening e�ect of the collimator �lter. Adding
another absorption layer causes a stronger increase of attenuation for big emission angles (e.g.
tube end A) than for small angles.
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Figure 5.7: Rates at the points A, B, C, D (see Figure 5.6a) in relation to the mean rate as a function
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5.1.2 The Experiments with Ar/CO2 Mixtures

By the time when the above measurements with the old MDT gas had been �nished, the ATLAS
community became aware of the ageing problems with that gas and started to evaluate di�erent
Ar/CO2 mixtures which were known to be ageing resistent. Consequently the rate behaviour of
these new gas candidates had to be investigated.

For the new measurements single tubes in the middle of ODYSSEUS were used instead of the
EMS prototype chamber. Since electronics-related e�ects were already covered by the previous
experiment, the set-up was adapted to isolate space charge e�ects which are expected to have a
major impact on Ar/CO2 due to the strong non-linearity. To avoid the electronics e�ects, the
total count rate was kept low by shielding the tubes almost entirely with lead blocks; only 10 cm
around the beam centre were exposed to the radiation.

The single tubes were closer to the source than the EMS chamber, which explains that for
a given attenuation factor the rate in the tube was higher than in the previous experiment
(Figure 5.8).

The read-out chain is drawn in the lower sketch of Figure 5.4. Due to lower noise the
discriminator threshold in this experiment corresponded to 20 primary electrons.
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Figure 5.8: Gamma count rate per unit tube length in the irradiated portion of the tube (10 cm) as a
function of the nominal attenuation factor [ALE 98b]. For this measurement one of the
single tubes in the centre of ODYSSEUS was used.

5.2 The In
uence of a Radiation Background on the Tube

Performance

This section is dedicated to the degradation of drift-tube performance by a high-rate background.
We shall discuss two aspects: resolution and eÆciency.

5.2.1 Resolution Deterioration

The resolution of drift tubes su�ers from two groups of high-rate e�ects:

� Electronics e�ects:
The high-rate behaviour is signi�cantly a�ected by the pulse shaping scheme of the front-
end electronics. In Section 5.2.1.1 we shall see that high count rates can cause shifts
and 
uctuations of the signal baseline. Since for the read-out the distribution of the hit
positions along the tube is irrelevant, these electronics e�ects depend on the total counting
rate of the tube.

� Space-charge e�ects: At high local rates the space charge of the ion cloud drifting to the
cathode changes the electric �eld and thus reduces the gas gain. Furthermore, for non-
linear drift gases the r-t relationship changes because the drift velocity depends on the
electric �eld. These e�ects are discussed in Section 5.2.1.2.

Finally in Section 5.2.1.3 the measured resolution deterioration will be presented. It is a
combination of the two classes of e�ects.
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5.2.1.1 E�ects Related to the Electronics

The impact of the shaping scheme on high rate MDT performance is mainly determined by the
amount of baseline shift. Therefore we shall �rst give an outline of the mechanism which a�ects
the baseline of signal pulses in presence of high counting rates.

a. Baseline Shift

In the introductory section 2.4.1 we mentioned that every raw signal pulse ends in a very long
tail caused by the slow drift of the ions to the tube wall (Equations (2.2)�). However, this is
not the whole story. Due to the AC coupling between the tube anode and the read-out the net
charge 
ow into the preampli�er integrates to zero within a time which is of the same order as
the time constant � = R0 � (C1+C2) � 1ms (using the symbols of Figure 2.8) for the restoration
of the charge on the wire by the high voltage supply. Therefore the ion tail of the pulse goes
into a long and shallow undershoot. If the total count rate of the tube is large compared to 1=� ,
subsequent pulses sit on the undershoot of the preceding pulses (Figure 5.9), and the undershoot
builds up to a permanent negative shift of the baseline.

Figure 5.9: The origin of the baseline shift for a shaping without tail cancellation.

A negative baseline shift is equivalent to a higher e�ective discriminator threshold and there-
fore deteriorates the resolution by time slewing.

b. Baseline Fluctuations

In addition to the permanent baseline shift there are 
uctuations of the baseline because the time
distances between background pulses as well as the deposited charge are statistically distributed.
This e�ect introduces additional time jitter, again deteriorating the resolution (Figure 5.10).

We have now shown the basic mechanism of baseline shift and 
uctuations. In the following
we shall focus on the in
uence of the pulse shaping scheme on these e�ects.
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Figure 5.10: Baseline 
uctuations introduce time jitter and hence deteriorate the resolution.

c. Shaping Schemes applied in the Test-Beam Experiments

In the test-beam experiments three di�erent shaping schemes were tested (see Figure 5.11):

Raw pulse after preamplifier
Soft tail cancellation
Strong tail cancellation
Bipolar shaping

Signal height

Time

Figure 5.11: Schematic drawing of an example muon pulse without any shaping (dotted line) and for each
of the three shaping schemes applied in the experiment. In order to show the principle more
clearly, neither the time nor the signal height are to scale: In reality the undershoots of the
raw pulse and of the pulse with soft tail cancellation set in later. The magnitudes of the late
stages of all undershoots are exaggerated.

� Soft tail cancellation: This shaping scheme was realized with the BNL shapers [BNL 73].
Two pole/zero �lters in series with adjustable time constants shorten the pulse by partly
compensating the tail. Although this shaping scheme is intrinsically unipolar (the delta-
response is positive at all times), the output pulse has a long shallow undershoot in the
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late stages of the ion tail. This undershoot is inherited from the raw pulse and cannot be
avoided with passive shaping circuits. However, the partial cancellation of the early tail
reduces the magnitude of the undershoot.

� Strong tail cancellation: Technically this scheme is very similar to the soft tail cancel-
lation. It was also realized with the BNL shapers. The only di�erence lay in the settings
of the pole/zero time constants. They were chosen such that the early signal tail was
overcompensated resulting in a big undershoot immediately after the pulse. This early
undershoot compensated already about 20% of the charge contained in the positive part
of the pulse. Thus the magnitude of the late 
at part of the undershoot was smaller than
with soft tail cancellation. We chose the early undershoot as deep as possible with the
BNL shapers.

� Bipolar shaping: This shaping scheme where the full charge of the muon signal is
compensated immediately after the pulse, provides the strongest tail cancellation. Since
a perfectly bipolar shaping was not within the range of the potentiometers in the BNL
shapers, a separate bipolar shaping ampli�er was used. Unfortunately the available device
had twice the desired shaping time for the leading edge, leading to a deterioration of
the resolution without and with radiation background. But this did not a�ect the main
objectives of studying bipolar shaping, namely baseline shift and 
uctuations.

For the measurements with Ar/N2/CH4 (91/4/5) all three shaping schemes were used to investi-
gate the electronics e�ects. The Ar/CO2 studies on the other hand were fully dedicated to space
charge e�ects. Electronics e�ects could not contribute to the resolution deterioration because
the total counting rate was kept low (about 4.5 kHz) by irradiating only 3 cm along the tube
with photons (cf. Section 5.1.2). Therefore it was not necessary to compare di�erent shapers;
we chose the BNL shapers with strong tail cancellation.

d. Measurements of Baseline Shift and Fluctuations

Figure 5.12 shows the distributions of baseline positions averaged over the last 500 ns before a
muon pulse. They were measured with an FADC for the soft tail cancellation scheme.

The background rates are 0 for distribution (a) and 188.5 kHz for (b). We de�ne the means of
these distributions as the baseline shifts. The rms of the distributions characterize the baseline

uctuations.

Figure 5.13 shows the rate dependence of baseline shift (plot a) and 
uctuations (plot b).
In Figure 5.13b only the contribution of the background rate to the baseline 
uctuations is
shown. For this purpose the noise contribution, i.e. the rms width of the baseline position
distribution without rate (Figure 5.12a), was subtracted in quadrature from the rms width of
the distribution with rate (Figure 5.12b). On the �rst glance it is surprising that the reduction
of baseline shift from soft to strong tail cancellation is rather small whereas the 
uctuations are
signi�cantly suppressed. This behaviour can be understood from the baseline distribution in
Figure 5.12b: This distribution has a signi�cant portion at positive baseline positions because
many muon pulses are sitting on the early part of the preceding ion tail, i.e. before the start
of the undershoot (cf. Figure 5.11). Thus the mean does not well characterize this asymmetric
distribution. The huge tail in the negative part is better visible in the rms, i.e. in the 
uctuations.
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Figure 5.12: Distribution of the baseline position averaged over the last 500 ns before a muon pulse, mea-
sured with an FADC. (a) Soft tail cancellation without background; (b) Soft tail cancellation
with 188.5 kHz background.
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Figure 5.13: Comparison of (a) the measured baseline shifts and (b) the rms baseline 
uctuations for
the three shaping schemes used in the test-beam experiment. For the shaping with soft tail
cancellation data were taken only at 0 and 188.5 kHz. In (a) the mean baseline position at
zero rate was subtracted as a constant o�set. In (b) the width at zero rate was subtracted in
quadrature.

The undershoot produced by the strong tail cancellation has a deep part immediately after
the positive pulse and then becomes 
at and shallow very early. Thus the baseline for the
following pulse has no strong variations.

Bipolar shaping �nally avoids the long shallow undershoot and pushes the baseline shift un-
der the level of one primary electron even at a rate of 330 kHz. Also the 
uctuations are further
reduced with this shaping scheme.
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5.2.1.2 Space-Charge E�ects

For our tube geometry and working point, the ions created in the avalanche near the wire take
about 4ms to drift to the tube wall. Their presence in the drift region creates a space charge
which modi�es the electric �eld for subsequent events. The consequences are a reduction of the
gas gain and 
uctuations of the drift velocity. We shall explain that both e�ects deteriorate the
resolution.

a. Gain Drop

Due to the decreased electric �eld at the anode wire the electron multiplication close to the
wire is reduced and the gas gain drops. This gain drop was measured by comparing the signal
charges with and without rate (Figure 5.14). In Figure 5.15 the measurements are compared
with an analytical model [ALE 98a] and show good agreement. The ratio G=G0 of the gas gain
at the maximum background rate for the MDT design (1500 Hz/cm) and the gas gain without
space charge is about 0.87 at a gas gain of G0 = 2� 104.

The impact of a gain drop on the resolution can be understood in the following way: the
signals are scaled down whereas the threshold remains �xed. Consequently the threshold gets
e�ectively shifted to a larger number of primary ionization electrons, which deteriorates the
resolution.

b.

a.
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Figure 5.14: Distributions of the integrated pulse charge (a) without background and (b) with a rate of
1.8 kHz per centimeter tube length. The charge was measured with an FADC.
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b. Fluctuations of the Drift Field

The space charge changes the drift �eld and hence the space-time relationship. If this space
charge were constant for a given hit rate, the drift �eld would be globally changed and there
would be no deterioration of resolution. However, the electrons drifting towards the wire are af-
fected only by the charge within approximately 1 cm along the tube, and at a rate of 1500 Hz/cm
there are on average only six ion clouds in such a slice. Since the actual number n of ion clouds
is Poisson distributed, the drift �eld varies and the resolution deteriorates. This e�ect is rather
small for linear gases such as Ar/N2/CH4 (91/4/5), where the drift velocity depends only weakly
on the electric �eld, but becomes an important e�ect for non-linear gas mixtures like Ar/CO2

where r(t) changes by up to 300�m for a rate of 1500 Hz/cm (Figure 5.16).

5.2.1.3 Results from the Resolution Measurements

In this section we shall show the measured deterioration of tube resolution with increasing
background rate and compare the results with simulations in order to identify and understand
the individual rate e�ects. We concentrate on the gases Ar/N2/CH4 (91/4/5) and Ar/CO2

(93/7). Other Ar/CO2 mixtures were also studied. They are discussed in [ALE 99b].

The technique for determining the resolution with the silicon tracker as reference system was
already described in Section 4.5. The resolution simulation using GARFIELD was also similar
to the procedure explained in the same context. The only di�erence were the rate e�ects which
were modelled in the following way:

Since it is diÆcult to implement a full description of the read-out electronics into GARFIELD,
the electronics e�ects were modelled by modifying the discriminator threshold instead of intro-
ducing real baseline shifts and 
uctuations. To simulate the e�ect of a negative baseline shift the
threshold was raised. In addition a threshold smearing was applied to account for the baseline

uctuations. The drift-�eld 
uctuations were introduced by modifying the electric �eld accord-
ing to a calculation given in [ALE 98a]. A gain drop corresponding to the measurements was
also taken into account.

We shall �rst present the results for the BNL shaper with strong tail cancellation. Afterwards
the di�erences to the soft tail cancellation will be demonstrated.

The data taken with the bipolar shaper will not be discussed in the context of resolution.
The device which was available for the test beam had a higher noise level than the other shapers,
twice the nominal peaking time and smaller output pulses. Hence the resolution was very bad
and not instructive for this comparison. This shaper was only useful to study baseline shift and

uctuations.

a. Resolution for Strong Tail Cancellation

Figure 5.17 shows the resolution as a function of the distance from the wire. Part (a) compares
the behaviour of Ar/N2/CH4 (91/4/5) without background and at a rate of 1850 Hz/cm (333 kHz
per tube); part (b) is the corresponding plot for Ar/CO2 (93/7) at the rates 0Hz/cm and
1400Hz/cm (4.5 kHz per tube). For both gases measurements and simulation are in acceptable
agreement.
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because in this domain the resolution function is non-Gaussian which leads to problems in the
determination of the width with a Gaussian �t (cf. Section 4.5.2). Therefore the separation
of the di�erent e�ects in this region is technically diÆcult. From Figure 5.18 we can draw the
following conclusions:

� The contribution of the �eld 
uctuations is rather small for the linear gas (plot a). Since
the drift velocity has only a weak dependence on E=p (Figure 5.16a), variations of the drift
�eld translate only into small variations of the drift time. For the non-linear gas mixture
(plot b) this contribution dominates.

� The baseline shift dominates the resolution deterioration of the linear gas by shifting the
e�ective threshold from the 25th to the 33rd primary electron. We remind that in our test
with Ar/CO2 the baseline shift could not contribute to the resolution because the total
rate per tube was kept low. Therefore this e�ect was also switched o� in the simulation.

� The contribution of the gain drop (G=G0 = 0:87) is smaller than the one of the baseline
shift since the e�ective threshold shifts only to G0=G � 25 p:e: = 28:4 p:e.

� The baseline 
uctuations of 3 p.e. rms have only a small direct impact on the resolution.
However, we have to consider that these 
uctuations are a contribution to the noise.
According to the ATLAS policy we would have to set the threshold to 5 � �noise+
uct
instead of 5� �noise. For a noise of 5 p.e. without background the baseline 
uctuations of
3 p.e. would raise the threshold from 25 p.e. to 29 p.e. which would result in a resolution
deterioration comparable to the contribution of the gain drop.

� The signi�cance di�erence between \all e�ects on" and the quadratic sum of all e�ects in
plot (a) shows that there is a correlation between individual contributions. The quadratic
sum underestimates the resolution deterioration because a baseline shift ampli�es the e�ect
of the gain drop: The baseline shift moves the threshold from 25 p.e. to 34 p.e. Multiplying
this with G0=G yields a threshold of 39 p.e. which is higher than the 37 p.e. which we
obtain by summing up the two individual e�ects.

b. Resolution Comparison between Strong and Soft Tail Cancellation

In the last paragraph we have given a detailed analysis of the resolution with strong tail
cancellation. We shall now compare it with the performance of the soft tail cancellation which
was already shown to su�er more from baseline shifts and 
uctuations. Therefore we expect
a faster deterioration of resolution with higher rates for soft tail cancellation. Figure 5.19
demonstrates that this happens indeed. Part (a) of the �gure shows the radial dependence
of resolution for both shaping schemes and two di�erent rates. To facilitate the quantitative
comparision of resolution as a function of the rate for the soft and strong tail cancellation,
we calculate the quadratic mean resolution as de�ned in (4.1). The result is presented in
Figure 5.19b.

The big resolution improvement from soft to strong tail cancellation underlines the impor-
tance of choosing the right shaping scheme. With properly adjusted bipolar shaping (which was
not available for the tests) we would expect an even smaller deterioration with background rate
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Figure 5.19: (a) Measured resolution for strong and soft tail cancellation at the rates 0Hz and 188.5 kHz.
(b) Quadratic mean resolution of Ar/N2/CH4 (91/4/5) as a function of the count rate for
soft and strong tail cancellation. The tube which had the shaper with strong tail cancellation
showed a higher noise level than the tube with soft tail cancellation. Therefore its resolution
at zero rate is worse.

than for the other shaping schemes since baseline shift and baseline 
uctuations are suppressed
(as shown in Section 5.2.1.1).

5.2.1.4 Time-Slewing Corrections

A part of the resolution deterioration can be compensated by a time-slewing correction. This
technique takes advantage of the correlation between the leading edge charge of a pulse and the
threshold crossing time. Details of the method are described in [ALE 98a] and [ALE 99b]. For
the completeness of this discussion we show the improvement in Figure 5.20 where the resolution
with and without time slewing correction is displayed for the cases without background and at
a count rate of 333.5 kHz. Unfortunately the tube which was used for this study, had a high
noise level and hence a bad resolution of about 100�m without rate.

A more quantitative comparison of the resolution with and without time-slewing correction
is given in Table 5.1 for both MDT gases. Here the resolution is characterized by a new �gure
of merit: the Inverse Quadratic Average IQA de�ned by

��IQA � 1q

1
�2

� with

�
1

�2

�
=

1

b� a

bZ
a

1

�2(r)
dr : (5.4)

The motivation for this de�nition is the stronger accentuation of the radial regions with bet-
ter resolution, which has some relevance for tracking where hits are weighted by 1

�2(r)
. For
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5.2.2 EÆciency Deterioration

This section discusses the dependence of the MDT eÆciency on the background rate and the
shaping scheme. We distinguish two di�erent eÆciencies:

� The hit eÆciency indicates the probability that a muon going through a tube is registered
at all. No quality criterion is applied to the reconstructed hit radius.

� The 3�-eÆciency indicates the probability that a muon passing through a tube is detected
and the reconstructed hit radius is within 3� from the true value, where � is the spa-
tial resolution at the respective track radius. This eÆciency de�nition characterizes the
importance of the tails in a residual distribution.

Both eÆciencies have been measured using the information of ODYSSEUS as an external tracker.

5.2.2.1 Deterioration of the Hit EÆciency
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Figure 5.21: Hit ineÆciency as a function of the gamma rate for unipolar and bipolar shaping.

The hit eÆciency remains very high even with a radiation background. Figure 5.21 shows
the rate dependence of the hit ineÆciency averaged over hit radii between 0 and 14mm for the
unipolar and the bipolar shaping. In our average we exclude the 0.6 mm near the wall because
in this domain the MDT starts becoming ineÆcient anyway (cf. Section 4.6.2.1), and eÆciency

uctuations as well as systematic errors due to wire displacements are bigger than the tiny rate
e�ect we are looking for.

The eÆciency deterioration depends on the shaping: It is most accentuated for the soft tail
cancellation due to its important negative baseline shift which increases the e�ective threshold.
Therefore with a background it is more likely that a muon pulse stays below the threshold
than without background. This e�ect however is very small: the maximum ineÆciency is a few
per-mille.
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For the bipolar shaping there is no baseline shift. The tiny increase of ineÆciency can be
explained with the gain loss due to space charge e�ects which { in a similar way as a baseline
shift { is equivalent to a higher e�ective threshold.

5.2.2.2 Deterioration of the 3�-EÆciency

In Section 4.6.2.2 the 3�-eÆciency �3� was introduced as a criterion quantifying the importance
of non-Gaussian tails in the drift-time distribution for a given radius.

Figure 5.22 shows the rate dependence of the 3�-eÆciency for Ar/N2/CH4 (91/4/5).
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Figure 5.22: (a) 3�-eÆciency as a function of the track radius for di�erent gamma rates. For this plot
the shaping with strong tail cancellation was used. (b) 3�-eÆciency averaged over r as a
function of the gamma rate for the three shaping schemes studied.

Since the probability for a delta ray arriving earlier than the muon increases with the track
radius, the 3�-eÆciency decreases from the wire to the wall. For an analogous reason the
distance between two curves for di�erent rates grows with increasing radius: the longer the drift
time corresponding to the muon track, the bigger is the probability to have a background hit
before the muon hit. Delta rays alone push the averaged 3�-eÆciency below 90%. This is about
5% lower than the value found in the M2 test-beam experiment described in Section 4.6.2.2.
The reason is a 20 cm thick chamber support bar (Aluminium) immediately in front of the tubes
under study, which produced shower particles leading to a reduced 3�-eÆciency. The magnitude
of the e�ect is well in agreement with a dedicated study of additional hits due to matter in the
beam [KOR 99].

Taking the average 3�-eÆciency over all radii r and plotting it versus the rate we obtain
Figure 5.22b. At the maximum rate for MDT design only 80% of the muon hits would be
reconstructed within 3�. Taking into account the 5% additional shower background due to the
Aluminium cross bar yields a slightly more optimistic 3�-eÆciency of 85% at the maximum rate
relevant for the MDTs.
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Interpreting these numbers we have to keep in mind that with increasing rate also 3� becomes
bigger. Therefore an increase in the number of hits outside the increased 3� limit implies that
the e�ect of the background rate on the fraction of events with big deviations is even stronger
than indicated by �3�.

Unlike the hit eÆciency, the 3�-eÆciency does not depend on the shaping scheme. This is
reasonable because background hits and delta rays mask signal hits whichever electronics we use.
As long as only the �rst hit within the total drift-time window is considered, every muon hit
which is preceded by a background hit, is lost. In principle one could imagine a slight di�erence
in �3� between the shaping schemes because the underlying � are slightly di�erent. However,
�3� is dominated by delta- and gamma-ray hits whose typical excursions from the track are
much bigger than the little resolution di�erences from one shaping scheme to the other.

In the next section a technique will be demonstrated which allows us to recover some of the
hidden muon hits.

5.2.2.3 Double-Track Separation with a Second Threshold

The two-threshold technique for double-track separation (or rather \double-pulse separation")
has already been studied in simulation [RIE 97a]. The instrumentation in the X5 test beam now
o�ered us the opportunity to apply the method to real data. This study was performed at the
time when the favourite shaping scheme was unipolar with an active baseline restoration. By
now this concept has been abandoned (see discussion in Section 4.4.2.2). However, we present
these results for reasons of general detector-physical interest.

Gamma
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TDC 2 TDC 2
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Muon(a) Gamma
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Figure 5.23: Double track separation with the two-threshold method. In example (a) the hidden muon
pulse is reconstructed using the second crossing of the high threshold. Example pulse (b)
cannot be separated because the separation time is shorter than the decay time of the gamma
pulse.

The principle of the method is shown in Figure 5.23a, which shows muon pulses arriving
very soon after a background pulse (from a gamma, delta-ray or other muon). The muon pulse
remains undetected by the lower threshold if it arrives before the background pulse has decayed
below that threshold. However, it can still be detected by a higher threshold as shown in
Figure 5.23a. If it is too close to the background pulse, it remains masked (Figure 5.23b). At a
high threshold of 100 electrons, a muon arriving 100 ns or more after the background pulse has
a good chance to be detected. This corresponds to a two-track separation of about 3mm.
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A drawback of the reconstruction with a high threshold is the worse resolution compared to
the low threshold: The resolution is 170 �m at a threshold of 100 electrons instead of 85�m at
25 electrons.

In addition, due to the �nite rise time of the leading edge the crossing time of the high
threshold is systematically shifted with respect to the low-threshold crossing time. But this is
no serious problem since we can correct for this systematic e�ect.

The residual plots in Figure 5.24 illustrate the three mentioned problems: The gap in plot (a)
results from the 100 ns minimum separation time. The projection in plot (b) shows the bad
resolution and the systematic shift of the reconstructed muon hit radius.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-15 -10 -5 0 5 10 15
r(ODYSSEUS) [mm ]

r(
hi

gh
 th

re
sh

ol
d)

 -
 r

(O
D

Y
S

S
E

U
S

) 
[m

m
]

(a)

0

10

20

30

40

50

60

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

  64.42    /    17
Constant   46.67

Mean  0.7838E-01
Sigma  0.1722

r(high threshold) - r(ODYSSEUS) [mm ]

E
nt

rie
s

(b)

Figure 5.24: Residuals for the second crossing of the 100 electron threshold. Here the background con-
sists of delta-rays only. In (a) the di�erence between the reconstructed hit radius and the
track radius predicted by ODYSSEUS is plotted versus the predicted track radius. (b) is the
projection of (a) onto the ordinate.

The read-out concept in the run period with Ar/N2/CH4 (91/4/5) (see Section 5.1.1) allows
us to do double track separation with two di�erent sets of information:

� the TDC data: The two thresholds were �xed at 25 e� and 100 e�.

� the FADC data: They o�er the advantage of 
exible thresholds (set by software in the
analysis).

In both cases the soft tail cancellation was used. ODYSSEUS served as an external tracker. Its
information is �rst needed for determining the r-t relationship, then for the decision whether a
hit is a background hit (i.e. whether it arrives more than 3 �low threshold earlier than predicted)
and �nally for judging whether the reconstruction of a shaded muon was successful, i.e. whether

r� reconstructed � r� silicon telescope < 3�high threshold(r) (5.5)
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To quantify the success of the separation technique we introduce the separation eÆciency

�sep =
separated muons according to (5.5)

all muons shaded by background hits
: (5.6)

We studied double track separation for two kinds of background:

� only delta-rays (no external background).

� gamma background and delta-rays.

a. Separation of Muons and Delta-Rays

We �rst applied the two-threshold method to data taken without any external background in
order to study the possibility of reconstructing muon hits which are shaded by delta-rays.
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Figure 5.25: Double track separation eÆciency for a pure delta-ray background as a function of the
leading-edge separation time. The high threshold in this FADC analysis was set to
120 electrons.

In Figure 5.25 the separation eÆciency for a high threshold of 120 electrons is plotted as a
function of the leading-edge separation time obtained using the silicon telescope
information:

�tleading edge = tpredicted by ODYSSEUS � tbackground(low threshold crossing) (5.7)

As already mentioned above, for �t smaller than about 100 ns the separation eÆciency is bad
because in most cases the background pulse has not yet decayed under the high threshold.

The decrease of � at very long separation times can be understood with the following
re
ection: Delta-rays deposit energy all along their path. To very big �t only delta-rays with a
long range contribute, i.e. only those which have deposited a big amount of energy before being
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Figure 5.26: EÆciency for the separation of muons from delta-rays as a function of the high threshold,
averaged over all separation times. The low threshold was always at 25 electrons. The solid
markers represent the results of the FADC measurements, whereas the open markers have
been obtained analyzing the TDC.

stopped. They produce large and long pulses which often don't decay below the high threshold
before the arrival of the muon pulse.

Taking the mean over all �t for di�erent high thresholds, one obtains the graph in
Figure 5.26. If the high threshold is increased, more background pulses decay below the
high threshold before the muon pulse arrives, which improves the separation eÆciency. Above
180 electrons though, the eÆciency levels o� as more and more muon signals simply do not reach
the second threshold.

b. Separation of Muons and a Combined Background of Gammas and Delta-Rays

The data for studying the separation of muon and gamma hits were taken with a background
rate of 1 kHz/cm. Even at this high gamma background rate about 50% of the total background
is due to delta-rays. Since this intrinsic background is unavoidable in real data, we cannot get
a pure gamma background as in simulation [RIE 97a].

In Figure 5.27 the measured and simulated separation eÆciency for a high threshold of
120 electrons is plotted as a function of the leading-edge separation time.

Despite the resemblance with the real data, re
ecting the qualitatively correct description of
the system by the simulation model, a quantitative comparison is diÆcult, because the conditions
were not quite the same:

In the simulation delta-rays are not taken into account. Including them into the model
would deteriorate the simulated eÆciency, because delta-rays are more diÆcult to separate than
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Figure 5.27: Double track separation eÆciency as a function of the leading-edge separation time for a high
threshold of 120 electrons. (a) Measurement with external gamma background and intrinsic
delta-ray background, (b) simulation with only gamma background [RIE 97a].

uncorrelated gammas (see a few lines below). The plateau for �t > 100 ns would then be reduced
from about 70% to about 60% which is lower than the measured level of about 65%.

The presence of delta-rays in real data explains the deterioration of the separation eÆciency
for leading-edge separation times greater than 350 ns which is not seen in the simulation ne-
glecting delta-rays.

Figure 5.28 shows the mean separation eÆciency as a function of the high threshold. Again
the separation eÆciency improves with increasing threshold, but only up to about 150 electrons.
Above that value hit ineÆciencies for the muon pulses at the high threshold become important,
leading to a decrease in separation eÆciency.

To understand why this e�ect starts earlier for photons than deltas (cf. Figure 5.26), we have
to compare the typical energy deposit of a delta-ray with that of a 662 keV gamma. The 662 keV
gammas interact with the chamber gas mainly by Compton scattering. Simulations showed that
these Compton electrons deposit on average 36 keV in the tube. The delta-electrons have an
average energy of only 60 keV1 and are therefore strongly ionizing. Their energy is entirely
deposited in the tube. Therefore they produce bigger signals than the 662 keV gammas, and
muon pulses sitting on the tails of these big delta-ray pulses are more likely to exceed the high
threshold than those muon pulses which sit on the smaller tails of gamma pulses.

1This value is obtained by integrating the delta-ray energy spectrum dN=dE [PDG 98] between the following
limits: We regard a knock-on electron as a delta-ray if its hit is more than three times the tube resolution o� the
track, which de�nes the minimum range of the electron and thus its minimum energy. The maximum delta-ray
energy is given by kinematics.
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Figure 5.28: Separation eÆciency (muons and 662 keV gammas) as a function of the high threshold. The
low threshold was always at 25 electrons. The solid markers represent the results of the
FADC measurements, whereas the open markers have been obtained analyzing the TDC's.

Generally the separation eÆciency for delta-ray pulses is lower than for gamma pulses, which
can be explained with the strong correlation between a delta-ray and the muon track: Delta-
electrons have their origin on the muon track and deposit a big amount of charge already close
to the muon track which makes the separation diÆcult.

c. Evaluation of Double Track Separation

The results presented above show that in no case more than 65% of shaded muons can be
recovered. This is a rather low yield. Furthermore, to take advantage of all the recorded hit
information, pattern recognition has to try all hits at the high threshold and select the \best
one". However, there is also some chance to pick the wrong one which would result in a worse
reconstruction eÆciency. Another disadvantage is the bad resolution at the high threshold
(170 �m). In summary, double-track separation turned out not to be very helpful for pattern
recognition, which was one reason for the collaboration to renounce the complicated electronics
scheme with a second threshold.
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5.3 Conclusion about the Rate Capability of Drift Tubes

We have demonstrated that MDT's can cope with the expected ATLAS background rates and
still ful�l the requirements. However, their behaviour depends on the pulse shaping. With-
out any baseline restoration in the front-end electronics the baseline is shifted by the equiva-
lent of about �9 electrons at the maximum ATLAS rate and shows 
uctuations of the same
order of magnitude. The consequence is a time jitter on the leading edges of the signal pulses,
which dominates resolution deterioration for linear gases. By introducing big signal undershoots
the baseline can be stabilized and the resolution improved.

Resolution is also a�ected by space charge causing gain drop (! time slewing) and �eld
variations (! 
uctuations of the r-t relationship). Simulation showed that the latter e�ect is
dominant for non-linear gas mixtures like Ar/CO2. Hence, beside the electronics design, the gas
choice has a big impact on the high-rate performance.

The information from a leading-edge charge measurement can be used to correct for time
slewing resulting in a resolution around 80�m even at the highest rates considered.

As expected the hit eÆciency does not su�er signi�cantly from high background rates. The
3�-eÆciency however decreases by about 10% at the maximum rate. This performance degra-
dation is due to gammas shading the muon pulses.

The comparison of measurements and simulations shows a good agreement.



Chapter 6

Track Reconstruction with the

Maximum Likelihood Method

In the preceding chapters we have given a detailed treatment of the detector-physical aspects of
drift tube performance and optimization. It was shown that drift tubes with the chosen working
parameters are suited for operation under ATLAS conditions. Now we can pass on to the next
stage of preparatory analyses for the ATLAS experiment: the development of techniques for
track reconstruction and calibration.

The �rst issue in this context is a track reconstruction technique which yielded promising
results in a test-beam study with a prototype chamber (see also [DEI 98]).

6.1 The Least-Squares Track Reconstruction Technique

To reconstruct a muon track through a multilayer of drift tubes, a straight line has to be �tted
to the impact circles de�ned by the threshold-crossing times ti of the ionization signals (\drift
times"). Traditionally this is done by minimization of

�2 =

NhitsX
i=1

[r(ti)� r
(�t)
i ]2

�2i
; (6.1)

where �i is the resolution of the i
th tube at the radius r

(�t)
i . The hit radii r(ti) are calculated from

the r-t relationship and r
(�t)
i is the shortest distance between the reconstructed track y = m�z+c

and the ith wire at (zi; yi) (Figure 6.1):

r
(�t)
i =

jm � zi + c� yijp
1 +m2

: (6.2)

This approach however is only valid if the drift-time distributions for given radii are Gaussian.
The next section will show that this assumption is not always justi�ed.
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r(fit)
2

µ

r(t )1

Figure 6.1: Conventional �t of a straight line to the impact circles in a multilayer of drift tubes. The
measured drift times are �rst converted into radii, then the �2 function (6.1) is minimized
with respect to the track parameters m and c.

6.2 Consequences of the Ionization Cluster Statistics

In Section 2.4.1 the ionization charge produced by a muon crossing a tube was explained to be
distributed stochastically along the track. This statistical behaviour has consequences for the
drift-time distribution at a given distance of a particle track from the anode wire.

µ

µ

Trigger Electron

Track 1

measured drift time 1

measured drift time 2

Track 2

Figure 6.2: Ionization along a track through the anode wire (track 1) and far from the wire (track 2).

As a simple example for the clustering e�ect let us consider a muon track passing exactly
through the anode wire (r = 0, track 1 in Figure 6.2). Although the track distance to the wire
is zero in this case, we will in general measure a non-zero drift time, because we have to wait
for a certain number of primary electrons (e.g. 25) before the signal crosses the discriminator
threshold. In a rare extreme case we can get a cluster at the wire surface with more than 25
electrons, leading to a zero drift time. On the other hand the cluster containing the 25th electron
can also be far away from the wire, which is much more frequent for our particular case where
the 25th electron is most likely to be produced at a distance of about 600 �m from the wire
(Figure 6.3a).
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b. Simulated Drift Time Spectrum of the 25th Electron for r = 0a. Simulated Creation Position of the 25th Electron for r = 0
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Figure 6.3: Simulation of the clustering e�ects. For the simulated time spectrum in (b) only the clustering
e�ect is taken into account (no di�usion, noise etc.).

The strong maximum of the cluster size distribution at one electron per cluster yields a long
tail in the distribution of the creation position of the 25th electron. Passing from this position
spectrum (Figure 6.3a) to the corresponding drift-time spectrum (Figure 6.3b) the asymmetry
is even enhanced by the high drift velocity near the wire which shifts the peak towards earlier
times but does not a�ect the tail at late times.

The asymmetry is most important for track radii smaller than the typical distance of the 25th

electron. For tracks further away than about 2 mm the clustering e�ect becomes less important,
because all the electron clusters arrive practically at the same time (Figure 6.2, track 2). Here
di�usion dominates the time distribution which becomes Gaussian.

What is the impact of this well-known physical e�ect on the reconstruction of tracks?

� The �rst problem arises from the asymmetry of the drift-time distributions for �xed radii
near the wire. Conventional methods used to \squeeze" a Gaussian function over the
central parts of these distributions. This leads to diÆculties in the determination of a
Gaussian resolution, which strongly depends on the range around the maximum where the
Gaussian is �tted (Section 4.5.2). If this badly de�ned resolution is then used for a 3� cut,
discarding all events in the tails, the reconstruction eÆciency will be bad.

� If the track passes closer to the wire than the typical distance of the trigger electron, the
mean arrival time of this electron is practically the same as for a track through the wire.
In the function r(t) this shows up as an almost in�nite \e�ective drift velocity" ve� =

dr
dt .

In this domain ve� has nothing to do with the drift velocity of the 25th electron, because
r is the shortest distance between the track and the wire but no longer the drift distance
of the 25th electron. The consequence of the almost in�nite ve� is a very bad sensitivity
to the track position.
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� Near r = 0 it is not very helpful to de�ne a functional dependence t(r). If we take for
example the maximum of the measured TDC time distribution at r = 0 as t0 (and call
this \zero drift time"), times t < t0 have to be arti�cially set to t0 in order to avoid non-
physical \negative drift times". By doing so we lose most of the information contained in
the measured time.

To avoid these problems, instead of de�ning a function r(t) with Gaussian errors we use the
full information contained in the time distributions for given r. For this purpose we measured
the shape of the r-t distribution in a test beam using ODYSSEUS, the Silicon microstrip beam
telescope, as external reference system. Then we parametrized the conditional probability dis-
tribution P (tjr)1 for small radial slices. P (tjr) was used for the construction of a likelihood
function. The maximum likelihood method then replaced the usual least �2 method for track
�tting. Thus a measured drift time is no longer directly converted into a hit radius. The like-
lihood �t gets the time as an input and yields the track radius, taking correctly into account
the tails in the probability distributions.

6.3 Experimental Set-up

Our studies are based on data taken in the H8 test beam:

� Spring 1997 test beam with Ar/N2/CH4 (91/4/5): The prototype MDT chamber { a 30 cm
long bundle of 16 drift tubes arranged in 4 layers { was placed in the centre of ODYSSEUS
(Figure 6.4) where the track prediction accuracy is 5 �m (see Section 3.2). As read-out
electronics we used BNL preampli�ers and shapers with a peaking time of 15 ns, Lecroy
discriminators with an e�ective threshold of 25 primary electrons and TMC TDCs [KEK]
with a bin width of 781 ps.

1y x 1
y2 y3 y x24

Scintillator 2Scintillator 1

MDT Chamber

Si Microstrip Detectors

y

z

x

Figure 6.4: Experimental set-up in spring 1997 with Ar/N2/CH4 (91/4/5).

� Autumn 1999 with Ar/CO2 (93/7): These data have been taken with a BOS prototype.
ODYSSEUS was downstream with respect to the chamber (Figure 6.5). The track extra-
polation precision at the closest tube was 11�m. The front-end electronics consisted of
BNL preampli�ers, shapers and discriminators; again the standard peaking time of 15 ns

1P (tjr) is the probability density for measuring a time t at a given track radius r.
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and a threshold of 25 primary electrons were applied. KLOE TDCs with 1.042 ns bins
served for the hit-time measurement.

BOS

1st 2nd
Multilayer

ODYSSEUS

Counters
Trigger Scintillator

µ

Figure 6.5: Experimental set-up in autumn 1999 with Ar/CO2 (93/7).

6.4 Parametrization of the r-t Relationship

The starting point of our work is an r-t relationship as shown in Figure 6.6. The main band
represents the conventional r-t relationship. The entries below the main band are Æ-rays.

For obtaining the conditional probability distributions P (tjr) we subdivide the two-dimen-
sional r-t distribution into radial slices, each with a width of 200 �m or smaller. Projection of
these slices onto the time axis yields one-dimensional time distributions. However, if we simply
projected an entire radial slice, we would not receive a time distribution for a �xed radius but
for an interval of radii. This would be the superposition of many individual time distributions
which are shifted with respect to each other. The width of such a superposition would be bigger
than the width for a �xed radius. We solve this problem by applying the following \centre-of-
bin correction": every measured drift time is shifted to the value which it would have if it were
measured at the radius in the centre of the bin:

tmeasured 7! tmeasured � t(rsilicon) + t(rcentre of radial bin) (6.3)

Theoretically the projected distributions are distorted by another e�ect: Due to the �nite pre-
cision of ODYSSEUS' track prediction some events are attributed to the wrong radial slice.
However, the width of the slices is at least 10 � of ODYSSEUS' resolution, so the contamination
from neighbouring bins is negligible.

Figure 6.7a shows an example distribution near the wire. It is very asymmetric. For com-
parison we also show a distribution for r = 5.375mm which is rather Gaussian (Figure 6.7b).
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Figure 6.6: r-t distributions for (a) Ar/N2/CH4 (91/4/5), (b) Ar/CO2 (93/7).
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Figure 6.7: Conditional time distributions for Ar/N2/CH4 (91/4/5): (a) near the wire, (b) far from the
wire. The histograms are the data, the curves are �ts of the function (6.5). The left-hand
tails are Æ-rays.

By normalization of the corrected projections we obtain P (tjr):
Z +1

�1
dt P (tjr) = 1 (for all r � [0, 15 mm]) (6.4)

Since the distribution P (tjr) is by construction well de�ned for all times t (including t < 0), we
no longer introduce a time origin t0 = t(r = 0). Hence the zero of the time scale is arbitrary.
We only have to make sure that the time scales are equal for all tubes in a chamber. This can be
obtained by �tting Fermi functions to the leading edge of every TDC spectrum [BIS 97, SAM 97].
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For track �tting we need a phenomenological parametrization of P (tjr) which provides a
smooth transition from the asymmetric domain at small r to the Gaussian domain far from the
wire. For simplicity and robustness of the �t the number of free parameters should not be too
big. Furthermore one would like parameters with an intuitive meaning.

After several attempts we �nally found that the following function serves very well:

P (tjr) = p1(r) � 1

p3(r)
e
p2(r)�t
p3(r)

�e
p2(r)�t
p3(r)

| {z }
asymmetric part (\Extreme Value Function")

+ [1� p1(r)� p4(r) � p2(r)] � 1p
2� p3(r)

e
� [t�p2(r)]2

2[p3(r)]
2

| {z }
Gaussian part

+ p4(r) ��(p2(r)� t) ��(t)| {z }
Æ-ray part

(6.5)

The parameters have the following signi�cance:

p1(r): Amount of asymmetric contribution.
p2(r): Peak position (corresponding to the conventional t(r) function).

It is not the mean of the distribution!
p3(r): Quantity characterizing the width of the distribution (time resolution).

It is close to, but not equal to the rms!
p4(r): Æ-ray probability density. It is a 
at box in time from 0 to the peak p2(r).

Figure 6.7 shows that our parametrization �ts the data very well. From these �ts we get
the parameters p1, p2, p3 and p4 for every track radius r. Their radial variations are given
in Figure 6.8 for Ar/N2/CH4 (91/4/5) and in Figure 6.9 for Ar/CO2 (93/7). The solid lines
represent parametrizations of the radial dependences:

p1(r) = f0 e
�f1 r (6.6)

p2(r) =

7X
i=0

ai Pi(u) (6.7)

p3(r) = s0 e
�s1 r + s2 + s3 r + s4 r

2 + e
r�s5
s6 (6.8)

p4(r) =

5X
i=0

di Pi(u) (6.9)

The �tted constants fi, ai, si and di are compiled in Table 6.1.
The parameters p2 and p4 involve Legendre polynomials Pi(u) with u � 2� r

rtube
�1. Compared

to ordinary polynomials they have the advantage that due to their orthogonality the stability of
the �t result is improved.

As expected, the asymmetry is big near the wire and decreases towards the wall. The
qualitative behaviour is the same for both gases studied.

In the parametrization of the width p3(r), the �rst exponential deals with the poor resolution
near the wire, the second with the deterioration in the last 100 �m near the wall where the
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Figure 6.8: Parameters of P (tjr) as a function of r for Ar/N2/CH4 (91/4/5). The points are the results
of �tting function (6.5) for each radial slice. The curves are the �tted functions (6.6 - 6.9).
For this plot the radial bin width was 200�m.

short track length inside the gas volume leads to big charge 
uctuations which deteriorate the

resolution. Multiplying p3(r) with the drift velocity v(r) =
�
dp2
dr

��1
yields approximately the

spatial resolution as we know it from Figure 4.13. This relation is not exact because p3(r) is not
a Gaussian standard deviation, not even the rms.

The Æ-ray probability density has no strong variation with r. We see a slight increase within
the last millimeter from the wall which is due to the increasing portion of the track inside
the Aluminium wall where Æ-ray production is much more important than in the gas volume.
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Figure 6.9: Parameters of P (tjr) as a function of r for Ar/CO2 (93/7). For this plot the radial bin width
was 100 �m.

Approaching r = 0, the time interval [0, p2(r)] where Æ-ray entries are possible, becomes more
and more narrow. Therefore it is diÆcult to determine the Æ-ray density in this domain, which
explains the huge error bars.
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Param. Gas Values

I 0.9989 0.5321
fi II 0.8480 0.5879

I 237.1 255.4 -2.512 -7.496 9.269 -4.538 1.517 0.2329
ai II 241.7 322.6 -103.3 18.42 -6.560 0.3810 1.007 -1.451

I 2.805 2.516 4.286 -0.2538 0.01235 14.65 0.07108
si II 3.041 0.8311 2.485 -0.1250 0.02603 14.72 0.2000

I 0.2052e-3 -0.8766e-5 0.3500e-4 0.1027e-3 -0.4369e-4 0.1092e-3
di II 0.2686e-3 -0.6065e-4 -0.4431e-4 0.1541e-3 -0.3894e-4 0.9484e-4

Table 6.1: Fit constants for the radial parametrizations (6.6 - 6.9). Gas I is Ar/N2/CH4 (91/4/5), gas II
is Ar/CO2 (93/7). The fi are dimensionless. The units of the other components are such that
p2 and p3 are in ns, p4 in ns�1.

A very Close Look: Tracks through the Avalanche Region

Let us now focus on the peak positions p2(r) for very small r. In the �rst 200�m the \r-t
relationship" exhibits a peculiarity (Figure 6.10a): approaching r = 0 the most probable drift
time rises again. This has nothing to do with an apparent negative drift velocity, but can be
understood by considering the avalanche ampli�cation process. Drift electrons created inside the
multiplication zone have a shorter path in this zone, and less generations of secondary ionization
are produced. Electrons created inside the wire are not multiplied at all. The consequence is
that the earliest arriving electrons experience a lower charge ampli�cation. Thus the charge
required for exceeding the threshold is achieved for a later primary electron than the nominal
one, and the measured time is delayed.

To verify our interpretation of the observed e�ect, a simulation based on a simple model for
the gain reduction was performed:

� For a given radius 50000 tracks were generated.

� Along every track the ionization was modelled using the cluster distance and cluster size
distributions as described in Section 2.4.1.

� Every primary electron was ampli�ed according to two di�erent models:

{ The �rst model assumed a constant gain of 2� 104.

{ In the second model the gain depended on the creation radius of the primary electron:
With Diethorn's approximation that the Townsend coeÆcient is proportional to the
electric �eld [DIE 56], the gas gain for an electron created at a radius r is given by

lnG(r) =

8<
:
U ln 2
�� � ln

rlimit
a

ln b
a

= const: for r > rlimit, i.e. outside the avalanche zone

U ln 2
�� � ln

r
a

ln b
a

for r < rlimit, i.e. inside the avalanche zone

(6.10)
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Figure 6.10: Most probable drift time p2(r) for very small r: (a) measurement with Ar/N2/CH4 (91/4/5);
the e�ect was also observed for Ar/CO2 (93/7); (b) simulation based on a simple model.
Since the knowledge about the electron drift velocity near the wire is very unprecise, the
simulation can only be in qualitative agreement.

where the Diethorn parameter �� is the potential di�erence needed to produce one
electron-ion pair. The outer boundary of the avalanche zone rlimit is determined
by the second Diethorn parameter Emin, i.e. the minimal electric �eld needed for
multiplication:

rlimit =
V

Emin ln
b
a

: (6.11)

For Ar/N2/CH4 (91/4/5) the parameters have the values [DEI 96a]:
�� = 55V; Emin = 45 kV/cm; rlimit = 115 �m.

� For every primary electron the arrival time at the wire was calculated using an r-t rela-
tionship which was modelled to match the measured time distributions for radii greater
than 0.5mm. This model was used since it is impossible to determine the drift time for
single electrons from the data. They only give us the threshold-crossing time which is the
result of many di�erent smearing e�ects (clustering, di�usion, noise etc.). Simulations of
the single electron drift time on the other hand are far too unprecise near the wire.

� The primary electrons were sorted by the arrival times of their avalanches.

� The charges of the consecutive avalanches were summed up until the threshold charge
(25 e � 2 � 104) was exceeded. The arrival time of the triggering avalanche was recorded
as the measured \drift time".

� The resulting drift-time distributions for both gain models were �tted with the parametriza-
tion (6.5) and the parameter p2 plotted as a function of r (Figure 6.10b).
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Since our model is oversimpli�ed (e.g. no shaping was included) and su�ers from lacking
knowledge about the actual electron drift velocity, we do not expect a good quantitative agree-
ment with the data. However, the position of the drift time minimum at about 120�m is
rendered quite well, which demonstrates a good qualitative understanding of the physical e�ect.

After this digression to the e�ects very close to the wire we come back to our actual topic:
reconstructing tracks through a multilayer of tubes.

6.5 The Maximum Likelihood Tracking Method

6.5.1 Principle

So far we have explained how to derive the conditional probability distribution P (tjr) from a
measured r-t relationship. In this chapter we will show how this knowledge about the tube
response is used for the reconstruction of muon tracks. We will concentrate on the case of a
chamber with four layers of tubes as it was available in the spring 1997 test beam.

For this study we only accept so-called \golden events", i.e. events with exactly one hit in
each of the four layers of tubes. Thus every accepted event provides a quadruple ft1; t2; t3; t4g
of drift times.

The principle of track �tting with the maximum likelihood method is the following:

Maximize the likelihood of the observation ft1; t2; t3; t4g by varying o�set c and

slope m of the track y = mz + c.

The likelihood function L that has to be maximized is given by the product of the conditional
time distributions for the tubes through which the track passes:

L =

4Y
i=1

P (tijri(m; c)) ; (6.12)

where ri(m; c) is the distance between the wire i and the track y = mz+c. To avoid correlations
between m and c, the origin z = 0 has been chosen in the center of the chamber.

6.5.2 Technical Procedure

To assure convergence of the likelihood �t we have to provide start values for the �t parameters,
i.e. the track o�set c and the slope m. For this purpose we applied a simple pattern recognition:

The principle is to guess on the hit radii in two out of the four hits by applying a linear
function r(t) = v0t (with v0 � 30�m/ns for Ar/N2/CH4 (91/4/5)) to the measured drift times.
These two hit radii leave a four-fold ambiguity about the track candidates (Figure 6.11). There-
fore each of the four sets of initial values (m0; c0) is used as a starting point for the maximization
of L (or minimization of � lnL as is done in practice).

We have not yet said how many and which pairs of hits we have to test in order to �nd the
most suitable set of initial tracks. The problem is that any of the four hits can belong to a Æ-ray
and have a far too small drift time. The 
at Æ-ray term in the parametrization (6.5) has the
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Figure 6.11: The four initial tracks constructed from the hit circles in the �rst and fourth layer.

e�ect that hits resulting from Æ-rays are automatically given the correct statistical weights. No
cuts are needed. However, this works only if the initial track is close enough to the true track,
such that for the Æ-ray hit the probability P (tjr(minitial; cinitial)) is in the low 
at Æ-ray part of
the distribution.

With only one Æ-ray hit the remaining three hits can uniquely determine the track. To
guarantee that one of the tested initial tracks is suÆciently close to the true one, we try the
four sets of parameters (m0; c0) for each of the following three pairs of tubes: (1, 4), (1, 3), (2,
4). Thus there are 3 � 4 = 12 initial tracks which are optimized by the maximum likelihood
�ts. Out of the resulting 12 track candidates the one with the least � lnL is selected as the
real track. Usually this selection is very unambiguous because the likelihood of the second best
track is worse by several orders of magnitude.

If two or more hits out of four are caused by Æ-rays, we have no reliable criterion to distinguish
the good hits from the bad ones, because there are usually several possible track candidates with
two hits having too small drift times. Therefore with our geometry of only one multilayer these
tracks are lost. However, only about 0.3% of the tracks have more than one Æ-ray.

Note that the described mechanism for recognizing Æ-rays does not work with only three
layers of tubes. In this case pattern recognition has to use the combined information of both
multilayers of a chamber.
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6.6 Improvements with Respect to Least-Squares Tracking

We now want to judge the quality of our tracking method and compare it with conventional �2

track �tting based on a functional r-t relationship.
After reconstructing a track as described in the previous section, a second track �t is done

by �2 minimization as explained in Section 6.1.
Both MDT tracks (from likelihood and �2 method) are compared with the reference track

given by the silicon telescope. To quantify the deviations from the reference track we introduce
two criteria:

� O�set di�erence: �c = cMDT track � cSili track

� Slope di�erence: �m = mMDT track �mSili track

Since improvements are mostly expected near the wires, we distinguish two classes of tracks:

Class 1: Tracks with all radii r(i) > 2 mm.

Class 2: Tracks with at least one radius r(i) < 2 mm.

In Figure 6.12 the o�set di�erence �c is plotted versus the reference o�set cSili track, in
Figure 6.13 the slope di�erence �m versus cSili track.

The ineÆcient zones (gaps) at certain cSili track correspond to tracks passing inside the tube
wall in one layer (14.6 mm � r � 15 mm). These tracks don't ful�ll our \golden event"
requirement.

For the parts (a) of both �gures the tracks were reconstructed by normal �2 minimization
without applying any cuts against Æ-rays which form the di�use background above and below
the main band. The maximum likelihood method (lowest plot (c)) automatically incorporates a
correct treatment of tracks with Æ-rays which now have their entries mostly in the main band.
However, this is not the e�ect we are most interested in, because one can also introduce a
pattern recognition improvement to the �2 tracking in order to recover tracks with Æ-rays. More
important for our study are the diÆculties that least-squares tracking has with Class 2 tracks:
there are steps (evidence for biases) and tails in the band pattern of the upper plots (a) whereas
they are strongly reduced in the lower plots (c).

For a fair comparison between �2 and likelihood tracking we have to isolate the biases for
Class 2 tracks. This is done by including a Æ-ray correction into the �2 method: Whenever the

modulus of a �t residual r
(i)
MDT hit � r

(i)
MDT track in any of the hits is greater than two times the

standard deviation of the residual distribution, the �t is repeated with all combinations of three
hits out of four. As the middle plots (b) in Figures 6.12 and 6.13 demonstrate, in most cases
�2 is smallest for the hit combination which omits the Æ-ray hit, i.e. the tracks are recovered.
Despite this improvement the faults near the wires (Class 2 tracks) are not mended.

A quantitative evaluation of �2 and likelihood tracking is obtained by projecting the two-
dimensional histograms in Figures 6.12 and 6.13 on the �c and �m axis respectively. This
is done separately for Class 1 and 2. Figures 6.14 and 6.15 show the result for �c and �m
respectively.
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Figure 6.12: O�set di�erence �c versus the reference o�set cSili track. The vertical lines delimit the two
classes.
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Figure 6.13: Slope di�erence �m versus the reference o�set cSili track. The vertical lines delimit the two
classes.
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Figure 6.14: Projection of Figure 6.12 on the �c axis for Class 1 (distributions (a), (c), (e)) and Class 2
(distributions (b), (d), (f)).
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Figure 6.15: Projection of Figure 6.13 on the �m axis for Class 1 (distributions (a), (c), (e)) and Class 2
(distributions (b), (d), (f)).
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A numerical summary about the projected distributions can be found in Tables 6.2 and 6.3.
To characterize the widths of the �c and �m distributions we give the rms and the � of a
Gauss curve �tted to the central part (� 3�) of the distributions. The tails are quanti�ed by
the 3�-eÆciency �3� with

�3� =
number of entries within 3 � around the peak

total number of entries
: (6.13)

Criterion Method �c distribution �m distribution

�2 �t 187.3 �m 7.69mrad
rms �2 �t with Æ-ray recovery 79.6 �m 3.16mrad

ML �t 74.4 �m 3.07mrad

�2 �t (56.8�0.5) �m (2.02�0.02) mrad
� �2 �t with Æ-ray recovery (59.8�0.5) �m (2.11�0.02) mrad

ML �t (57.3�0.4) �m (2.09�0.02) mrad

�2 �t 84.1% 85.4%
�3� �2 �t with Æ-ray recovery 94.6% 94.5%

ML �t 96.7% 96.9%

Table 6.2: Numerical comparison of the three tracking methods for Class 1 tracks.

Criterion Method �c distribution �m distribution

�2 �t 204.6 �m 10.14 mrad
rms �2 �t with Æ-ray recovery 148.0 �m 6.29mrad

ML �t 112.4 �m 4.22mrad

�2 �t (72.4�0.8) �m (2.50�0.03) mrad
� �2 �t with Æ-ray recovery (76.7�0.9) �m (2.64�0.03) mrad

ML �t (70.7�0.7) �m (2.52�0.03) mrad

�2 �t 76.9% 76.8%
�3� �2 �t with Æ-ray recovery 87.9% 85.4%

ML �t 95.1% 95.5%

Table 6.3: Numerical comparison of the three tracking methods for Class 2 tracks.

As expected, for Class 1 (far from all wires) the only signi�cant e�ect is the reduction of
Æ-ray background passing from normal least-squares tracking to least-squares tracking with Æ-ray
recovery. This is visible in the rms as well as in �3�. Switching from this improved least-squares
tracking to maximum-likelihood tracking doesn't yield any further improvements. The Gaussian
width of the central peak is comparable for all tracking methods, apart from a small deterioration
caused by the Æ-ray recovery in the �2 method. That procedure shifts events into the peak that
have been in the tails before; but these recovered tracks are �tted using only three hits which
gives a worse precision.

For Class 2 the Gaussian peak width behaves in a similar way as for Class 1. However, the
tails are not only reduced by switching on the Æ-ray correction in the least-squares tracking, but
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also considerably from the improved least-squares tracking to maximum-likelihood tracking: the
3� ineÆciency 1� �3� is reduced by a factor 0.4 in the case of �c and by a factor 0.3 if �m is
considered.

6.7 Conclusions about Maximum Likelihood Tracking

Track �tting with the maximum likelihood method naturally incorporates a correct treatment
of the non-gaussian errors of the r-t relationship near the wire.

We have shown that compared with least squares �tting the tails are reduced. The e�ect is
particularly important for tracks passing near a wire where the 3�-ineÆciencies for maximum-
likelihood �ts are only 0.3 to 0.4 times the ones for least-squares �ts with Æ-ray correction
based on cuts. The maximum likelihood method can handle Æ-rays without applying any cuts.
However, it needs good start values for the track parameters, which requires an eÆcient pattern
recognition.

Since maximum likelihood tracking doesn't need a functional t(r)- or r(t)-dependence, no
absolute t0 needs to be introduced and \negative drift times" no longer occur.

For describing the r-t relationship the new method requires two additional parameters, one
characterizing the asymmetry of the time distribution for a given track radius, the other one
specifying the Æ-ray probability per unit drift time. Our parametrization of the two-dimensional
r-t distribution represents the full knowledge about the response of drift tubes.

So far we have only considered track reconstruction in a single multilayer of tubes. This
is a particularly unfavourable situation because pattern recognition and the precision �t rely
fully on only four hits. A track �t through a whole chamber, i.e. a superlayer of tubes, or
even through the entire ATLAS detector might take advantage from the correlated information
from all multilayers. In the next chapter we will investigate whether the non-Gaussian tails in
the response function near the wire have any signi�cant impact on momentum resolution and
tracking eÆciency of the ATLAS muon spectrometer.



Chapter 7

Simulation of the Tracking

Performance of the ATLAS Muon

Spectrometer

This chapter discusses momentum resolution and tracking eÆciency of the ATLAS Muon spec-
trometer and their dependence on the description of the single-tube response. In particular we
want to investigate the in
uence of non-Gaussian drift-time resolution. After an introduction
to the simulation tools (Section 7.1) we explain the descriptions of the MDT response for which
the performance was tested (Section 7.2). Finally a comparison of momentum resolution, re-
construction eÆciency and fake-track probability for the di�erent response descriptions is made
(Sections 7.3 and 7.4).

7.1 The Simulation Chain

The full chain of the simulation software consists of the following steps:

� Generation of single muons at the ATLAS vertex. For each of the transverse momenta
10GeV/c, 30GeV/c, 100GeV/c, 300GeV/c and 1TeV/c a sample of 4000 single muons
was generated at the ATLAS vertex with a 
at azimuthal distribution � � [0; 2�] and a 
at
distribution of pseudorapidity � extending over the whole range [0; 2:7] which is covered
by the muon spectrometer.

� Every muon was traced through the detector with LHCTOR [CHV 97], a program based
on GEANT3 taking into account the full geometry and magnetic �eld map of ATLAS. In
the muon spectrometer LHCTOR determines for every tube hit the impact radius.

� The impact radii were converted into drift times by the programme MUONBOX [VIR 97].
The drift-tube response for this so-called \digitization" was described by di�erent models.
Details about these models will follow in the next section.

� The reconstruction of the muon tracks was also done with MUONBOX. The sagittae of
the tracks due to the magnetic �eld served for the determination of the muon momenta at
the entrance of the spectrometer.

102
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� The reconstructed momenta were compared with the true momenta.

7.2 Description of the MDT Response

For each hit in a drift tube the track radius is converted into a drift time using the r-t relationship
and smeared according to the time resolution of a single drift tube. Before our study this model
was very crude: It assumed a linear r-t relationship with a maximum drift time of 500 ns and
a Gaussian resolution with an average of 80�m and a radial dependence like the one measured
for Ar/N2/CH4 (91/4/5). In order to achieve a more realistic description of the MDT response,
the following e�ects were added to the digitization:

� Instead of a linear approximation the correct r-t relationship of Ar/N2/CH4 (91/4/5) as
measured in test beams was implemented. For a later study an option for Ar/CO2 (93/7)
was also added.

� The time resolution is no longer approximated to be Gaussian. The smearing is now based
on the exact time distributions which deviate signi�cantly from the Gaussian shape at
drift distances smaller than 2mm (see Chapter 6).

� The description of the Lorentz e�ect had been wrong and was corrected: In the old version
of the code a constant deviation angle for the drifting electrons was assumed. In reality
this angle depends on the electric �eld which is inversely proportional to the distance from
the wire. For Ar/N2/CH4 (91/4/5) the new parametrization of this e�ect was extracted
from the results of test-beam measurements [SAM 97]. As Figure 7.1 demonstrates, the
old model di�ers signi�cantly from the measurements. To verify our basic understanding
of the Lorentz e�ect, we calculated the numerical solution to the equation of motion
of a drifting electron in crossed electric and magnetic �elds with the approximation of
continuous friction:

m�~r = e ~E(~r) + e _~r � ~B � �(~r) _~r (7.1)

where the damping constant �(~r) is approximated to be independent of ~B and determined
from r(t) at ~B = ~0. In reality the drift process is much more complicated [BLU 93], but
Figure 7.1 shows a fairly good agreement between measurements and calculation up to
0.8 T.

Since for Ar/CO2 (93/7) no test-beam data with magnetic �eld were available, the B-�eld
response was simulated with Gar�eld. It is shown in Figure 7.2.

To study the in
uence of the individual features of the drift-tube response, they could be
separately switched on.
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Figure 7.1: (a) Drift-time increase in Ar/N2/CH4 (91/4/5) as a function of the muon track radius for
B = 0.6 T and 0.8 T; (b) maximum drift time as a function of the magnetic �eld parallel to
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In our simulation the same samples of generated events were digitized with di�erent models
for the tube response. These models are de�ned in Table 7.1:

Model # 1 2 3 4 5 6 7 8 9 10

r(t) L L L L R R R R R R
Resolution CG CG VG VG CG CG VG VG VA VA
Lorentz e�ect o� on o� on o� on o� on o� on

L: r(t) is a straight line with a maximum drift time of 500 ns,
R: r(t) is realistic as measured for Ar/N2/CH4 (91/4/5),
CG: constant Gaussian resolution of 80�m,
VG: Gaussian resolution varying with r as measured for Ar/N2/CH4 (91/4/5);

mean resolution � 80�m.
VA: non-Gaussian resolution varying with r.

Table 7.1: Models for the drift-tube response.

For the reconstruction the same r-t relationship and resolution were used as for the digitiza-
tion. The same is true for the parametrization of the Lorentz e�ect. To take the non-Gaussian
resolution function into account, the reconstruction algorithm based on �2 minimization would
have to be replaced by a maximum likelihood �t or { equivalently { by a non-parabolic �2

function. However, since we wanted to check �rst whether the non-Gaussian resolution has
any impact at all, we chose a di�erent approach: We kept the Gaussian approximation in the
reconstruction and investigated whether the tracking performance deteriorates when in the digi-
tization the non-Gaussian resolution is switched on.

Note that this detailed study was only done for Ar/N2/CH4 (91/4/5). The momentum
resolution for Ar/CO2 (93/7) was simulated later with response model number 10 only.

7.3 Momentum Resolution

After �tting the track and the momentum, the reconstructed momentum was compared with
the true momentum. Since MUONBOX reconstructs the muon momentum at the entrance of
the muon spectrometer, the momentum comparison is done at this position in order to exclude
the contribution of energy-loss 
uctuations in the calorimeter to the resolution.

Figure 7.3 shows example distributions of (preconstr:T � ptrueT )=ptrueT for generated momenta of
100GeV/c and 1TeV/c at the vertex and response model number 10 in the digitization, i.e.
using the full knowledge about the tube response. Although these �pT =pT distributions are
not Gaussian, an estimate of the momentum resolution can be obtained by �tting a Gaussian
function in a range of �2 standard deviations around the peak.

The dependence of the resolution on the transverse momentum is shown in Figure 7.4. These
results are based on the most realistic response model (number 10) and were made for the old
and the new MDT gas. Owing to the better single tube resolution with Ar/CO2 (93/7) the
momentum resolution is better with this gas. We furthermore distinguish between the even and
odd numbered sectors of the spectrometer (cf. Figure 2.2) whose resolutions di�er signi�cantly
due to the higher �eld integral

R
B dl in the even sectors which are situated near the coils.
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Figure 7.3: Distributions of the di�erence between reconstructed and true transverse momentum at the en-
trance of the muon spectrometer, normalized by the true momentum: (a) for pT = 100GeV/c
at the vertex; (b) for pT = 1TeV/c at the vertex. The response model in the digitization was
number 10.
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If the drift-tube response has any signi�cant in
uence on the reconstruction performance, it
will be most accentuated at very high momenta where the spectrometer resolution is dominated
by the intrinsic detector resolution. For lower momenta on the other hand, detector e�ects are
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blurred by the strong contribution of multiple scattering (cf. Figure 2.4). However, looking at
the momentum resolution as a function of the response model (Figure 7.5) no signi�cant e�ect
is visible.
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Figure 7.5: Momentum resolution for pT = 1TeV/c at the vertex as a function of the response description.
The model numbers are de�ned in Table 7.1.

However, as we pointed out above, the distributions underlying this comparison are not
Gaussian and thus the Gaussian width of the central peak su�ers from a big systematic uncer-
tainty. This non-Gaussian shape stems from averaging over the highly inhomogeneous resolution
in the (�;�) plane (visible in Figures 7.4 and 7.6).

To overcome this problem, we calculate the momentum pull

Æ =
(preconstr:T � ptrueT )=ptrueT

�theory
: (7.2)

for every reconstructed muon. Here �theory is the resolution which would be theoretically ex-
pected for the generated track with the given momentum, direction and position of the muon at
the entrance of the muon spectrometer. In practice �theory is calculated with a model described
in [SCH 95] and [TDR 97b](12.3.2). Basic ingredients of the algorithm are the magnetic �eld
map of the ATLAS detector and a constant Gaussian resolution of 80�m in every measured
track point, i.e. a tube response like in model 6. The contribution of multiple scattering is also
taken into account.

The pull distribution has the following advantage: If the theoretical prediction �theory is
correct for every track, i.e. the measured �pT=pT follows a Gaussian distribution with stan-
dard deviation �theory, the pull will be distributed according to a standard normal distribution.
Indeed, as visible in Figure 7.7, the pull distributions for 100GeV/c and 1TeV/c and response
model 6 are rather well �tted by Gaussian functions and have a width close to 1.

Now suppose that there is an important dependence of momentum resolution on the tube
response. Then we would expect that unlike the pull distribution for response model 6, the
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Figure 7.8: Width of the pull distribution for pT = 1TeV/c at the vertex as a function of the response
description. The model numbers are de�ned in Table 7.1.

Gaussian time resolution is incorporated in the digitization without taking it into account in the
reconstruction. With other words, we could not achieve any resolution improvement by replacing
the least-squares �t by a maximum likelihood �t in the track reconstruction. Looking back at
the comparison between least-squares and maximum likelihood tracking, this insensitivity to
non-Gaussian tails is not even surprising: The conclusion of Section 6.6 was that mainly the
reconstruction eÆciency depends on this detail of the tube response. Therefore the next section
is dedicated to the in
uence of the tube response on reconstruction eÆciency and the probability
of reconstructing a fake track.

7.4 Reconstruction EÆciency and Fake-Track Probability

The de�nition of reconstruction eÆciency for tracking in ATLAS is more complex than the
eÆciencies we have considered so far.

A simple quality criterion for a reconstructed muon in ATLAS would be a 3� eÆciency on
the momentum. However, due to the big amount of background hits in ATLAS it happens that
despite a very wrong track the calculated momentum is { by chance { rather correct. Since we
are also interested in a correctly �tted track, we follow the convention in [TDR 99](6.3.4.1) and
classify reconstructed tracks by a hit quality factor based on Monte Carlo information. It is
de�ned as

Q =
hits used for the track �t and really produced by the muon

all hits used for the track �t
: (7.3)

A low value of Q for example indicates that the reconstruction algorithm has chosen many wrong
hits (i.e. background or noise) for the track �t. Tracks with a quality factor lower than 10%
are de�ned as fake tracks.
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A \good track" is required to have Q > 0:55. In addition the reconstructed momentum must
be suÆciently close to the true value, such that the momentum pull de�ned in (7.2) satis�es the
condition jÆj < 4. The latter criterion is equivalent to a 4� eÆciency.
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Figure 7.9: Momentum pull versus hit quality factor for pT = 1TeV/c.

Figure 7.9 shows the regions for good and fake tracks in the plane de�ned by the momentum
pull Æ and the hit quality factor Q. The reconstruction eÆciency is de�ned as the fraction of
events which contain at least one good track, whereas the fake-track probability is the average
number of fake tracks per event.1

The dependence of the reconstruction eÆciency and the fake-track probability on the trans-
verse momentum is shown in Figure 7.10. As pT increases, more and more electromagnetic
showers are produced by the muon via bremsstrahlung and direct pair production. Hits from
secondary particles can hide the muon hits and thus lead to wrong drift-time measurements.
They also create hits in tubes which are not traversed by the muon. The consequence is an
increasing probability for reconstructing a fake track. In the same way the eÆciency for �nding
good tracks decreases.

The eÆciency drop for pT < 30GeV/c is caused by multiple scattering.

The graphs demonstrate that the reconstruction eÆciency does not depend signi�cantly on
details of the MDT response description. The only visible but small change occurs when the
radial dependence of the resolution is switched on. Introducing non-Gaussian resolution has no
e�ect at all. A close look at single events revealed that due to the big number of measurement
points per track the reconstruction algorithm is robust against a few hits with large excursions
from the track. As expected, the change from a perfectly linear to a realistic r-t relationship
has no consequence either. The same is true for switching on the Lorentz e�ect. In both cases
only the translation between drift times and radii is modi�ed. Since this is done consistently in

1Note that we allow for several reconstructed track candidates. If more than one of them are good, the
information from other subdetectors will be used to decide which of them is correct.



7.4. Reconstruction EÆciency and Fake-Track Probability 111

40

50

60

70

80

90

100

10 10
2

10
3

pT [GeV]

E
ffi

ci
en

cy
 

[%
]

MDT response models 1, 2, 5, 6
MDT response models 3, 4, 7 - 10

0

1

2

3

4

5

6

F
ak

e-
T

ra
ck

 P
ro

ba
bi

lit
y 

[%
]

MDT response models 1, 2, 5, 6
MDT response models 3, 4, 7, 8
MDT response models 9, 10

Fake-Track Probability

Efficiency

Figure 7.10: Reconstruction eÆciency (left scale) and fake-track probability (right scale) as a function of
pT . The tube response models de�ned in Table 7.1 are distinguished as far as allowed by the
visibility of the graph. The error bars on the eÆciency are based on a binomial distribution
for the number of good tracks in a sample of 4000. The errors on the fake-track probability
assume a binomial distribution for the number of fake tracks in the total number of tracks
found for the sample of 4000 events.

digitization and reconstruction, the actual track �t does not even notice this change.
The fake-track probability depends on the MDT response (lower graphs in Figure 7.10). The

di�erences occur between the models with constant Gaussian resolution, r-dependent Gaussian
resolution and r-dependent non-Gaussian resolution. The more complex the description of the
resolution is made, the less is the chance to build up a fake track from background hits. The
investigation of events with model-dependent fake tracks showed that this e�ect concerns mainly
events with huge electromagnetic showers in which the real muon track is spoilt by background
hits. The details of the mechanism causing the dependence on the shape of the tube resolution
function are not understood. We cannot exclude that this e�ect has its origin in the subtleties
of the reconstruction strategy.
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7.5 Conclusion about the Consequences of Non-Gaussian

Resolution

We have seen that neither momentum resolution nor reconstruction eÆciency shows any signi-
�cant deterioration when a non-Gaussian resolution is incorporated into the digitization without
taking it into account in the reconstruction. Due to the big number of measurements along a
track (3 tubes � 2 multilayers � 3 stations = 18), the e�ects of non-Gaussian tails near the
wires average out. The reconstruction performance is much more sensitive to pattern recognition
diÆculties with ineÆciencies and background hits.

Consequently one would not draw any signi�cant advantage from replacing in ATLAS the
least-squares �tting technique by the maximum-likelihood method.



Chapter 8

Calibration of the Space-Time

Relationship

In earlier chapters we have reported about test-beam experiments where a high precision silicon
tracker was used as external reference system in order to measure the space-time relationship of
drift tubes as a function of various operating parameters. This was suited for detailed detector-
physical studies. However, in ATLAS no external tracker will be available to calibrate the
r-t relationship of MDTs. Since furthermore the response depends on external parameters
like temperature, gas density, anode voltage, magnetic �eld and background rate, it will show
temporal and strong spatial variations within the spectrometer. Thus the option of a calibration
in the laboratory before chamber installation is excluded, and one had to develop techniques
for an in-situ calibration using only the MDTs' own data. This calibration will be repeated as
often as necessary.

To be strictly correct, we would have to calibrate the full detector response P (tjr) as it was
discussed in Chapter 6. However, the conclusion from Chapter 7 was that for tracking in ATLAS
we do not really need the information about the asymmetry of time distributions near the wire.
It is suÆcient to approximate the distributions P (tjr) and P (rjt) by Gaussians centred at t(r)
and r(t), and with widths �t(r) and �r(t) respectively. In order to minimize biases in the track
reconstruction, the function r(t) should coincide with the mean rather than the peak of the
correct distribution P (rjt).

Up to the present all attempts to calibrate both r(t) and �r(t) simultaneously from the
chamber data have failed. Therefore we inject the knowledge about �r(t) from test-beam mea-
surements and content ourselves with the calibration of the function r(t) or the inverse t(r),
which is already a complicated task.

Techniques for calibrating an r-t relationship have been worked on since the early days of
ATLAS preparations, but they had various inherent problems which we set o� to analyze and
attack with the background of the improved understanding of drift-tube operation.

We distinguish two major classes of techniques:

� The �rst approach needs nothing more than a drift-time spectrum and is therefore inde-
pendent of the chamber geometry and track incidence angles. Its drawback is the necessity
of an excellent knowledge about the tiniest details of tube response, illumination and wire
position with respect to the tube wall. In Section 8.2 substantial extensions of the pre-

113
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decessor technique will be presented. Despite important improvements of the calibration
precision, the performance of this approach is still not as good as with the second approach
and will mainly serve for determining a good initial r(t) for the iterative second concept.

� The second approach, called \autocalibration"1, uses the correlation of the drift times
measured in tubes crossed by a common track. By �tting tracks through a multilayer
of tubes the r-t relationship is iteratively improved. The success of this concept depends
crucially on the range of track incidence angles and on a good knowledge about the chamber
geometry. Furthermore it needs a good start r-t relationship. Our new study (Section 8.3)
is focussed on the in
uence of the track angle on the performance of autocalibration and
on the question whether autocalibration has enough information to determine the r-t
relationship uniquely. Finally we shall introduce a new technical realization which is
designed for making optimal use of all available information.

8.1 Required Calibration Precision

To quantify the deviation of the calibrated r-t relationship from the true r(t) with one number,
we introduce the rms deviation

rms(�r) �
s

1

tmax

Z tmax

0
[rcalib(t)� rtrue(t)]2 dt : (8.1)

To be really free from systematic e�ects, the deviation of the r-t relationship should be much
smaller than the single tube resolution of 80�m. In [ATL 94] it has been de�ned as a goal to
achieve a precision which is comparable with the alignment precision of the MDT chambers, i.e.
about 20�m. This is not a strict limit, but rather an orientation value. In Section 8.3.6.3 we
shall see that the intended calibration precision at ATLAS will be limited by the statistics that
will be available within a calibration period.

The decisive criterion for the required calibration precision is the in
uence of rms(�r) on
the muon momentum resolution. Since signi�cant e�ects can only be expected at very high
momenta, we simulated the momentum resolution of single muons with pT =1TeV/c. The
procedure was the same as described in Chapter 7. While the conversion of the Monte Carlo
track radii into drift times was done with a realistic tube response, the track reconstruction was
based on an r-t relationship that was falsi�ed in all chambers by a function

rwrong(t)� rtrue(t) = rms(�r) �
p
2 � sin

�
�

t

tmax

�
: (8.2)

This function vanishes at t = 0 and at the maximum drift time tmax. Its quadratic average over
the entire time interval [0; tmax] is equal to rms(�r). We varied the rms deviation between 0
and 200�m. This simulation tests only one speci�c deviation function which is a pessimistic
example: due to its big linear average it can be expected to induce considerable biases on the
reconstructed tracks.

1In the strict sense also the �rst approach is a kind of autocalibration, which means nothing more than self-
calibration, i.e. without external reference detector. We shall however respect the historical convention and
reserve the name of autocalibration to the methods based on track �ts.
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Figure 8.1: Momentum resolution at pT =1TeV/c as a function of the rms deviation of the r-t relationship
used for track reconstruction.

Figure 8.1 shows the momentum resolution as a function of rms(�r). If we tolerate a dete-
rioration of momentum resolution up to 1% of the total momentum resolution due to a wrong
r-t relationship, we can a�ord an rms(�r) up to 60�m. This is a big tolerance which should
be kept in mind for the case that autocalibration in ATLAS turns out to su�er from lack of
statistics.

8.2 Determination of the r-t Relationship from the Drift-Time

Spectrum

Several studies have shown that for the correct convergence of autocalibration to the true space-
time (r-t) relationship a good start r-t relationship is necessary [SAM 97, CRE 97]. This is
especially important with low angular spread of tracks, because then autocalibration cannot
uniquely determine the r-t relationship (Sections 8.3.2.2f). It is also important in the presence
of a background, where track �nding is harder. Furthermore, a good start value saves on
computing power needs.

In the past, the following approaches have been used to derive an initial r-t relationship:

� Linear r-t relationship: Even for almost linear gases like Ar /N2 /CH4 (91 / 4 / 5) this
approximation yields very bad results (up to 700 �m o�). For very non-linear gases like
Ar /CO2 mixtures it is several millimeters o�.

� Simulation with Gar�eld [VEE 99]: Gar�eld together with MAGBOLTZ [BIA] and HEED
[SMI 97] provides the best available simulation of the detector response. Its prediction
of the r-t relationship is therefore quite accurate (up to 200 �m o�). A full simulation
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is required to reach this accuracy for each magnetic �eld value etc. And still there are
variations not taken into account such as temperature and water content of the gas.

� Integration Method (see e.g. [BAR 94b]): This approach is based on the data of the MDT
itself, and takes into account variations such as water content automatically. However,
since it ignores important e�ects like Æ-rays, resolution and eÆciency, it gives bad results
(up to 450 �m o�). The details of this method will be discussed in Section 8.2.2.

Figure 8.2 compares the accuracy of these techniques for Ar /N2 /CH4 (91 / 4 / 5). We have
looked for an improvement on the integration method, whilst retaining its advantage of auto-
matically accounting for local variations in operating conditions. This also retains the full spirit
of having a self-calibrating detector, unlike resorting to Gar�eld; but of course Gar�eld remains
a very good method. The new methods take into account more knowledge of the drift-tube
response and give a much better precision than Gar�eld.
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Figure 8.2: Comparison of the performance of three usual techniques for determining a start r-t relation-
ship for autocalibration. The plot shows the di�erence between the estimated and the true
track radius at a given drift time t.

8.2.1 The Composition of a Drift-Time Spectrum

The drift-time spectrum of a drift tube is determined by the radial illumination and the detector
response. The latter can be described by P (tjr), i.e. the probability of measuring a drift time t
under the condition that the muon track had a minimum distance r from the wire. In Chapter 6
we have presented a measurement and a parametrization of P (tjr).

From the product rule for probabilities we �nd

P (t; r) = P (tjr) � R(r) (8.3)
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where P (t; r) is the two-dimensional probability density for having a muon track at a distance r
and measuring a time t (Figure 6.6). R(r) is the radial distribution of tracks giving hits in the
tube. Marginalization yields the drift-time distribution T (t):

T (t) =

Z 1

0
P (t; r) dr =

Z 1

0
P (tjr) � R(r) dr : (8.4)

This is the basic equation for our following considerations. The choice of 1 rather than the
inner tube radius b as the upper integration limit was driven by the possibility of getting a Æ-ray
hit from a muon passing through the tube wall. The eÆciency drop at the wall is absorbed in
R(r).

Our task will be to unfold (8.4) and to extract the r-t relationship which is a component
of the detector response function P (tjr). As we shall see, for simple response functions this
inversion problem can be solved exactly, whereas for more realistic descriptions a numerical
approach has to be made.

8.2.2 Integration Method

Let us �rst consider the approximation of an ideal detector response, i.e.

P (tjr) = Æ(t� �(r)) ; (8.5)

where �(r) is the r-t relationship. Then (8.4) becomes

T (t) =

Z 1

0
Æ(t� �(r)) �R(r) dr (8.6)

=

Z 1

0
Æ(r � �(t)) � d�

dt
�R(r) dr (8.7)

= R(�(t)) � d�
dt

(8.8)

Here the (reasonable) assumption has been made that �(r) is monotonous and therefore has an
inverse function �(t) � ��1(t), and that d�=dr is never zero: this may be invalid near the wire
(see Figure 6.10).

Integration gives Z t

0
T (t0) dt0 =

Z �(t)

0
R(r) dr : (8.9)

The zero-point of the time scale is determined by �tting a Fermi-Dirac function to the leading
edge of the drift-time spectrum [BIS 97, SAM 97].

Usually it is assumed that the illumination is homogeneous and the eÆciency is 1 from r = 0
to the inner tube radius b. For the radial hit distribution this means

R(r) =
1

b
if 0 < r < b and 0 otherwise. (8.10)

In a beam this is usually a bad approximation. If we still rely on it, (8.9) simpli�es to

�(t) = b

Z t

0
T (t0) dt0 (8.11)
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For a histogrammed drift-time spectrum T (ti) this can be written as a sum over bin contents
up to the bin containing t:

�(t) = b

nX
i=1

T (ti) (8.12)

Equation (8.12) is the traditional integration method. As we already pointed out in the intro-
duction, it produces an r-t relationship which agrees very badly with the true one. The main
reason is that this approach neglects Æ-rays which have a considerable in
uence on the shape of
the drift-time spectrum. In the following section we re�ne the model by introducing a correction
term for Æ-rays.

8.2.3 Integration Method with Æ-Ray Correction

To take Æ-rays into account, we modify the perfect detector response (8.5) by adding a constant
term d to the conditional probability density P (tjr) at drift times 0 < t < �(r). The response
function is now given by

P (tjr) = [1� d � �(r) ��(�(r))] � Æ(t� �(r)) + d ��(�(r)� t) ��(t) (8.13)

where the �-functions de�ne the cuto� times for the Æ-ray background. The factor applied to
the Æ-function assures the proper normalization.

Considering the Æ-ray probability density as constant { independent of r and t { is a rea-
sonable approximation. A more detailed treatment is described in Section 8.2.4 where the
probability density varies with r, but this prevents an analytical solution.

Putting (8.13) into the basic equation for the drift-time spectrum (8.4) we get after some
simpli�cations:

T (t) = R(�(t)) � d�
dt
� [1� d � t ��(t)] + d ��(t) �

Z 1

�(t)
R(r) dr (8.14)

As in the simple integration method we assume 
at illumination and perfect eÆciency, hence
we use (8.10) for R(r). After reorganization we obtain the di�erential equation

d�

dt
[1� d � t ��(t)]� �(t) � d ��(t) = b � T (t)� b � d ��(t) (8.15)

This equation can be solved analytically. The resulting r-t relationship is given by

�(t) =
b

1� d � t ��(t) �
�Z t

0
T (t0) dt0 � d � t

�
(8.16)

Equation (8.16) was applied to H8 test-beam data taken in spring 1997 (cf. Section 6.3). The
drift time spectrum of only one tube was used. The Æ-ray probability density d = 0:00024 ns�1

was determined by radially averaging the measured p4(r) shown in Figure 6.8. The improvement
with respect to the conventional integration method is demonstrated by Figure 8.3: The rms
deviation of the reconstructed r-t relationship from the true one is reduced from 345 �m to
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Figure 8.3: Comparison between the simple and the Æ-ray-corrected integration method for a Æ-ray prob-
ability density d = 0.00024 ns�1. The plot shows the di�erence between the estimated track
radius and the one determined by the r-t relationship measured with the silicon telescope.

80 �m. The assumption of a 
at illumination is a very poor approximation for the H8 beam
(see Figure 8.4). This is probably a major contribution to the 80 �m rms deviation.

The bad agreement near the wire is not only to blame on the integration methods. The
determination of the r-t relationship with the silicon telescope is based on gaussian �ts to the
distribution of rhit � rSILI in drift-time slices. Near the wire however these residuals are very
non-Gaussian and the �ts determine the r-t relationship only badly. Therefore also the error of
the reference r-t relationship contributes to the deviation.

To improve the precision of the calculated r-t relationship we shall in the following chapter
introduce all known details of the detector response into our description.

8.2.4 Unfolding the Detector Response

In both preceding methods, the integral (8.4) could be evaluated, and with simplifying assump-
tions for R(r) closed forms for �(t) were obtained. With more realistic responses, the integral
(8.4) is diÆcult to solve analytically and we resort to numerical methods. In the unfolding
technique, P (tjr) and R(r) are parametrized, and the spectrum T (t) evaluated by numerical
integration of (8.4) with some initial set of parameters. The parameters for resolution, eÆ-
ciency and Æ-rays are all taken from silicon telescope measurements. The r-t relationship starts
with, say, a straight-line guess. The resulting spectrum is compared to the measured drift-time
spectrum Tm(t) by calculating the following chi-squared:

�2 =
X
bins i

[Tm(ti)� T (ti)]
2

Tm(ti)
(8.17)
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Then the parameters for the r-t relationship are varied to minimize �2.
The drift-time spectrum has contributions from all muons giving a hit: over most of the

tube, the hit eÆciency is very close to 1, but near the wall it drops rapidly. The eÆciency is
taken into account by writing R as a product of the beam pro�le b and eÆciency �:

R(r) = b(r) � �(r) (8.18)

The beam pro�le is parametrized by

b(r) =
2X
i=0

bi y
i with jy � 5:89mmj = r (8.19)

where y is the position of the muon in the coordinate system used in the data analysis. Since
the beam pro�le is not symmetric about the wire, the integral in (8.4) is carried out separately
for the two halves, and then the two contributions are added together. Figure 8.4 shows the
measurement of the beam pro�le with ODYSSEUS, and a �t superposed.
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Figure 8.4: Beam pro�le measured with the silicon telescope with the �t superimposed. The tube covered
the region (5:89� 15)mm as indicated.

The ineÆciency (Figure 8.5) can be �tted reasonably well with

1� �(r) =
1

2

�
erf

�
r � rmax

w

�
+ 1

�
(8.20)

where

erf(x) �
Z x

0

1p
2�
e�

(x0)2
2 dx0 : (8.21)

rmax is the radius with 50% eÆciency which from silicon telescope measurements is very
close to the tube inner radius (14.75mm for the 250 �m thick tubes used for this study, 14.6 mm
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Figure 8.5: IneÆciency as a function of the track position in the regions near the tube walls measured
with the silicon telescope. The superposed �t is explained in the text. The vertical lines at
�14:75mm indicate the nominal positions of the inner wall surfaces.

for standard MDT tubes). The parameter w is a measure of the width of the region where the
eÆciency drops; a typical value is 70 �m. In practice rmax is di�erent on opposite sides of the
tube due to the wire being o�-centre. We have taken the average of the parameter �t values for
the two sides.

For the parametrization of P (tjr) we now use the correct distribution as it was determined
in Section 6.4 (see Equations (6.5) to (6.9) and Table 6.1).

The quantities to be determined by the unfolding process are the parameters ai of the r-t
relationship, i.e. the peak position p2(r) of P (tjr). To be consistent with the notation used for
the integration method, we identify �(r) = p2(r). The start values of ai for the minimization
of the �2 de�ned in (8.17) are chosen such that �(r) is a straight line. All other coeÆcients,
specifying beam pro�le, eÆciency, resolution, asymmetry and Æ-ray probability, are taken from
the precision measurements and kept constant. The question whether we can realistically assume
to know all these �xed parameters at ATLAS without a silicon tracker, will be discussed in
Section 8.2.5.

Let us remind that the function �(r) which we have now calibrated, is the peak position of
P (tjr). For tracking however we need the radial mean of P (rjt) which for asymmetric distribu-
tions is not just the inverse of �(r). The conversion is done by applying Bayes' theorem

P (rjt) = P (tjr) R(r)
T (t)

(8.22)

and then taking the mean of P (rjt).
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8.2.4.1 Results for Test-Beam Data without Radiation Background
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Figure 8.6: a: Di�erence between unfolded and true �(r). b: Time di�erence converted into a radius
di�erence using the local drift velocity.
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Figure 8.7: The drift-time spectrum used for unfolding Tm(t). The smooth curve is the folded spectrum
T (t) with the �nal parameters.

Like the integration method, also the unfolding technique was applied to the drift-time
spectrum of one tube measured in the H8 test-beam. To evaluate the result, the unfolded
relationship is compared to the measured one. This is done by calculating �(r) at 0.3 mm steps.
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Figure 8.6a shows the time di�erence of the results. The di�erence is always less than 1.2 ns,
and the rms di�erence is 0.6 ns. Multiplying the time di�erences by the local drift velocity yields
the radial deviations shown in Figure 8.6b. Figure 8.7 shows the input drift-time spectrum with
that resulting from the �nal values of the parameters. The agreement is excellent.

Figure 8.8 compares the accuracy of the unfolding method with the other techniques. The
rms deviations from the true r-t relationships are 345, 80 and 18 �m for the traditional integra-
tion, integration with Æ-ray correction, and unfolding techniques respectively. Clearly the new
methods are much more accurate; unfolding is the most accurate method so far, even better
than Gar�eld which has an rms deviation of 109 �m. The accuracy of the result shows that we
have a very good understanding of the drift-tube response.
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Figure 8.8: Comparison of the accuracies of all described methods for obtaining a �rst order r-t relation-
ship.

However, we have to admit that the rms precision of 18�m for the unfolding technique was
obtained under very favourable circumstances: By using the drift-time spectrum of only one
tube, the task was considerably facilitated because all injected parameters could be precisely
measured for this particular tube. At ATLAS a common r-t relationship will be used for all tubes
within a calibration zone (Section 8.3.6.3). For the unfolding method this means that the spectra
of many tubes have to be superposed and that the radial hit spectrum R(r), which is an input to
the unfolding method, has to be averaged over all tubes. If the illumination is inhomogeneous or
if the wire concentricity di�ers from one tube to the other, the calibration precision will degrade.
In addition, the superposition of several time spectra requires a precise time alignment of these
spectra with respect to each other. The best method which is currently available is to �t the
leading edge of the time spectrum with a Fermi-Dirac function [BIS 97, SAM 97]. It is diÆcult
to achieve the required precision of better than 300 ps.

For these reasons we applied the method also to a common time-spectrum for a set of eight
tubes that were fully or partially covered by the silicon tracker. In this case the rms precision
is only 49�m which is much worse than for a single tube, but still better than the integration
method or Gar�eld.
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8.2.4.2 Results for Test-Beam Data with Radiation Background

In ATLAS the drift-time spectrum will have a signi�cant background contribution from the
high-rate gamma radiation. Figure 8.9 shows a drift-time spectrum measured in the X5 test
beam with a gamma count rate of 333 kHz per tube (for the set-up see Chapter 5).
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Figure 8.9: The drift-time spectrum used for unfolding Tm(t) with 333 kHz gamma background. The
smooth curve is the folded spectrum T (t) with the �nal parameters.

To take the background entries into account for the unfolding, we have to modify Equation 8.4
describing the composition of the measured time spectrum.

The condition for triggering an event was the coincidence of the two 5 � 5cm2 scintillators
behind and in front of ODYSSEUS and two other scintillators upstream in the beam where the
background rate was zero. Therefore we can assume that every trigger was caused by a muon

ying through the area de�ned by ODYSSEUS. We set the trigger time to t = t0 and the earliest
muon arrival time to 0. The probability density to observe a hit at a time t in a tube which was
crossed by a muon, can be written as

T (t) = N � fT�(t) � P (no 
 in [t0; t]) + �0 � T
(t) � P (no � in [t0; t])g ; (8.23)

where T�(t) is the undisturbed muon drift-time spectrum (8.4) without background and

T
(t) = � e�� (t�t0) (8.24)

the pure time spectrum of the �rst gamma hit after the trigger. N is a normalization constant,
�0 a weight factor and � the gamma count rate of the tube. The probability of not having any
gamma hit between the trigger and t is

P (no 
 in [t0; t]) = e�� (t�t0) (8.25)
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and the probability that the muon hit has not yet arrived at the time t is

P (no � in [t0; t]) = 1�
Z t

t0

dt0 T�(t0) : (8.26)

Thus we obtain

T (t) = N �
�
T�(t) � e�� (t�t0) + �0 � � e�� (t�t0) � [1�

Z t

t0

dt0 T�(t0)]
�

: (8.27)

This expression is valid if we know that the muon went through the considered tube. However,
since the trigger area covers more than one tube, the muon can also pass through a di�erent
tube. To account for this e�ect, we introduce the probability �1 that the trigger was caused by
a muon passing through the considered tube, and replace T�(t) in (8.27) by �1 � T�(t):

T (t) = N �
�
�1 � T�(t) � e�� (t�t0) + �0 � � e�� (t�t0) � [1�

Z t

t0

dt0 �1 � T�(t0)]
�

: (8.28)

How are the additional parameters determined?

� The gamma rate � can be extracted from the domain t < 0 of the time spectrum, i.e. before
the leading edge of the muon entries. It is done by �tting this pure gamma spectrum with
e�� t+c (Figure 8.10).
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Figure 8.10: The portion of a time spectrum before the leading edge of the muon drift-time spectrum. It
is used to �t the parameter � (see text).

� The weight �0 is a free parameter and has to be determined by the unfolding procedure.

� �1 can be extracted from the time spectrum:

�1 = 1� T (tmax)

T (0)
e� (tmax�t0) (8.29)
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where tmax is the maximum drift time, i.e. the trailing edge of the muon time spectrum.
In Figure 8.9 we can see that tmax �500 ns.

� The normalization factor N is fully determined by the other parameters. It assures thatR
T (t) dt = 1.

In summary, there is one free parameter more than in the case without background.
Applying the method to eight tubes that were fully or partially covered by ODYSSEUS, yields

the following result: The time spectrum resulting from the �tted values of the free parameters
is superimposed on the measured spectrum in Figure 8.9 and shows quite a good agreement.
The precision of the unfolded r-t relationship in presence of a gamma background is shown in
Figure 8.11. Although the rms deviation of 85 �m is much worse than without background, the
unfolded r-t relationship is still acceptable as start for the iterative autocalibration procedure.
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Figure 8.11: Time di�erence between unfolded and true �(r) converted into a radius di�erence using the
local drift velocity.
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8.2.5 Applicability in ATLAS

At ATLAS, drift tubes will be operated at di�erent magnetic �elds, temperatures, background
rates etc. These change not only the r-t relationship, but the whole response function. In
practice we cannot measure the response under all conditions; we shall use a small number
of response functions for unfolding the r-t relationship within certain calibration zones. The
spectra from all tubes in such a zone (� 100 tubes) will be summed after aligning the time axes
of all tubes. This means that there will be very high statistics.

The accuracy will depend on how much the response di�ers from the one used. We expect
eÆciency, asymmetry and Æ-ray probability to be rather independant of the conditions; it is
mainly the resolution that will be a�ected. However, away from the wire and wall the drift-
time spectrum is rather insensitive to the resolution. This insensitivity prevents us from also
extracting the resolution from unfolding.

The problem of uneven illumination in test beams will be much reduced within an auto-
calibration zone in ATLAS. The variations of the eÆciency function �(r) from one tube to the
other will also be considerably reduced. In the prototype chambers used for the test-beam
studies the wires had excentricities of up to 200 �m, whereas the concentricity speci�cation for
the �nal chambers is 100�m.
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8.3 Autocalibration Using Muon Tracks

So far we have introduced methods for determining the r-t relationship with a precision between
50 and 100 �m precision, which is a good starting point for the iterative high-precision technique
of autocalibration.

8.3.1 The Principle of Autocalibration

Autocalibration starts with a �rst-order r-t relationship rstart(t) which has a systematic deviation
"(t) from the true relationship rtrue(t):

rstart(t) = rtrue(t) + "(t) (8.30)

In the �rst iteration this start r-t relationship is used to convert the measured drift times ti in a
multilayer of tubes into hit radii to which then a straight track is �tted. The �tted track serves
for obtaining a better estimate for the r-t relationship. In the next iteration the improved r-t
relationship replaces rstart(t) for converting the drift times into radii. Again straight tracks are
�tted and used for improving the space-time relationship. This procedure is repeated until the
r-t relationship has converged.

The task of autocalibration is to gain knowledge about the deviation "(t) of the

start r-t relationship by using the information contained in the �t residuals �i:

�i � rstart(ti)� ri;�t (8.31)

The index i designates the tubes hit by the muon (see the illustration in Figure 8.12). ri;�t is
the shortest distance between the �tted track and wire i.
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Figure 8.12: Illustration of the de�nition of the �t residuals, shown for the hit in the second tube layer.

The outlined calibration principle has some important consequences:

� The muon tracks have to be straight lines in a suÆciently good approximation. In ATLAS
the muons to be used for autocalibration will have momenta down to 6GeV/c (lower selec-
tion limit of the low pT Level 1 muon trigger). Given the magnetic �eld of up to 1T, the
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deviation of a 6GeV/c muon track from the straight line is only 16�m within a multilayer,
but 1.5mm within the superlayer (chamber). This is one reason why autocalibration has
to be done for each multilayer separately.

� The r-t relationship must be the same in all tubes used for a track �t. This is another
argument restricting us to the separate calibration of every individual multilayer. In
the two multilayers of a chamber the r-t relationships are generally unequal due to the
inhomogeneous magnetic �eld and perhaps also due to slightly di�erent gas compositions
or temperatures.

Our discussion will start in a general, mathematical way: we �rst want to �nd the relation
between "(t) and �i. This will tell us which information about "(t) is available in �i. In
particular we are interested in the question whether "(t) can be uniquely inferred from the
residuals measured in a sample of tracks. From experiments it is already known that the spread
of the track incidence angles plays a crucial role (see e.g. [VIE 96, SAM 97, CRE 97]). Our aim
is to explore this issue in a more systematic way.

Based on these insights we shall present two technical realizations of autocalibration and
discuss their advantages and disadvantages.

Finally a Monte Carlo study of autocalibration for ATLAS MDT chambers with their par-
ticular spread of incidence angles will be described.

8.3.2 An Algebraic Approach to Autocalibration

8.3.2.1 The Matrix Equation of Autocalibration

Consider a track �t through n hits using rstart(t) to convert the measured drift times ti into hit
radii. As de�ned in (8.30), rstart(t) is wrong by "(t). Furthermore, each measured drift time has
a statistical error

Æti = ti � ti;mean (8.32)

where ti;mean is the mean drift time corresponding to the true distance of the track from the
wire. This translates into a statistical error on the measured hit radius

ri � rstart(ti) (8.33)

which now has two error contributions:

ri = rstart(ti;mean) +
drstart
dt

Æti

= rtrue(ti;mean) + "(ti;mean) +
drstart
dt

Æti

= rtrue(ti;mean) + "(ti;mean) + Æri (8.34)

Since the �t is determined by the hit radii in all tubes crossed by the track, the residual �i in
a tube i depends on the deviations "(tk) and on the statistical errors Ærk in all n tubes. We
express �i by a Taylor expansion in "(tk) and Ærk:

�i =
nX
k=1

d�i

drk

����
"(tk)=Ærk=0

["(tk) + Ærk] +O(2) (8.35)
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Assuming a good start r-t relationship (i.e. a small deviation "(tk)) we can drop the higher
orders and obtain the matrix equation

�i =

nX
k=1

Mik ["(tk) + Ærk] (8.36)

where we have de�ned the matrix elements as

Mik � d�i

drk

����
"(tk)=Ærk=0

: (8.37)

The next step is the determination of these matrix elements. From the de�nitions (8.31), (8.33)
and (8.37) follows

Mik = Æik �
dri;�t
drk

����
"(tk)=Ærk=0

: (8.38)

where Æik is the Kronecker symbol. The distance of the �tted track

y = mz + c (8.39)

from wire i is

ri;�t =
jmzi + c� yijp

1 +m2
; (8.40)

where (zi; yi) is the position of wire i. Now the derivative
dri;�t
drk

in (8.38) can be written as

dri;�t
drk

=
@ri;�t
@m

� @m
@rk

+
@ri;�t
@c

� @c
@rk

: (8.41)

The terms
@ri;�t
@m and

@ri;�t
@c are calculated from (8.40). The two other terms @m

@rk
and @c

@rk
can be

obtained by implicite di�erentiation of the �2 minimization equations pertaining to the track �t
procedure:

d

drk

@�2

@m
= 0 (8.42)

d

drk

@�2

@c
= 0 (8.43)

with

�2 =

nX
i=1

1

�2(ri)
[ri � ri;�t(m; c)]

2 (8.44)

Lengthy algebraic transformations which are displayed in Appendix A �nally yield the following
expression for the matrix elements:

Mik = Æik � sgn(�i;�t) sgn(�k;�t)

nX
l=1

1

�2(rk)�2(rl)
(�i � �l) (�l � �k)

 
nX
l=1

1

�2(rl)
�l

!2

�
 

nX
l=1

1

�2(rl)

!0@ nX
j=1

1

�2(rj)
�2j

1
A

(8.45)
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with

�i � 1p
1 +m2

[zi +m(yi � c)] =
p
1 +m2zi �m�i;�t : (8.46)

�i;�t is the signed track radius

�i;�t =
mzi + c� yip

1 +m2
(8.47)

j�i;�tj = ri;�t (8.48)

sgn(�i;�t) =

(
+1 if the track passes above wire i

�1 if the track passes below wire i
(8.49)

(The terms \above" and \below" become evident from Figure 8.12.)

8.3.2.2 Autocalibration Constraints for a Given Track

In the previous section we have shown that the �t residuals �i for a given track can be expressed
as a function of the systematic and statistical errors "(tk) and Ærk of the hit radii with the matrix
equation (8.36). The dimension of the matrix is the number of tubes crossed by the track.

The problem of autocalibration consists in determining "(tk) from the �i. As a �rst step we
want to eliminate the statistical error Ærk. Keeping in mind that the matrix M depends on m
and c, we average (8.36) over many tracks with the same slope and intercept, such that hÆrki
can be neglected compared to "(tk). This results in

h�ii =
nX
k=1

Mik "(tk) (8.50)

Now the straightforward idea is to invert M and determine all "(tk). However, M turns out to
be singular:

rank(M) = dim(M)� 2 = n� 2 (8.51)

There are only n � 2 independent equations, with the consequence that the linear system of
equations is underdetermined. We found an algebraical proof for rank(M) � n � 2 which is
given in Appendix B. This is suÆcient to demonstrate the singularity. For the general equality
we only have empirical evidence. Intuitively the theorem (8.51) can be understood by considering
that the straight-line �t correlates the n components �i by �xing two degrees of freedom, namely
m and c.

To each possible solution "(t) one can add a function �(t) obeying to the homogeneous
equation

0 =
nX
k=1

Mik �(tk) (8.52)

without any change to the observed residuals �i.
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The physical conclusion from (8.51) is the fact that in general the �t residuals for

a given track do not provide enough information to uniquely infer the impact radii

at the measured times ti.

Later this observation will be generalized to samples of tracks with di�erent intercepts and
identical slopes. But before extending the formalism we want to further analyze the amount of
information contained in the residuals for a �xed track.

Fortunately, since the r-t relationships of all tubes used for the track �t are required to be
equal, there are constraints on the functions of freedom �(t). We will start with the general
treatment of the constraints and then illustrate this complicated matter with some examples.

� Due to the correlation between the drift times in di�erent tubes Equation (8.52) contains
information about the shape of possible functions �(t). See Example 2 further below.

� If two or more of the drift times ti are equal, the number of independent variables �(tk)
in (8.52) is reduced and we can replace (8.52) by an equation where the matrix columns
corresponding to equal �(tk) are added:

0
BBBBBBBBBB@

M11 ::: M1� ::: M1� ::: M1n
...

...
...

...
...

...
...

...
Mn1 ::: Mn� ::: Mn� ::: Mnn

1
CCCCCCCCCCA

| {z }
n columns

0
BBBBBBBBBBB@

�(t1)
...

�(t�)
...

�(t�)
...

�(tn)

1
CCCCCCCCCCCA

= ~0 with t� = t� (8.53)

transforms into

0
B@ M11 � � � M1� +M1� � � � M1n

...
...

Mn1 � � � Mn� +Mn� � � � Mnn

1
CA

| {z }
n�1 columns

0
BBBBBB@

�(t1)
...

�(t�)
...

�(tn)

1
CCCCCCA = ~0 (8.54)

and so on until all involved ti are di�erent.

Suppose we have reduced the number of variables by k. We now deal with a non-square
matrix with n rows and n� k columns.
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The next step is to triangularize the reduced matrix equation with the Gaussian algorithm.
Suppose the lowest l rows of the resulting upper-right triangular matrix consist only of 0's:

n� l

8>>>><
>>>>:
l

8<
:

0
BBBBBBBBBBB@

M 0
11 � � � � � � � � � � � � M 0

1;n�k
0

. . .
...

...
. . .

. . .
...

0 � � � 0 M 0
n�l;n�l � � � M 0

n�l;n�k
0 � � � � � � 0 � � � 0
...

...
...

0 � � � � � � 0 � � � 0

1
CCCCCCCCCCCA

| {z }
n�k

0
B@ �(t01)

...
�(t0n�k)

1
CA = ~0 (8.55)

The variables �(t0i) (i = 1; :::; n � k) are a subsample of the �(ti) (i = 1; :::; n) with rear-
ranged indices.

The original matrix (before reducing the variables) had the rank n� 2, corresponding to
2 rows with only zeroes after triangularization. After the reduction of variables by simple
addition of columns the number of zero-rows cannot be smaller than before. Therefore we
know that l � 2. l > 2 happens only in a few special cases where more than two columns
are added up and yield an additional row of zeroes after triangularization. About k we
know that 0 � k < n.

Depending on k and l the following cases can occur:

1. k = l: By dropping the rows with only 0's the triangularized matrix becomes
quadratic and non-singular. All �(tk) have to be zero. In that case the function
"(t) is uniquely determined at the drift times ti. However, these unique cases are
better characterized by the radii r where "(t(r)) = 0, and not by the drift times at
which this occurs2. Let us introduce the name \�xpoint" for a triple (�; c; r=R) with
unique autocalibration result. The incidence angle � is de�ned such that tan� = m,
where m is the track slope. c is the track intercept and R the tube radius.

Note that for achieving k = l we need k � 2, i.e. the number of variables �(tk) must
be reduced by at least 2.

2. k < l: The system is underdetermined by l � k degrees of freedom. This number of
undetermined degrees of freedom has to be compared with the total number n� k of
di�erent variables �(tk). The degree of determination can be quanti�ed by

Q � 1� l � k

n� k
=
n� l

n� k
; (8.56)

which ranges between 0 and 1.

2The radii and incidence angles where autocalibration gives unique results are quantities which only depend
on the chamber geometry, whereas the corresponding drift times depend on the individual gas mixtures.
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Q = 1 characterizes a �xpoint.
Q = 0 means that �(t) is arbitrary and not constrained at all. This happens in the
case � = 30o, r < (

p
3� 1)R (see Example 3 further below).

0 < Q < 1 means that the system is not uniquely determined, but the set of possible
solutions �(t) is constrained.

3. k > l is unphysical and does not occur. It would correspond to n � l contradictory
equations for n � k < n � l variables, implying that there is no function "(t) which
could produce the observed residuals.

Note that n is the number of hits on the track, not the number of tube layers! For
example a track through a triple layer can cross more than three tubes (mainly at big
angles).

Each constraint on the r-t relationship at a radius r is contributed by one speci�c track
with intercept c and slope m (or angle �). For a complete characterization of the con-
straints they would have to be drawn into a three-dimensional diagramme with axes �,
c and r=R, which is hardly feasible. Since in practice the available intercept range is big
enough to cover all impact radii in all tube layers whereas the range in � is limited, the
most interesting projection of the (�; c; r=R)-space is the one onto the (�; r=R)-plane. In
general the degree of determination Q in a point (�; r=R) is not unambiguous because
there are several tracks with identical � but di�erent c giving di�erent amounts of infor-
mation about the r-t relationship at r (see Example 6 below). We decided to give for
every point in the (�; r=R)-plane the maximum value Qmax(�; r=R) � maxfQ(�; c; r=R)g.
Such constraint diagrammes are displayed in the Figures 8.13 to 8.15. The �rst of them
represents autocalibration for multilayers with three tube layers; the second plot is the
analogue for four tube layers. The last �gure refers to a common autocalibration for both
triple layers of a chamber. These �gures have been obtained by a \brute force" search for
tracks with identical radii at given incidence angles �, followed by an algebraic evaluation
of the respective matrix equations.

{ The circular markers denote the �xpoints.

{ The dashed lines at � = 30o have Q = 0.

{ The points (�; r=R) lying on the solid lines are de�ned by tracks where two or more
hits have the same drift times (i.e. k � 1), but where one degree of freedom out of
n� k > 1 in the matrix equation remains undetermined: these points have l� k = 1
and thus Q = (n � k � 1)=(n � k). The black (darker) lines stand for k = 1 (see
also Example 4), the green (lighter) lines for k = 2; n � 4 (see also Example 6). The
condition n� k > 1 has the purpose to exclude the case n� k = l� k = 1 where the
only available degree of freedom is undetermined (30o case). The value of n relevant
for a point (�; r=R) can be looked up in the Figures 8.16 and 8.17 for three and four
layers respectively.

{ The points away from all lines and markers correspond to tracks for which all drift
times ti are di�erent. They have k = 0, l = 2 and thus Q = (n � 2)=n which is the
worst case apart from the 30o problem with Q = 0.
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For all three multilayer con�gurations there are almost no constraints at track angles
around 30o. This will be geometrically clari�ed in Example 3 below. Another diÆcult
angular region is around 0o (see Example 2). The region between about 5o and 22o is
rather well constrained. Above about 35o the typical number of hits per layer becomes
greater than one and the number of hits per track increases. Therefore the chance for
having identical drift times in two hits is enhanced, which leads to a high �xpoint density.
Increasing the number of tube layers has the same e�ect.

A bigger number of hits per track has the additional advantage that the degree of deter-
mination for the not fully constrained cases increases: For three hits a track passing all
tubes at di�erent radii determines the r-t relationship at these radii with Q = 1=3. For
four hits this value increases to Q = 1=2 and for six hits to Q = 2=3. If two track radii are
equal (i.e. k = 1) and one degree of freedom is undetermined (i.e. l = k + 1 = 2), we get
Q = 1=2 for three hits, Q = 2=3 for four hits and Q = 4=5 for six hits.

Figure 8.15 demonstrates that simultaneous autocalibration for all six layers of a chamber
would be very advantageous from the point of view of �xpoints. Apart from the diÆcult
region around 30o the density of �xpoints is high. The gap from 36o to 40o in the �xpoint
pattern does not constitute a real problem because it is �lled by many constraints with
one undetermined degree of freedom (like the solid lines in the Figures 8.13 and 8.14).
These have Q � 4=5. Unfortunately, as we have explained in Section 8.3.1, a common
autocalibration for all six layers of a chamber will not be possible at ATLAS.
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Figure 8.13: Constraints on the result of autocalibration for a multilayer with 3 tube layers. The picture
indicates for every track radius r the maximum achievable degree of determination from
tracks with incidence angle �. The circular markers and the thick line at r = 0 represent
�xpoints (Q = 1). The explanation why r = 0 is a �xpoint for all angles, is given in
Example 5. The solid lines correspond to Q = (n�k�1)=(n�k) (1 undetermined degree of
freedom): the black (darker) lines stand for k = 1, the green (lighter) lines for k = 2; n � 4.
The dashed line at 30o has Q = 0. All other points in the plane have Q = (n � 2)=n
(2 undetermined degrees of freedom).
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Figure 8.14: Constraints on the result of autocalibration for a multilayer with 4 tube layers. The circular
markers and the thick line at r = 0 represent �xpoints (Q = 1). The solid lines correspond
to Q = (n � k � 1)=(n � k): the black (darker) lines stand for k = 1, the green (lighter)
lines for k = 2; n � 4. The dashed line at 30o has Q = 0. All other points in the plane have
Q = (n� 2)=n. This �gure concerns the MDT stations BIS, BIL, BIR, BEE, EIS, EIL.
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Figure 8.15: Constraints on the result of autocalibration for an entire chamber with two triple layers of
tubes (distance between the multilayers: 235mm). For a better visibility only the �xpoints are
shown. The worst case at 30o and r < 0:56 has Q = 1=2. All other points have 2=3 � Q < 1.
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Figure 8.16: Three tube layers: The colour code (or grey scale) gives the number n of hits on the track
with angle � determining the r-t relationship at a radius r with the highest Q.
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Figure 8.17: Four tube layers: The colour code (or grey scale) gives the number n of hits on the track
with angle � determining the r-t relationship at a radius r with the highest Q.
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Examples

After the general treatment we now give typical examples for the most important kinds of
constraints. This illustration will concentrate on multilayers with three layers of tubes.

1. All track radii are di�erent:

Consider e.g. a track with � = 5o and a track radius r1 = 0:5R in the �rst layer
(Figure 8.18). It has n = 3 hits.

Figure 8.18: Illustration of Example 1. All impact radii are di�erent. Q = 1=3.

The matrix equation reads

~0 =

0
@ 0:15013 0:31623 0:16610

0:31623 0:66610 0:34987
0:16610 0:34987 0:18377

1
A
0
@ �(t(0:50R))

�(t(0:35R))
�(t(0:80R))

1
A

Since we cannot reduce the number of variables �(t(ri)), we get k = 0. Triangularization
yields:

~0 =

0
@ 0:15013 0:31623 0:16610

0 0 0
0 0 0

1
A
0
@ �(t(0:50R))

�(t(0:35R))
�(t(0:80R))

1
A

The two last rows consisting of zeroes we have l = 2. Thus the degree of determination is
Q = 3�2

3�0 = 1
3 . This means that the r-t relationship can vary freely in any two out of the

three involved radii. The third radius (i.e. one out of three) is �xed by the track through
the two others.

2. Fixpoint and symmetry for � = 0o:

The matrix equation for � = 0o is

~0 =

0
@ 1=6 1=3 1=6

1=3 2=3 1=3
1=6 1=3 1=6

1
A
0
@ �(t(r1))

�(t(R� r1))
�(t(r1))

1
A
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Since the impact radii in the �rst and third tube are equal, we can add the �rst and the
third column of the matrix:

~0 =

0
@ 1=3 1=3

2=3 2=3
1=3 1=3

1
A� �(t(r1))

�(t(R� r1))

�

After triangularization we obtain

~0 =

0
@ 1=3 1=3

0 0
0 0

1
A� �(t(r1))

�(t(R� r1))

�

For the special track with r1 = R=2 (shown in Figure 8.19a) another reduction of variables
can be done:

~0 =

0
@ 2=3

0
0

1
A� �(t(R=2)) �

In this case we have n = 3, k = 2, l = 2 and thus Q = 1, i.e. a �xpoint.

All other tracks have n = 3, k = 1, l = 2 and Q = 1=2. The matrix equation for general
r1 yields a symmetry condition for �(t(r)):

0 = �(t(r1)) + �(t(R � r1)) :

�(t(r)), i.e. the function by which the calibrated r-t relationship may be wrong, has
to be antisymmetric about the �xpoint at r = R=2 (like the two example functions in
Figure 8.19b).

R/2
R/2

R/2

(a) (b)

r

ξ(t(r))

R/2 R

Figure 8.19: (a) Illustration of the hit pattern for Example 2. (b) Two freedom functions �(t(r)) allowed
by tracks with � = 0o.
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3. The problem at � = 30o:

Tracks passing a triple layer of tubes at an angle of 30o can cross three or six tubes,
depending on the track intercept (Figure 8.20).

Track 2

Track 1

r

r2

1

1r

Figure 8.20: Hit pattern for Example 3: track 1 doesn't provide any information about the r-t relationship;
track 2 de�nes a �xpoint at r � 0:866R.

Let us �rst look at the case with n = 3. These tracks pass all tubes on the same side of the
wires and at identical impact radii ri = r1. This happens if r1 < (

p
3�1)R (symbolized by

the dashed line in Figure 8.13). A representative is track 1 in the �gure. The corresponding
matrix equation

~0 =

0
@ 1=6 �1=3 1=6
�1=3 2=3 �1=3
1=6 �1=3 1=6

1
A
0
@ �(t(r1))

�(t(r1))
�(t(r1))

1
A

can be reduced by adding all three columns:

~0 =

0
@ 0

0
0

1
A� �(t(r1)) �

Obviously this equation doesn't provide any constraint on �(t(r1)). We have k = 2, l = 3
and thus Q = 0. This dilemma is also easy to understand intuitively: All measured drift
times are equal (in the limit of perfect resolution or in�nite statistics). Whatever r-t
relationship is used, it will attribute the same radius to all hits, and the �t residuals will
be zero.

In the case n = 6 which happens for r1 > (
p
3� 1)R the situation is better (track 2 in the

�gure):
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~0 =

0
BBBBBB@

0:47619 0:38095 �0:23810 0:09524 0:04762 �0:19048
0:38095 0:70476 0:20952 �0:12381 0:03810 0:04762
�0:23810 0:20952 0:81905 0:15238 �0:12381 0:09524
0:09524 �0:12381 0:15238 0:81905 0:20952 �0:23810
0:04762 0:03810 �0:12381 0:20952 0:70476 0:38095
�0:19048 0:04762 0:09524 �0:23810 0:38095 0:47619

1
CCCCCCA

0
BBBBBB@

�(t(r1))
�(t(r2))
�(t(r1))
�(t(r2))
�(t(r1))
�(t(r2))

1
CCCCCCA

~0 =

0
BBBBBB@

0:28571 0:28571
0:62857 0:62857
0:45714 0:45714
0:45714 0:45714
0:62857 0:62857
0:28571 0:28571

1
CCCCCCA
�
�(t(r1))
�(t(r2))

�

~0 =

0
BBBBBB@

0:28571 0:28571
0 0
0 0
0 0
0 0
0 0

1
CCCCCCA
�

�(t(r1))

�(t(
p
3R� r1))

�

At r = 1
2

p
3R � 0:866R we �nd a �xpoint. At the other radii Q = 1=2.

4. One pair of identical radii:
Consider a track with � = 5o and track radii r1 = r2 = 0:42R, r3 = 0:72R (Figure 8.21).

Figure 8.21: Illustration of Example 4 (\single pair"). Q = 1=2.

In the matrix equation

~0 =

0
@ 0:15013 0:31623 0:16610

0:31623 0:66610 0:34987
0:16610 0:34987 0:18377

1
A
0
@ �(t(r1))

�(t(r1))
�(t(r3))

1
A
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we can add the �rst two columns and get after triangularization:

~0 =

0
@ 0:46635 0:16610

0 0
0 0

1
A� �(t(r1))

�(t(r3))

�

This system has one undetermined degree of freedom: l = 2, k = 1, n = 1; thus Q = 1=2.
Consequently the points (5o; 0:42) and (5o; 0:72) sit on black solid lines in Figure 8.13.

5. One pair of identical radii with �xpoint at r = 0:

A peculiar situation happens if the track goes through the wire of an inner layer, like in
Figure 8.22. The radii in the adjacent tubes are then equal and allow the reduction of the
matrix equation.

r  = 0
2

r1

r1

Figure 8.22: Illustration of Example 5 (\centred pair"). Q = 1=2.

~0 =

0
@ 1=6 �1=3 �1=6
�1=3 2=3 �1=3
�1=6 �1=3 1=6

1
A
0
@ �(t(r1))

�(t(0))
�(t(r1))

1
A

~0 =

0
@ 0 �1=3

0 0
0 0

1
A� �(t(r1))

�(t(0))

�

The consequence is that �(t(r1)) is completely unconstrained whereas at r = 0 there is
a �xpoint. It would be worthwile checking whether this feature can be used to solve the
t0-problem, i.e. the determination of the absolute starting point of the drift-time scale.

6. Two pairs of identical radii without �xpoint:

We now want to convince ourselves that reduction by two variables does not necessarily
give rise to �xpoints. An example is shown in Figure 8.23a, where the track radii in the two
outer hits and those in the two inner hits are equal. Now the calibrated r-t relationship
can be wrong at both involved radii in a correlated way such that instead of the true
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(a) (b)

true track
wrong track

0.91R

0.91R 0.91R

0.91R

Figure 8.23: Hit pattern for Example 6: (a) \double pair" without �xpoint; the solid line and hit radii
represent the true event geometry; the dotted radii correspond to a wrong r-t relationship
leading to the dotted track. (b) Alternative track determining r = 0:91R with Q = 2=3
instead of Q = 1=2 like the track in (a).

track (solid line in the �gure) another track (e.g. the dotted line) is reconstructed without
any in
uence on the �2 of the �t. In the matrix formalism the situation for � = 25o,
r1 = 0:73R, r2 = 0:91R looks as follows:

~0 =

0
BB@

0:28379 0:37551 �0:12449 �0:21621
0:37551 0:71621 0:21621 �0:12449
�0:12449 0:21621 0:71621 0:37551
�0:21621 �0:12449 0:37551 0:28379

1
CCA
0
BB@

�(t(r1))
�(t(r2))
�(t(r2))
�(t(r1))

1
CCA

~0 =

0
BB@

0:06758 0:25102
0:25102 0:93242

0 0
0 0

1
CCA
�
�(t(r1))
�(t(r2))

�

~0 =

0
BB@

0:06758 0:25102
0 0
0 0
0 0

1
CCA
�
�(t(r1))
�(t(r2))

�

With n = 4, l = 3 and k = 2 we �nd the degree of determination Q = 1=2.

The point (25o; 0:91) is better determined by another track, parallel to the �rst one but
with a di�erent c. That other track which is shown in Figure 8.23b has k = 1 and Q = 2=3.
Since Figure 8.13 gives for every point the highest possible Q, points like (25o; 0:91) are
labelled by a black solid line corresponding to k = 1 and not by a green line for k = 2.

Let us summarize these technical considerations in simpler words:
So far we have examined the constraints that an individual track contributes to the result

of autocalibration. It was shown that only for a few tracks with particular angles and at some
discrete radii the calibrated r-t relationship is uniquely determined by the measured track �t
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residuals. Other, less stringent constraints allow deviations of the r-t relationship, but keep them
limited by imposing certain conditions on their shape. Requiring smoothness and monotony for
r(t) enhances the practical importance of these partial constraints.

However, the �xpoint plots show that the individual constraints are not suÆcient to obtain
an r-t relationship which is correct over the full radial range. The obvious solution is to combine
tracks with di�erent angles, each of them contributing its own constraints.

8.3.2.3 Autocalibration Constraints Combining Di�erent Tracks

If the only attainment of combining di�erent tracks were a simple collection of the individual
�xpoints, the situation would be rather desperate, particularly for three layers: For example,
even within the large angular range from 0o to 11o we would only have three �xpoints and some
partial constraints leaving room for deviations. The good news of the following considerations
is that a sample of di�erent tracks contains more information than just a linear superposition
of the previously derived constraints. Even tracks with identical slopes but di�erent intercepts
bear astonishing correlations.

The treatment will start with a general derivation of the additional constraints from com-
bining tracks. Afterwards the full information contained in a sample of tracks with identical
slope but the entire range of intercepts will be analyzed. The �nal step will be the correlation
of di�erent track angles.

a. Fixpoints of Higher Order

Let us assume that we have N di�erent tracks. Each track i has ni hits with impact radii rij
(j = 1; : : : ; ni) and measured drift times t(rij). We now merge the individual matrix equations

Mi
~�i = ~0 (i = 1; : : : ; N) (8.57)

where

~�i �

0
B@ �(t(ri 1))

...
�(t(ri ni))

1
CA (8.58)

to one common equation:

0
BBBB@

M1 O : : : O

O
. . .

...
...

. . . O
O : : : O MN

1
CCCCA

| {z }
M

0
B@

~�1
...
~�n

1
CA = ~0 (8.59)
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The common matrix has the properties

dim(M) =
NX
i=1

ni (8.60)

rank(M) =

NX
i=1

ni � 2N (8.61)

In a similar way as with the normal �xpoints we can try to achieve uniqueness by looking for
identical radii. This time however, identical radii are also relevant if they appear in di�erent
tracks. Again we assume that the number of independent variables �(t(rij)) can be reduced by
k, and after triangularization of the matrix the number of zero-rows is l. If k = l we have found
a new �xpoint. Note that due to (8.60) and (8.61) we need k � 2N . A �xpoint created by
correlating N tracks will be called \�xpoint of N th order".

The mechanism will be illustrated by the discussion of some interesting cases:

b. Correlation of Tracks with Identical Slope

Consider the two tracks in Figure 8.24. They have a common incidence angle of 16:1o. Their
impact radii in the �rst tube are r1 = 0:24R and r2 = 0:72R respectively. For the two tracks
together only these two di�erent impact radii occur.

r1

r2 r2

r1

2r

r1

Track 1

Track 2

Figure 8.24: Creation of a second-order �xpoint by correlating the information of track 1 and track 2.

The common matrix equation for this two-track system is

0
BBBBBB@

0:11468 �0:27523 �0:16055 0 0 0
�0:27523 0:66055 0:38532 0 0 0
�0:16055 0:38532 0:22477 0 0 0

0 0 0 1=6 �1=3 �1=6
0 0 0 �1=3 2=3 1=3
0 0 0 �1=6 1=3 1=6

1
CCCCCCA

0
BBBBBB@

�(t(r1))
�(t(r2))
�(t(r2))
�(t(r2))
�(t(r1))
�(t(r1))

1
CCCCCCA = ~0
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Due to the equal impact radii we can add the columns 1, 5, 6 and the columns 2, 3, 4:

0
BBBBBB@

0:11468 �0:43578
�0:27523 1:04587
�0:16055 0:61009
�1=2 1=6
1 �1=3
1=2 �1=6

1
CCCCCCA
�
�(t(r1))
�(t(r2))

�
= ~0

Triangularization and suppression of the zero-rows yields

�
0:11468 �0:43578

0 �0:39749
��

�(t(r1))
�(t(r2))

�
= ~0 ;

which is non-singular! This implies that there are two second-order �xpoints at r1 = 0:24R and
r2 = 0:72R for the angle 16:1o.

This is a particularly simple example where only two tracks are required. Most other new
�xpoints have a higher order. A combinatorical consideration reveals that each point on a solid
line for � < 27:7o in Figure 8.13 is a �xpoint of order � 16: At each angle in that range there
is a set of N � 16 tracks for which only N di�erent impact radii occur. The resulting matrix
equation turns out to be non-singular. Intuitively this mechanism can be understood considering
that the tracks corresponding to the points on the solid lines have only one undetermined degree
of freedom which can be compensated by information from other tracks.

However, in practice �xpoints of high order are not as useful as �xpoints of lower order: Since
a high-order �xpoint relies on the equality of radii in many tracks, the statistical e�ects due to
the �nite single hit resolution become important and lead to a dilution of these constraints.

We have made a systematic search for �xpoints up to the fourth order, i.e. by looking for
correlations between up to four tracks with the same angle. We restricted ourselves to the most
critical case of three tube layers and to an angular range range from 0o to 45o. The result
is illustrated in Figure 8.25. We found that at every angle where at least two lines of partial
constraint cross each other, there are �xpoints of order � 4.

Up to the present these insights are purely empirical. We have no theorem determining the
order of a �xpoint from �rst principles.

Intermediate Conclusion:
At this stage we know all constraints for a given track angle, provided that the available tracks
have enough spread in their intercept to cover the full radial range of the tubes in all layers.
Figure 8.25 shows that in addition to the fundamental �xpoints discussed in the previous section
there are �xpoints of higher order, generated by correlation of tracks with di�erent intercepts.

However, even with these new constraints a single track angle is not suÆcient for a unique
autocalibration result.

The next step is to look for correlations between tracks with di�erent slopes.
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Figure 8.25: Fixpoints for three tube layers up to the fourth order: Æ: 1st order; �: 2nd order; �: 3rd

order; N: 4th order. The dotted lines correspond to the lines in Figure 8.13. They represent
�xpoints of order � 16.
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c. Correlation of Tracks with Di�erent Slopes

�. \Recycling" of Fixpoints

The �rst examples will show that the information from two ordinary (�rst order) �xpoints can
be combined to give rise to new �xpoints: Figure 8.26a shows a track with � = 5:8o and impact
radii r1 = 0:67R, r2 = 0:33R and r3 = 0:5R. At r3 there is a �xpoint for � = 0o (Section 8.3.2.2,
Example 2), at r2 for 10:89o. Since the track under consideration is �xed by r2 and r3, the
r-t relationship is now also �xed at r1. We refrain from giving the explicite matrix calculation
because it doesn't provide any new knowledge compared to the previous examples which were
discussed in full detail.

A second example is given in Figure 8.26b: r1 = 0 is �xed by all tracks through the wire in
an inner tube layer (Section 8.3.2.2, Example 5); r3 = 0:5R is a �xpoint for � = 0o. Therefore
r2 = 0:74R is determined by a track with � = 8:3o connecting the radii r1 and r3.

r3r2r1

r1

r2
r3

(a) (b)

Figure 8.26: Examples for \�xpoint recycling": (a) A track with � = 5:8o through the �xpoints r2 = 0:33R
and r3 = 0:5R de�nes the r-t relationship at r1 = 0:67R. (b) The track with � = 8:3o through
r1 = 0 and r3 = 0:5R �xes the third radius r2 = 0:74R.

This \recycling" mechanism yields �xpoints of third order: We need two tracks de�ning the
ordinary �xpoints and one track connecting them with each other.

�. Correlations of Tracks without own Fixpoints

The two tracks drawn in Figure 8.27 have very di�erent incidence angles and do not de�ne any
�xpoints on their own. Nevertheless the combined matrix equation has a unique solution for
�(t(0:24R)) and �(t(0:72R)).

The condition for observing this correlation is the availability of tracks with incidence angles
of 0o and 16:1o. At ATLAS very few chambers will dispose of such a wide angular range.

Up to the third order we did not �nd many representatives of this class of �xpoints.
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r1

r2 r2

r2
Track 2 (16°)

Track 1 (0°)
r1

Figure 8.27: Example for the creation of second order �xpoints by correlating a track at 0o and a track
at 16:1o. The impact radii are r1 = 0:24R and r2 = 0:72R.


. Evaluation of Higher Order Fixpoints

A complete search for the �xpoints of order > 1 is very diÆcult because for many of them a
high number of tracks with sometimes very di�erent angles has to be correlated. We have not
found any algorithm determining the full set. However, the practical importance of �xpoints
from tracks with very di�erent angles is small anyway because at ATLAS the angular spread of
muon tracks will be very limited (cf. Appendix C).
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Figure 8.28: Fixpoints up to the third order for three layers. The solid circles on the right hand side
of the radial axes indicate the positions of �xpoints from correlations between tracks with
di�erent angles. All markers on the left hand side correspond to �xpoints contributed by the
individual angles. The primary �xpoints are symbolized by open squares, the secondary and
tertiary ones by open circles.
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More relevant are the sets of �xpoints that are available for a given angular range. In
Figure 8.28 we have collected all the �xpoints up to the third order which we found in the
intervals between angles with primary �xpoints ([0o; 11o], [11o; 30o] and [30o; 44o]) and in some
narrower intervals around angles with primary �xpoints ([0o; 9o], [6o; 17o] and [22o; 37o]). Note
that these �xpoints require the presence of the entire interval. Most of them are generated
by the \recycling" mechanism and disappear when the angles with primary �xpoints are not
available. This is well visible comparing diagrams (a) and (d) or { in an even more impressive
way { comparing (c) and (f). If the angular interval around 30o is narrower than [21o; 38o], the
only remaining �xpoint is the primary one at (�; r=R) = (30o; 0:866).

8.3.3 Autocalibration Methods and their Performance

Up to this point we have investigated the principle capabilities of autocalibration. The con-
straints discussed in the previous section constitute the complete information provided by the
measured track residuals. We have shown that even by mixing tracks with a wide range of
angles the r-t relationship is not �xed at every radius. Hence in the strict mathematical sense
the result of autocalibration is not unambiguous. However, in practice we need to know the r-t
relationship only at a �nite number of drift times, usually every 10 ns. Therefore we have some
hope that the density of constraints is high enough for a practically unique determination of
r(t). Before investigating this question in a Monte Carlo study of autocalibration at ATLAS,
we shall focus on technical realizations of the autocalibration principle.

We shall �rst look at the classical autocalibration technique and ask how it takes advantage
of the available information. Afterwards we shall tackle the challenge of �nding an algorithm
making maximum use of the autocalibration constraints.

8.3.3.1 The Conventional Autocalibration Technique

As we have said in the short introduction at the beginning of Section 8.3, autocalibration is an
iterative method. In every iteration i the current estimate r(i)(t) for rtrue(t) serves for a track
�t, then the residuals (8.31) are measured and used to determine a correction to the current r-t
relationship.

In the classical method the residuals from a track �t are histogrammed as a function of the
drift time. However, for a given track the residuals in the individual tube layers are di�erent and
cannot be merged in one common histogramme: the track �t is most determined by the hits in
the outer layers. This means that for a given deviation of the current r-t relationship from the
true one, the residuals are biggest in the inner tubes3. Therefore conventional autocalibration
only uses the residuals in one of the inner tube layers, i.e. �2 in the case of three layers and
�2 or �3 in the case of four layers. These residuals are then averaged over many tracks within
about 50 drift-time slices and directly applied as correction to the current estimate r(i)(t):

r(i+1)(t) = r(i)(t)� h�2(t)i (8.62)

with r(0)(t) = rstart(t).

3These facts are fully expressed by the matrix equation (8.50). Here we have only put some of its aspects into
simpler words.
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The algorithm sequence (track �t ! histogramming �2 versus t2 ! correction of r(t)) is
repeated until the (t2;�2)-distribution is a 
at band centred at zero (Figure 8.29).
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Figure 8.29: Residuals in the middle tube layer versus drift time in that layer. (a) at the �rst iteration;
(b) at the 11th iteration. This autocalibration was done for the angular range of the chamber
BML 4 ([24o; 33o]).

With the notation of the matrix formalism this approach is equivalent to the assumption

h�2(t2)i = "(t2) (8.63)

instead of the correct matrix equation

h�i(ti; �)i =
nX
k=1

Mik(�) "(tk) (8.64)

Apparently the assumption (8.63) is a very strong approximation. It has the following
consequences:

� The information contained in the residuals is not correctly used.

� One aspect of the information is completely ignored: The residuals are only distinguished
by the drift time t2, while their angular dependence is not taken into account.
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� In the case of three hits it is justi�ed to only use �2 because according to Eq. (8.51) for
a track with n = 3 hits there is only n� 2 = 1 independent residual. We would preserve
the full information by exploiting

h�2(t2; �)i =
3X

k=1

M2k(�) "(tk) :

On the other hand, for n > 3 information is lost if only the residual in one tube is analyzed.
In the four-layer case there have been attempts to scale the residuals of di�erent layers
with respect to each other in order to �ll them into a common histogramme. However, the
scale factors derived at � = 0o failed for other angles, which is no big surprise considering
the angular dependence of the matrix.

Later (Section 8.3.6.2) we shall see that these problems result in a rather slow convergence if
the typical incidence angle of the tracks is in a range with poor constraints and if the angular
spread is low. In those cases also the �nal calibration precision su�ers.

Looking at the oversimpli�cation passing from (8.64) to (8.63), it is even surprising that
the conventional autocalibration technique converges at all. Our attempt of explanation is the
following:

For simplicity we assume n = 3 and focus on the residual in the middle tube. By ignoring
the angular dependence of the residuals the old autocalibration averages the matrix elements
over the angle:

h�2(t2; �)i� =

3X
k=1

hM2k(�)i� "(tk) (8.65)

A detailed analysis of the angular dependence of M2k reveals that the non-diagonal elements do
not always vary smoothly with �. When the slope is changed such that in layer k a di�erent
tube is hit, the non-diagonal element M2k changes sign, while the diagonal elements don't do
so. Thus, if the angular spread is big, the non-diagonal elements average out:

h�2(t2; �)i�
wide spread in �� hM22(�)i� "(tk) (8.66)

Now the basic mistake in the assumption of the old technique is the missing factor hM22(�)i�
which can be compensated by a bigger number of iterations. An example is given in Figure 8.30
where the distributions of the matrix elementsM21,M22 andM23 are shown for the large angular
range [0o; 25o] as it is available at the ATLAS chamber BOL 1. Under such favourable conditions
the algorithm converges rather fast and yields a good precision.

For low angular spread the non-diagonal elements remain important, as is visible in
Figure 8.31 for the range [24o; 33o]. We shall see that for such low spreads conventional
autocalibration has diÆculties.
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Figure 8.30: Distribution of the matrix elements M21, M22 and M23 for the angular range of tracks
through BOL 1 ([0o; 25o], see Appendix C).
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Figure 8.31: Distribution of the matrix elements M21, M22 and M23 for the angular range of tracks
through EOL 6 ([24o; 33o], see Appendix C).

8.3.3.2 Fitting the Global Matrix Equation

Confronted with the disadvantages of the conventional autocalibration, we have developed an
alternative technique with the design goal of making optimum use of all available information
in the residuals. This new method is closely related to the global matrix equation (8.59) for a
sample of di�erent tracks, discussed in connection with the higher-order �xpoints. The di�erence
is that instead of the homogeneous equation for the freedom function �(t) we now exploit the
inhomogeneous equation involving "(ti) and �i:0

BBBB@
M1 O : : : O

O
. . .

...
...

. . . O
O : : : O MN

1
CCCCA

| {z }
M

0
B@ ~"1 + ~Ær1

...

~"N + ~ÆrN

1
CA =

0
B@

~�1
...
~�N

1
CA (8.67)
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Mi (i = 1; : : : ; N) are the matrices belonging to the N individual tracks in the considered sample.
Like in the old autocalibration technique the tracks are �tted using a start r-t relationship which
deviates from the true r-t relationship by the function "(t). The deviations at the impact radii
of a track i with ni hits are given by the vector

~"i �

0
B@ "(t(ri 1))

...
"(t(ri ni))

1
CA : (8.68)

Furthermore there are statistical errors

~Æri �

0
B@ Æri 1

...
Æri ni

1
CA (8.69)

on the hit radii which we no longer neglect because the rows in (8.67) represent individual tracks,
not the average over many tracks with given m and c. After the �t every track has a residual
vector

~�i �

0
B@ �i 1

...
�i ni

1
CA : (8.70)

The matrices Mi for every track are estimated from the �t result (m; c) using Eq. (8.45).

An algebraic inversion of (8.67) to obtain "(t) is not possible:

� Due to the unknown statistical terms Æri there is no exact solution "(t).

� Even if we neglect Æri and reduce the number of columns with the scheme explained in
Section 8.3.2.3, the matrix remains singular in general. We cannot rely on the hypotheti-
cally possible case that an extremely good angular spread provides enough constraints for
a unique determination of "(t) for all t occurring in the considered sample of tracks.

We still found a viable solution for extracting maximum information from (8.67):

� For track reconstruction it is suÆcient to know the r-t relationship and hence "(t) in
time bins of about 10 ns width. Therefore we can discretize "(t) in 70 time slices and
thus reduce the dimension of the vector ~" to 70. Consequently the global matrix has
70 columns. If several drift times of one track end up in the same time bin, the matrix
columns corresponding to these hits are summed.

� For an application in practice it is appropriate to keep in mind that every track has only
ni�2 independent residuals and matrix rows. We can therefore reduce the number of rows

to process from Ntot �
NX
i=1

ni to Nind �
NX
i=1

(ni � 2) by only keeping independent rows.
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� By virtue of the two reduction steps the full matrix M with dimension Ntot � Ntot is
replaced by a smaller matrix ~M with dimension Nind� 70. The resulting matrix equation
looks like the following:

Nind rows

8<
:

0
@ ~M

1
A

| {z }
70 time bins

0
B@ "(t1)

...
"(t70)

1
CA =

0
B@ �1

...
�N ind

1
CA�

0
B@ D1

...
DN ind

1
CA (8.71)

where we have arranged the contributions from statistical errors (i.e. the independent rows

of M �
�
~Ær1; : : : ~ÆrN

�T
) in the terms Di on the right side.

� Without statistical errors the 70 components "(ti) would obey to0
@ ~M

1
A
0
B@ "(t1)

...
"(t70)

1
CA =

0
B@ �1

...
�N ind

1
CA (8.72)

Since we do have errors, we determine the "(ti) by minimizing

�2 �
N indX
i=1

1

�2(�i)

"
�i �

70X
k=1

~Mik "(tk)

#2
(8.73)

with

�(�i) =

vuut 70X
k=1

h
~Mik �(rk)

i2
(8.74)

where �(rk) is the spatial tube resolution at the radius rk corresponding to the time tk.

� As an alternative to the variation of all 70 components "(ti) in the �t, we parametrized
"(t) with a sum of sine functions:

"(t) =

20X
l=1

pl sin(l �
t

tmax
) : (8.75)

This allowed us to reduce the number of �t parameters from 70 to 20. The chosen
parametrization function has the property of vanishing at t = 0 and t = tmax which is
reasonable because the start r-t relationship can be chosen to match in these two points.
The advantage of the parametrization is a reduction of computing time while the precision
was observed to remain una�ected.

This new method uses the full information from the individual matrix equations. Section 8.3.6.2
will demonstrate that it has the advantage of very fast convergence: With good angular spread
only two iterations are needed. Furthermore, for low angular spread and angles around 30o

the precision of the calibrated r-t relationship is signi�cantly better than with the conventional
method.



8.3. Autocalibration Using Muon Tracks 159

8.3.4 Autocalibration Tests in Monte Carlo { The Procedure

To judge the performance of the two autocalibration techniques, we performed a Monte Carlo
study. This has several advantages with respect to using data from test beams:

� The distribution of incidence angles, i.e. our main point of interest, can be varied at will. In
test beams on the other hand only very limited angular ranges can be achieved by rotating
the prototype chambers with respect to the beam. A free choice of the angular distribution
is particularly important for studying autocalibration at ATLAS (Section 8.3.6.2).

� Individual components of the tube response can be switched on and o�.

� The problems of autocalibration can be isolated from other diÆculties: In real data analysis
we su�er from t0 problems, wire displacements, misalignment etc. which mix with the
e�ects to be investigated.

The tests were done in the following way:

1. Generation of tracks through a multilayer with ideal geometry (no wire displacements).
The number of tube layers per multilayer could be chosen. The distribution of track
intercepts was 
at within an interval whose width was such that in every layer at least one
tube was fully illuminated. The angular distribution could be custom-designed.

2. The track impact radius in every crossed tube was converted into a drift time using the
full response function P (tjr) for Ar/CO2.

3. A start r-t relationship was used to convert the drift times into hit radii.

4. Tracks were �tted to the hit radii.

5. The r-t relationship was corrected according to either the old or the new method.

6. The steps 3 to 5 were iterated until our convergence criterion was ful�lled: We expect a
statistical precision of the order (�=

p
N � 100�m=

p
N , where � is the single tube reso-

lution and N the number of tracks. Therefore we considered the calibration as converged
when the rms change of the r-t relationship between subsequent iterations was smaller
than this expected precision. For 10000 tracks the convergence criterion is 1�m.

7. The �nal r-t relationship was compared to the true one used in step 2. The calibration
precision was quanti�ed by the rms deviation de�ned in (8.1).

8.3.5 Comment on Autocalibration near the Wire

In Chapter 6 we discussed the asymmetry of the time distributions P (tjr) for impact radii
r < 2mm and the consequences for track reconstruction. To treat the domain near the wire
correctly, a maximum-likelihood track �t involving the full knowledge about the tube response
is necessary. In principle this is also true for autocalibration. However, the likelihood technique
reconstructs the track radii directly from the drift times without introducing hit radii. Thus there
are no residuals to which the matrix formalism could be applied. A genuine \maximum-likelihood
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autocalibration" would require a completely new concept which we decided to postpone unless
it would prove to be inevitable.

It turned out that autocalibration with ordinary least-squares �ts can give satisfactory results
even at small radii:

After a Monte Carlo autocalibration we have to compare the �nal r-t relationship with the
correct rtrue(t) from the event generation. But how should rtrue(t) be de�ned in terms of P (tjr)?
Up to now we have always taken the peak position p2(r) as t(r); correspondingly r(t) was
de�ned as the inverse function �(t) � (p�12 )(t). Unfortunately this de�nition is inadequate for
autocalibration because both autocalibration techniques converge to the mean radius hr(t)i =R
r P (rjt) dr for a given time t rather than to �(t). If we de�ne rtrue(t) � �(t), there is a

systematic deviation at low drift times (Figure 8.32a). If on the other hand hr(t)i is taken as
reference, the deviation disappears (Figure 8.32b).
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Figure 8.32: Comparison of the autocalibration result with the \true" r-t relationship rtrue(t). Two de�-
nitions of rtrue(t) were tried: (a) rtrue(t) � �(t) (peak position); (b) rtrue(t) � hr(t)i. This
autocalibration with the new method was based on 100000 tracks with the angular spread of
the chamber BOL 1.

Of course, comparing the calibrated r-t relationship with hr(t)i instead of �(t) does not solve
the fundamental problem of asymmetric time distributions near the wire. Individual tracks
reconstructed with the least-squares method will still have biases if their drift times are just
converted into the corresponding hr(t)i. However, since we know asymmetry p1(r) and resolution
p3(r) from test beams, it will be possible to construct the full P (tjr) from the autocalibrated
hr(t)i.

In other words, autocalibration determines one component of P (tjr), namely the mean radius
as a function of t. The other components of the response must be injected from external
knowledge.
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8.3.6 Autocalibration at ATLAS

In this section we shall analyze the performances of the two autocalibration techniques applied
to the track-angle distributions as they will be present in the individual ATLAS chambers. The
main aim of the study is to know whether the angular spread is suÆcient to calibrate the r-t
relationship with an rms precision better than 20�m. We are also interested in the statistics
required for calibrating an r-t relationship. This will allow us to estimate the time needed for
collecting enough data for a calibration of the entire muon spectrometer.

8.3.6.1 Determination of the Angular Spread in ATLAS MDT Chambers

The general Monte Carlo procedure was already described in Section 8.3.4. However, we still
need to determine the distribution of track incidence angles for every MDT chamber in ATLAS.

In Section 8.3.1 we have reasoned that for autocalibration at ATLAS all muons with trans-
verse momenta above 6GeV/c will be usable in the sense of having a track curvature which can
be neglected within a multilayer. Since this lower limit coincides with the threshold of the low
pT level 1 muon trigger, all muonic events selected by the ATLAS trigger strategy can be used.

To measure the distributions of track incidence angles in all di�erent chambers, a full detector
simulation with the programme DICE was done. At the ATLAS vertex 24000 single muons
were generated with transverse momenta above 6GeV/c distributed according to the inclusive
muon cross-section shown in Figure 2.5b. Due to the strong decrease of the cross-section with
increasing pT we introduced an upper cut-o� at 60GeV/c. The pseudo-rapidity distribution of
the generated muons was 
at in [�2:7; 2:7] (cf. Figure 2.5a).

To reduce the required number of muons for this simulation, we took advantage of the eight-
fold azimuthal symmetry of the muon spectrometer (see Figure 2.2): equivalent chambers at
the same radial and longitudinal position but in di�erent octants were not distinguished. The
results for all chamber types together with drawings specifying their locations in the detector
are shown in Appendix C.

Generating all muons at the vertex is an approximation which is not fully valid for the muons
from pion and kaon decays which take place mainly in the calorimeter. If these muons came
from signi�cantly di�erent directions, the total angular spread would increase. To investigate
this suspicion, we simulated 4000 events of the class b �b ! �X with at least one muon above
6GeV/c. In the hadronization phase many pions and kaons are formed and decay into soft
muons. The resulting angular spread turned out not to be signi�cantly di�erent from the one
obtained with muons generated at the vertex.

8.3.6.2 Precision of Autocalibration for all MDT Chambers

For every type of MDT chambers 10000 tracks were generated with an angular distribution
according to the histogrammes in Appendix C. As start r-t relationship a Gar�eld prediction
with an rms deviation of about 140�m was chosen rather than an unfolded r(t) in order not to
treat the most optimistic case.

Before summarizing the performance of autocalibration for all types of MDT chambers we
focus on two examples:
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Figure 8.33: True and reconstructed deviation "(i)(t) = r(i)(t) � rtrue(t) after the iterations i = 1; 2; 6
of an autocalibration for BOL 1 chambers. The left-hand plots are for the old method, the
right-hand plots for the new method. For iteration 1 the true "(1)(t) characterizes the start
r-t relationship.

1. BOL 1 has a very wide angular spread in a range with suÆcient constraints: � � [0o; 25o]
(see Appendix C).

2. EOL 6 has only angles in a narrow range around 30o: � � [24o; 33o].

Figure 8.33 shows the deviation "(i)(t) of the current r(i)(t) from rtrue(t) at the iterations i =
1; 2; 6 for the chamber BOL 1. The solid lines represent the real "(t), while the dashed lines
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stand for the estimate from autocalibration. The latter are the corrections which are applied to
r(i)(t) at the end of the current step. The left-hand plots show the performance of conventional
autocalibration while the right-hand plots give the results of the new method. Apparently for
this advantageous angular spread both methods converge rather quickly. This is even more
clearly visible in Figure 8.34a where the rms deviation (de�ned in Eq. (8.1)) is drawn as a
function of the iteration number.
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Figure 8.34: RMS deviation of the calibrated r-t relationship as a function of the iteration number: (a) for
the chambers BOL 1 (� � [0o; 25o]); (b) for the chambers EOL 6 (� � [24o; 33o]).
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Figure 8.35: RMS deviation of the �nal r-t relationship as a function of the number of events: (a) for
the chambers BOL 1 (� � [0o; 25o]); (b) for the chambers EOL 6 (� � [24o; 33o]).

The new method reaches the optimum already in the �rst iteration whereas the classical
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technique needs �ve iterations. Both methods have the peculiar behaviour of �nally converging
at a level which is slightly worse than the optimum. In both cases the precision is better than
20 �m.

The di�erence between the two techniques is much more accentuated in the second example
(Figure 8.34b) where the incidence angles range in a narrow interval with few constraints. Here
the new method converges to a precision of 16�m within six iterations whereas the old method
has big problems to converge at all. In this pathological case our convergence criterion is not
very adequate: After 46 iterations the subsequent r(i)(t) di�er by less than a micron. At this
point the precision is 41�m. However, the r-t relationship keeps improving very slowly with
steps below a micron. The optimum of 30 �m is only achieved after 97 iterations.

Note that the two examples presented are extreme cases. Usually the new method converges
within 1 to 3 iterations, whereas the classical algorithm needs 5 to 10 steps.

We also wanted to know how many events are needed for a satisfactory calibration precision.
Figure 8.35 shows the rms deviation of the �nal r-t relationship as a function of the statistics.
For a precision better than 20�m the BOL 1 chambers with excellent angular spread need about
3000 events if the new method is applied and 6000 if we do classical autocalibration. For very
bad angular spread (e.g. chamber EOL 6) about 7000 tracks are necessary with the new method
whereas the old method comes close to 20 �m only if 100000 tracks are available.

The �nal precision and the necessary number of iterations for all types of ATLAS MDT
chambers are summarized in Table 8.1. The following concluding observations can be made:

� With good angular spread both methods give similar precision. For one chamber type out
of 79 the old technique is better by a fraction of a micron, for all the others the new method
is superior. The distributions of the �nal rms deviations are plotted in Figure 8.36.

� The number of iterations needed is histogrammed in Figure 8.37. The new method needs
typically two iterations. For the classical method typically �ve iterations are suÆcient if
the angular spread is good.

� The advantage of the new method is particularly accentuated if the incidence angles lie
predominantly in the interval [22o; 37o]. Note that in this interval there is only one �xpoint
up to the third order! Apparently the new method makes better use of higher-order
constraints. The di�erence between the two techniques is best visible at the following
chambers where at least one method yields a precision worse than 20�m:

Station angular range (95% interval) rms(old method) rms(new method)

BIL 3 23.5o { 36.5o 32�m (27 it.) 12�m (2 it.)
BIR 3 23o { 37o 27�m (29 it.) 14�m (3 it.)
EIS 2 24.5o { 32.5o 39�m (34 it.) 14�m (4 it.)
EIL 3 27.5o { 32.5o no convergence 39�m (11 it.)
EEL 1 25o { 38o 30�m (42 it.) 13�m (2 it.)
EML 4 24o { 38o 28�m (26 it.) 12�m (2 it.)
EOS 6 20o { 32o 21�m (28 it.) 13�m (3 it.)
EOL 5 22.5o { 29.5o 33�m (29 it.) 14�m (3 it.)
EOL 6 24.5o { 32.5o 41�m (46 it.) 16�m (8 it.)

The indicated angular range represents intervals centred about the mean and containing
95% of all entries. It is diÆcult to characterize these irregular angular distributions with
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only two numbers. The behaviour of autocalibration is determined by the full distribution
(see Appendix C).

The new technique can calibrate 78 out of 79 chamber types with an rms precision better
than 20�m if for each calibration 10000 tracks are available. With the old method 9
chamber types have a precision worse than 20�m.
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Figure 8.36: Distributions of the rms deviation of the calibrated r-t relationship. (a) represents the clas-
sical method, (b) the new method.
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Figure 8.37: Distributions of the number of iterations needed for convergence with 10000 tracks. (a) re-
presents the classical method, (b) the new method.
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Location index along z (Barrel) or r (End-Cap)
Station

1 2 3 4 5 6 7 8

14.1 (9) 14.7 (13) 19.7 (29) 16.1 (18) 14.4 (7) 14.1 (12) 14.4 (6) 14.2 (13)
BIS

11.6 (2) 13.9 (2) 13.8 (2) 11.5 (2) 13.7 (1) 11.5 (1) 12.8 (2) 12.4 (1)

16.2 (5) 17.1 (18) 31.6 (27) 13.9 (14) 13.4 (7) 13.9 (6)
BIL

14.0 (2) 11.2 (2) 11.9 (2) 11.9 (2) 10.6 (2) 13.3 (1)

15.8 (5) 17.6 (19) 15.5 (24) 15.5 (16) 15.3 (5) 11.4 (4)
BMS

12.6 (1) 14.6 (2) 13.2 (2) 12.7 (2) 11.4 (1) 11.6 (2)

16.2 (6) 15.9 (20) 18.6 (22) 14.4 (11) 15.1 (5) 15.2 (6)
BML

13.4 (2) 14.5 (3) 13.4 (3) 13.8 (3) 13.9 (1) 14.3 (2)

14.1 (4) 18.1 (18) 16.9 (21) 14.8 (9) 12.8 (4) 13.0 (7)
BOS

13.3 (2) 13.1 (1) 13.2 (2) 14.0 (2) 12.1 (2) 11.5 (1)

17.9 (7) 15.9 (12) 15.7 (19) 14.8 (19) 16.1 (5) 13.7 (6)
BOL

13.2 (2) 12.7 (1) 14.0 (2) 12.7 (2) 14.5 (1) 11.9 (1)

18.9 (15) 14.5 (5) 15.3 (20) 27.3 (29) 15.3 (18) 15.2 (6) 15.1 (6)
BIR

15.6 (3) 13.2 (1) 14.2 (2) 13.9 (3) 14.2 (2) 11.6 (2) 12.9 (2)

13.8 (3) 12.9 (4)
BEE

11.9 (1) 12.2 (1)

15.5 (10) 39.1 (34)
EIS

12.5 (2) 13.5 (4)

16.0 (13) 16.6 (40) failed 16.5 (24)
EIL

14.6 (2) 11.5 (2) 39.1 (11) 12.8 (2)

15.0 (38) 17.7 (19)
EES

14.0 (3) 14.2 (2)

29.0 (40) 17.5 (30)
EEL

12.9 (2) 11.5 (2)

18.8 (13) 16.3 (15) 16.9 (16) 18.3 (27) 16.5 (27)
EMS

16.8 (2) 13.4 (2) 16.5 (3) 13.5 (2) 13.1 (2)

15.5 (13) 17.2 (8) 15.7 (39) 28.0 (26) 14.3 (19)
EML

13.4 (2) 13.9 (2) 12.9 (2) 11.6 (2) 13.6 (2)

20.8 (34) 16.6 (5) 15.5 (10) 17.9 (10) 19.8 (20) 20.9 (28)
EOS

18.2 (3) 14.4 (1) 14.2 (2) 14.1 (2) 13.9 (3) 13.0 (3)

18.1 (24) 16.1 (5) 17.5 (13) 14.7 (19) 32.7 (29) 41.4 (46)
EOL

13.5 (2) 12.7 (2) 13.2 (2) 13.7 (2) 13.5 (3) 16.3 (8)

Table 8.1: RMS deviation of the autocalibrated r-t relationship in microns for all types of ATLAS MDT
chambers. In every double row the upper number refers to the conventional method, the lower
number to the new technique. The number of iterations needed for convergence is indicated in
brackets. The convergence criterion is that subsequent r-t relationships have an rms di�erence
smaller than 1�m. Every calibration was done with 10000 events. For the BIR chambers the
location indices must be reduced by 1. They start with 0 for the chambers centred at z = 0.
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8.3.6.3 Autocalibration Zones and the Time Required for a Calibration

The last question we want to tackle in this work concerns the feasibility of autocalibration at
ATLAS in terms of the time needed to collect enough data for calibrating the entire muon
spectrometer with the required precision of 20�m. In this context it is important to know that
no speci�c calibration runs are foreseen and thus we ought to be able to do calibration with
normal physics data.

The objective target for the calibration frequency is on the level of one per day in order
to follow climatical changes and long-term variations of gas composition, operating voltage etc.
Whether we actually need such frequent calibrations remains to be seen in experience.

The calibration time involves the following issues:

� The rate of muons recorded by the ATLAS data acquisition.

� The number of tracks needed to calibrate one r-t relationship.

� The number of di�erent r-t relationships in the whole spectrometer.

We will now discuss these items in more detail:

a. The Rate of Muons available for Calibration

According to [TDR 97b](12.2) the estimated single-muon rate after the Level 1 trigger stage
ranges between 2 kHz with the high-pT trigger and 23 kHz with the low-pT trigger. However,
the subsequent trigger stages (Level 2 and Event Filter) reduce the �nal event rate to 100Hz.
The question whether each of these events will contain a muon, depends on the selection criteria
at the last trigger levels. So far no �nal decision on these criteria has been taken, and reliable
numbers on the fraction of muonic events are not available. This topic will need more studies
and discussions in the collaboration.

For the time being we shall make the simple assumption that all �nal events contain one
muon. The fact that many events will have several muons, allows for other events having none
at all. Thus the assumed muon rate is 100Hz.

b. The Number of Tracks needed to Calibrate one r-t Relationship

In Figure 8.35 we have presented two examples for the dependence of the calibration precision
on the number of muon tracks used. We have seen that depending on the spread of the incidence
angles and depending on the autocalibration method, 3000 to 7000 events are needed to obtain
an r-t relationship whose deviation from the true one has an rms smaller than 20�m. However,
earlier autocalibration studies with test-beam data have shown that at least 10000 events are
needed in real life. This is due to additional problems like wire displacements and errors in the
determination of t0 (the absolute start point of the drift-time scale), which were not included in
the Monte Carlo model. For our estimate we assume that 10000 tracks are needed to

calibrate one r-t relationship.
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c. The Number of Di�erent r-t Relationships in ATLAS

{ De�nition of Autocalibration Zones

In the introduction to autocalibration (Section 8.3.1) we have pointed out that every multilayer
of tubes will have to be calibrated separately. But this segmentation is not even enough: Owing
to the inhomogeneity of the magnetic �eld every multilayer will have to be subdivided in auto-
calibration zones. The size of the zones must be chosen such that the rms uncertainty of r(t)
due to spatial variations of the magnetic �eld is less than the tolerance of 20�m.

The aim of this paragraph is to de�ne rules for determining autocalibration zones and to
obtain a crude estimate for their total number in ATLAS.

As a �rst ingredient we need the variation of the drift time with the magnetic �eld. Let us
consider a drift tube in a magnetic �eld ~B = B~eB with arbitrary orientation. We write the
radial electric �eld as ~E = E ~er. In [BLU 93](Section 2.1) it was shown that the electron drift
velocity ~v is given by

~v = � e

m
�E

1

1 + !2�2
[~er + !�~er � ~eB + !2�2(~er � ~eB)~eB ] (8.76)

where ! = e
mB is the cyclotron frequency and � the average time between collisions with atoms;

m is the electron mass and e the elementary charge. In every point of the electron trajectory
the Lorentz angle  L between the drift velocity ~v and � ~E is

 L(r;B) = arctan

"
e

m
�(r)B

sin�(r)p
1 + ( em �(r)B)2 cos2 �(r)

#
(8.77)

where we have introduced the angle � between the electric and the magnetic �eld:

� = arccos(~er � ~eB) (8.78)

Note that due to the radial electric �eld in a tube we are confronted with the diÆculty that
even in a homogeneous B-�eld the angle � will { in general { change along the drift trajectory
and therefore depend on r. In the case of orthogonal �elds (8.77) reduces to the more familiar
expression

 L(r;B) = arctan
h e
m
�(r)B

i
(8.79)

For our discussion we shall keep the general formula (8.77). The total drift distance s is obtained
by integrating the in�nitesimal track sections dr0

cos[ L(r0;B)]
between the wire (r0 = 0) and the track

radius r0:

s =

Z r0

0

dr0

cos[ L(r0; B)]
(8.80)

Using the modulus of the drift velocity

v(r;B) =
e

m
�(r)E(r) cos[ L(r;B)] (8.81)



8.3. Autocalibration Using Muon Tracks 169

we get the drift time

t(r0; B) =

Z s

0

ds0

v(r(s0); B)
=

Z r0

0

dr0

v(r0; B) cos[ L(r0; B)]
=

Z r0

0

dr0
e
m�(r

0)E(r0) cos2[ L(r0; B)]

=

Z r0

0

dr0
e
m�(r

0)E(r0)
(1 + tan2[ L(r

0; B)]) (8.82)

Inserting (8.77) yields

t(r0; B) = t(r0; 0) +
e

m

Z r0

0
dr0

�(r0)
E(r0)

B2 sin2 �(r0)
1 + ( em �(r0)B)2 cos2 �(r0)

(8.83)

De�ning the e�ective magnetic �eld as

Be�(r) � B
sin�(r)p

1 + ( em �(r)B)2 cos2 �(r)
(8.84)

we obtain

t(r0; B) = t(r0; 0) +
e

m

Z r0

0
dr0

�(r0)
E(r0)

B2
e�(r

0) : (8.85)

We are now in the unpleasant situation that the e�ective B-�eld, i.e. the �eld strength which is
relevant for the drift time, changes during the drift. Let us try to obtain an approximate value
for Be� which doesn't depend on r.

φ (r)

x

y

Projection of a muon track
on the plane transverse to
the tube

α

E(r)

Β
Βy

Drift Line

Β

z

z
Βx

r

Figure 8.38: Trajectory of a drift electron for a non-zero magnetic �eld component Bz. The �gure
illustrates the geometry and notation used in the text.
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In the referential frame shown in Figure 8.38 we can express cos�(r) by the magnetic �eld
components and the azimuth �(r) of a drift electron at the radius r:

~er(r) =

0
@ cos�(r)

sin�(r)
0

1
A ~eB =

1

B

0
@ Bx

By
Bz

1
A (8.86)

cos�(r) = ~er(r) � ~eB = cos�(r)
Bx
B

+ sin�(r)
By
B

(8.87)

sin�(r) =

s
1�

�
cos2 �(r)

B2
x

B2
+ sin2 �(r)

B2
y

B2
+ 2 sin�(r) cos�(r)

BxBy
B2

�
(8.88)

Thus

Be�(r) = B

r
1�

h
cos2 �(r)B

2
x

B2 + sin2 �(r)
B2
y

B2 + 2 sin�(r) cos�(r)
Bx By
B2

i
r
1 + ( em �(r)B)2

h
cos2 �(r)B

2
x

B2 + sin2 �(r)
B2
y

B2 + 2 sin�(r) cos�(r)
Bx By
B2

i (8.89)

We shall now consider which �eld components are important at ATLAS: The component Bz is
oriented parallel to the wire and hence azimuthal in ATLAS. Given the toroidal geometry of
the ATLAS �eld, this component is dominant. The component Bx is oriented parallel to the
projection of the muon track on the plane transverse to the tube. It only contributes signi�cantly
in chambers near the coils in the Barrel (e.g. BIS, BIL) where this component is radial in the
global ATLAS frame. The third component By { oriented parallel to the ATLAS beam line { is
usually small compared to Bz and Bx. In the following we shall assume

B2 � B2
z +B2

x and By � 0 : (8.90)

Now (8.89) simpli�es to

Be�(r) � B

q
1� cos2 �(r)B

2
x

B2q
1 +

�
e
m �(r)B

�2
cos2 �(r)B

2
x

B2

= B

r
B2
z

B2 + sin2 �(r)
�
1� B2

z

B2

�
r
1 +

�
e
m �(r)B

�2
cos2 �(r)

�
1� B2

z

B2

� (8.91)

The azimuth �(r) of the drift electrons is determined by the magnetic �eld component Bz
(along the wire). The Lorentz angle in the x{y plane at Bz = 0:5T is drawn in Figure 8.39a as a
function of r. Based on this Lorentz angle a sample of electron drift trajectories was simulated
with GARFIELD for Ar=CO2 (93=7). Figure 8.39b demonstrates that at Bz = 0:5T the drift
direction is still predominantly radial.

With simulated trajectories �(r) starting from a muon track at r0 = 14:6mm and �(r0) = 90o

we calculated Be� as a function of r for di�erent values of Bz and B =
p
B2
x +B2

z = 1T.
In Figure 8.40 we notice that Be� is very close to

p
B2
x +B2

z . The strongest deviation is

8% and occurs at very low radii if Bx = Bz = 1p
2
B, i.e. if the angle between ~B and

the wire is 45o. Since the drift time (8.85) involves the square of Be�(r), we calculated

the quadratic radial average
q
hB2

e�(r)ir. In the extreme case Bx = Bz = 1p
2
B we foundq

hB2
e� (r)ir = 0:98

p
B2
x +B2

z .
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Therefore we can make the approximation4

Be�(r) �
p
B2
x +B2

z for all r. (8.92)

In Equation (8.85) expressing the drift time with magnetic �eld we can now consider Be� as
constant and move it out of the integral:

t(r0; B) � t(r0; 0) +B2
e�

e

m

Z r0

0
dr0

�(r0)
E(r0)

(8.93)

The increase of the drift time

�t(r;Be� ) � t(r;Be� )� t(r; 0) (8.94)

has a quadratic dependence on Be� . This result is well con�rmed by a Gar�eld simulation:
Figure 8.41 shows �t(r;Be� ) as a function of r for di�erent Be� . For this diagramme the

magnetic �eld was parallel to the wire: B = Be� = Bz. We also veri�ed that a �eld B = Bx
and a �eld with Bx = Bz =

1p
2
B give the same result within Gar�eld's precision (2 ns).

For every �eld strength the radial dependence of �t(r;Be� ) was �tted with an empirical
parametrization:

�t(r;Be� ) =
3X

k=1

qk(Be�) r
2+k (8.95)

As predicted by Eq. (8.93) all three parameters qk show a quadratic dependence on Be�

(Figure 8.42):

qk(Be�) = �k B
2
e� (k = 1; :::; 3) (8.96)

Thus we have

�t(r;Be� ) =

3X
k=1

�k r
2+kB2

e� (8.97)

where we identify


(r) �
3X

k=1

�k r
2+k =

e

m

Z r

0
dr0

�(r0)
E(r0)

: (8.98)

4This approximation was also made in [TDR 97b](Section 10.1.2). However, starting from (8.84) and (8.85) its
validity is not immediately obvious. The condition By � B is important. The �eld con�guration Bx = By =

1p
2
T,

By = 0:2 T yields
phB2

e�(r)ir = 0:95
p
B2
x +B2

z , i.e. a 5% deviation.
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For the determination of the autocalibration zones we consider two scenarii:

Scenario I: One common r(t) for the entire zone: With this approach the zone size must
be chosen so small that the changes in r(t) induced by the �eld variations are smaller than
20�m. Suppose that the e�ective magnetic �eld in an autocalibration zone has the mean
value Be� and an rms variation ÆBe� . The rms variation of the drift time for a given radius
is then given by

Æt(r;Be� ) =

3X
k=1

�k r
2+k Æ(B2

e� ) : (8.99)

To obtain a typical value for this variation we take the radial average between 0 and the
tube radius R:

Æt(Be� ) � hÆt(r;Be� )ir =
3X

k=1

�k
1

3 + k
R2+k Æ(B2

e� ) : (8.100)

Inserting the values for �k from Figure 8.42 we �nd

Æt(Be� ) = 28:7 ns=T2 � Æ(B2
e� ) (8.101)

By multiplication with the average drift velocity hvi � 20:4�m/ns we can convert the time
variation into an approximate spatial uncertainty

Ær(Be� ) = hvi Æt(Be� ) = 586�m=T2 � Æ(B2
e� ) (8.102)

Since Ær(Be�) is required not to exceed 20�m, the rms variations of the squared magnetic
�eld within a zone are limited to

Æ(B2
e� ) � 0:034T2 (8.103)

With the approximation that the distribution of B2
e� within a zone is 
at, the rms variation

Æ(B2
e� ) can be easily converted into an interval size for B2

e� :

B2
e� max �B2

e� min =
p
12 Æ(B2

e� ) � 0:12T2 (8.104)

The three-dimensional magnetic �eld map of the ATLAS detector allows us to calculate
B2
e� throughout every chamber. Applying the criterion for the size of the B2

e� intervals
one can �nally count the number of autocalibration zones needed in every chamber. To
give an example, Figure 8.43 shows the pro�le of B2

e� in the inner multilayer of a BIL 1
chamber. The 11 zones are distinguished by the colour/grey-scale. The full collection of
linear and quadratic B-�eld pro�les for all chambers can be found in [DEI 00b].

The results for all chambers are presented in Table 8.2. Summing up all the individual
numbers we �nd a total of 13100 zones.
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Location index along z (Barrel) or r (End-Cap)
Multilayer

1 2 3 4 5 6 7 8

inner 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16)
BIS

outer 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 2�2 (16)

inner 11�1 (16) 11�1 (16) 11�1 (16) 11�1 (16) 11�1 (16) 11�1 (16)
BIL

outer 11�1 (16) 11�1 (16) 11�1 (16) 11�1 (16) 11�1 (16) 11�1 (16)

inner 3�1 (14) 3�1 (14) 3�1 (14) 3�1 (14) 3�1 (14) 3�1 (14)
BMS

outer 5�1 (14) 5�1 (14) 5�1 (14) 5�1 (14) 5�1 (14) 5�1 (14)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
BML

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 5�1 (16) 5�1 (16) 5�1 (16) 5�1 (16) 5�1 (16) 3�2 (16)
BOS

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16)
BOL

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 3�1 (2) 3�1 (4) 3�1 (4) 3�1 (4) 3�1 (4) 3�1 (4) 3�1 (4)
BIR

outer 2�1 (2) 2�1 (4) 2�1 (4) 2�1 (4) 2�1 (4) 2�1 (4) 2�1 (4)

inner
BEE

outer 7�2 (16) 7�2 (16)

inner 1�1 (16) 1�1 (16)
EIS

outer 1�1 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 7�6 (16)
EIL

outer 1�1 (16) 1�1 (16) 1�1 (16) 7�6 (16)

inner 13�9 (16) 11�3 (16)
EES

outer 13�9 (16) 11�3 (16)

inner 10�2 (16) 5�1 (16)
EEL

outer 10�2 (16) 5�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
EMS

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
EML

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
EOS

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
EOL

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

Table 8.2: For every type of MDT multilayer the number of autocalibration zones is indicated assuming
scenario I. Apart from BIS 8 and BEE 1,2 all chambers have two multilayers: \inner" desig-
nates the multilayer closer to the interaction point. The notation a � b (c) means that there
are c multilayers of this type in ATLAS; each one is divided into a zones along the tubes and
b zones perpendicular to them. For the BIR chambers the location indices must be reduced by
1. They start with 0 for the chambers centred at z = 0.
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Scenario II: First-order B-�eld correction for r(t) within a zone: In this scenario we
make use of the fact that we have some knowledge about the variation of the drift time
with the magnetic �eld. In a �rst-order approach we assume that the derivative dt

dB is
known, but not the absolute level of t(r;B) 5. Furthermore, in ATLAS the magnetic �eld
will be known with very high precision (about 4mT). Thus it is suÆcient to calibrate in
every zone the r-t relationship t(r; hBi) corresponding to the mean magnetic �eld hBi.
The individual r-t relationship t(r;B) at a �eld B is then approximated by a �rst order
expansion:

tapprox(r;B) = t(r; hBi) + (B � hBi)
�
dt

dB

�
hBi

(8.105)

Expressing t(r;B) as t(r; 0) + 
(r)B2 (from Eq. (8.97) and (8.98)) results in

tapprox(r;B) = t(r; 0) + 
(r)hBi2 + (B � hBi) 2
(r)hBi (8.106)

The deviation of tapprox(r;B) from t(r;B) is then

tapprox(r;B)� t(r;B) = 2
(r)BhBi � 
(r)hBi2 � 
(r)B2 = �
(r)(B � hBi)2 (8.107)

The criterion that the radial uncertainty must not be bigger than 20�m provides now a
lower and an upper limit for the �eld B in a zone with mean �eld hBi:

20�m � hvijhtapprox(Bmin=max)� t(Bmin=max)ij = hvih
i(Bmin=max � hBi)2 (8.108)

where all means are taken over the radius. Finally the maximum size of the magnetic �eld
interval in a zone is given by

Bmax �Bmin � 2

s
20�m

hvih
i = 0:37T (8.109)

Note that this scenario yields intervals in the linear B-space, whereas the �rst scenario
sets boundaries on B2.

Like in the �rst scenario we can now use the magnetic �eld map of ATLAS to count
the number of zones needed for every chamber. Table 8.3 presents the result. The total
number of zones is 3628, slightly less than a third of the number from scenario I. This
demonstrates that autocalibration can take big advantage from prior knowledge about the
�eld dependence of the drift time.

5From now on we omit the subscript \e�" at the magnetic �eld. Nevertheless B stands always for Be� .
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Location index along z (Barrel) or r (End-Cap)
Multilayer

1 2 3 4 5 6 7 8

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
BIS

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16)
BIL

outer 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16)
inner 1�1 (14) 1�1 (14) 1�1 (14) 1�1 (14) 1�1 (14) 1�1 (14)

BMS
outer 1�1 (14) 1�1 (14) 1�1 (14) 1�1 (14) 1�1 (14) 1�1 (14)
inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

BML
outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
inner 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16) 3�1 (16)

BOS
outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

BOL
outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
inner 1�1 (2) 1�1 (4) 1�1 (4) 1�1 (4) 1�1 (4) 1�1 (4) 1�1 (4)

BIR
outer 1�1 (2) 1�1 (4) 1�1 (4) 1�1 (4) 1�1 (4) 1�1 (4) 1�1 (4)

inner
BEE

outer 3�1 (16) 3�1 (16)

inner 1�1 (16) 1�1 (16)
EIS

outer 1�1 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 3�2 (16)
EIL

outer 1�1 (16) 1�1 (16) 1�1 (16) 3�2 (16)

inner 3�2 (16) 3�2 (16)
EES

outer 3�2 (16) 3�2 (16)

inner 4�2 (16) 1�1 (16)
EEL

outer 4�2 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
EMS

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
EML

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
EOS

outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)
inner 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

EOL
outer 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16) 1�1 (16)

Table 8.3: For every type of MDT multilayer the number of autocalibration zones is indicated assuming
scenario II. The notation is the same as in Table 8.2.
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d. Synthesis: Estimate of the Time for Collecting enough Muons

The time required to collect enough muon tracks for the calibration of the entire muon spec-
trometer can be estimated with the formula

Time needed =
(number of zones)� (tracks per zone)

(muon rate) � (zones crossed by one track)
: (8.110)

Inserting the numbers from the preceding paragraphs and taking into account that every track
crosses at least six multilayers and thus six zones, we obtain:

Time needed =
(number of zones)� 10000

100 s�1 � 6
: (8.111)

Scenario I: 13100 zones ) Time needed � 60 hours

Scenario II: 3628 zones ) Time needed � 16 hours

This result demonstrates that the aim of about one calibration per day can be achieved with a
good knowledge about dt

dB . On the other hand, if no such knowledge were available and the r-t
relationship were considered as constant within a zone, a calibration would take almost three
days.

At this point we want to stress that the above estimate is meant to give us an idea about
the order of magnitude of the achievable calibration frequency. The numbers can be wrong by
a factor 2-3. The main uncertainty lies in the expected muon rate.

There are several conceivable approaches to reduce the time requirement:

� We have seen that using the knowledge about the drift-time variation dt
dB we can linearly

correct the r-t relationship within a calibration zone. This allows us to increases the zone
size such that for many chambers one single zone is suÆcient. By improving the knowledge
about t(r;B) one could perform higher-order corrections and thus increase the zone size
in the few chambers with very strong �eld variations (e.g. in all EES types). To put this
approach into practice, we would need a series of high-precision test-beam measurements
of t(r;B) with a silicon telescope as reference.

� In a similar way other systematic e�ects (e.g. the dependence on temperature, gas com-
position and voltage) could be measured. This would allow us to apply further calculative
corrections to the r-t relationship (see also [ALE 99b]). The calibration frequency could
be reduced.

� The 20�m requirement was de�ned in a rather arbitrary way (cf. Section 8.1). It could be
rethought. By loosening this speci�cation we would need less tracks per r-t relationship.
Furthermore the zone size could be increased.

� If the recorded muon rate turns out to be too low, a dedicated muon-calibration level 2
trigger could be created. By selecting only muonic events and writing out only the muon
data one might be able to increase the read-out speed beyond 100 events per second.



Chapter 9

Summary

We have carried out a muon test beam programme for understanding and optimizing the proper-
ties of Monitored Drift Tube Chambers which will be used in the ATLAS Muon Spectrometer.
The silicon microstrip tracker ODYSSEUS with its 7�m intrinsic precision in each of the six de-
tector planes proved to be a very convenient tool for the determination of single tube resolution
and eÆciency and for the veri�cation of muon tracks �tted through MDT prototype chambers.

The �rst outcome of the experiments was a set of operating parameters for the drift tubes
which satis�es all requirements de�ned by the ATLAS physics programme whilst assuring a
reliable service over the scheduled ten years of running LHC. To keep ageing e�ects small,
ATLAS drift tubes are operated with the non-hydrocarbonic gas mixture Ar=CO2(93=7). The
disadvantage of this gas is the strong dependence of the drift velocity on the reduced electric �eld
E=p resulting in an instability of the r-t relationship against variations of operating parameters.
This problem will have to be mastered by regularly measuring all variations of environmental
parameters like temperature and gas composition in order to apply calculative corrections.

The combination of the low gas gain of 2 � 104 with the pressure of 3 bar is the result of a
common optimization of life time and resolution.

The choice of anode wires with 50 �m was driven by resolution optimization: For thicker
wires the resolution deteriorates while for even thinner wires there is no further improvement.

Even at the maximum background radiation rate in ATLAS (1.5 kHz/cm or 300 kHz /tube
including a safety factor 5) where electronics and space-charge e�ects deteriorate the tube per-
formance, a mean resolution of 80�m can be achieved. This is suÆcient to obtain the desired
momentum resolution better than 10% at transverse muon momenta around 1TeV. However,
the test-beam experiments with gamma background underlined that satisfactory performance
requires front-end electronics with an appropriate shaping scheme in order to stabilize the signal
baseline. Another prerequisite is the application of time-slewing corrections compensating the
e�ects of time jitter due to space-charge.

The hit eÆciency does not signi�cantly su�er from background radiation: Even at the high-
est rates it is greater than 99.9%. The 3�-eÆciency on the other hand deteriorates considerably
because muon hits can be hidden by gamma hits. At the maximum rate in ATLAS only 85%
of all hits are reconstructed within 3� from the track. This is the factor limiting the eÆciency
of pattern recognition.
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Precision measurements of the drift-tube response with the silicon tracker revealed that
clustering e�ects in the primary ionization along particle tracks entail asymmetric drift-time
distributions for impact radii smaller than 2mm. The maximum-likelihood method incorpo-
rates the exact shape of these distributions into the track �tting procedure. A positive side
e�ect is the automatic recovery of tracks with one delta-ray. If tracks are reconstructed through
a single multilayer of tubes, the maximum-likelihood technique reduces the tails in the slope and
intercept deviations down to 30 { 40% of the amounts for least-squares tracking. However, in
global track �ts through all 18 multilayers traversed by a muon on its way through the ATLAS
Muon Sprectrometer the e�ects of non-Gaussian resolution near the wires average out. In this
case the tracking performance is dominated by pattern recognition problems. It is therefore not
worthwile replacing in ATLAS the �2 minimization technique by maximum-likelihood �ts.

The precise description of the drift-tube response turned out to be also useful for the determi-
nation of the space-time relationship from the drift-time spectrum. By unfolding the drift-time
spectrum the r-t relationship can be calibrated with an rms precision of 50�m, which is good
enough for using the result as a start r-t relationship for the iterative autocalibration procedure
based on straight track �ts.

An algebraic investigation of the autocalibration principle exhibited a strong dependence
of the calibration reliability on the range of track incidence angles. For track angles around
30o the result of autocalibration is very poorly constrained. The calibration precision su�ers
particularly if mainly angles in the interval [22o; 37o] contribute. This happens for 9 out of 79
chamber types in ATLAS. In these pathological cases the classical autocalibration technique
applied to samples of 10000 tracks yields an rms calibration precision worse than 20�m because
the little amount of information contained in the track �t residuals is not even optimally used.
We have developed an improved autocalibration method which is based on a matrix formalism.
It was designed to take optimum advantage of all available information. With this method even
the diÆcult 30o chambers can be calibrated with a precision better than 20�m (apart from one
exception). In all other cases the precision of the new method is only slightly better than that
of the old technique, but less iterations are needed.

Due to the inhomogeneous magnetic �eld in ATLAS autocalibration will have to be done in
spatial zones whose size will be determined by the variations of the magnetic �eld. The resulting
uncertainty of the r-t relationship is required not to exceed 20�m. If within each zone only one
�xed r-t relationship is to be used, the total number of zones amounts to about 13000. Assuming
that a single r-t relationship can be calibrated with 10000 tracks and that every ATLAS event
contains at least one muon with a momentum above 6GeV/c, the entire muon spectrometer can
be calibrated within 60 hours of normal data taking. This scenario however is too pessimistic
because we can perform test-beam measurements to acquire some knowledge about the variation
of the drift time with the magnetic �eld. Then within each zone a �rst-order B-�eld correction
can be applied to the drift times before the calibration. Thus the number of zones can be
reduced to about 3600, and the data needed for a calibration will be collected within only 16
hours, allowing us to follow eventual diurnal variations of temperature, gas composition and
other parameters.
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In the remaining �ve years before the �rst run of LHC the collaboration should put even more
e�ort into an extensive test-beam programme for measuring the dependence of the drift time
on as many operating parameters as possible. The more prior knowledge we can inject, the less
work will have to be done in the individual calibrations during data-taking, saving computing
time as well as man-power for the exciting challenges of ATLAS particle physics.



Appendix A

Derivation of the Autocalibration

Matrix Elements

According to Equations (8.37) and (8.38) the matrix elements are given by

Mik =
d�i

drk

����
"(tk)=Ærk=0

= Æik �
dri;�t
drk

����
"(tk)=Ærk=0

; (A.1)

where

ri;�t =
jmzi + c� yijp

1 +m2
(A.2)

is the distance of the �tted track y = mz+ c from wire i with the position (zi; yi). We write the

derivative
dri;�t
drk

as

dri;�t
drk

=
@ri;�t
@m

� @m
@rk

+
@ri;�t
@c

� @c
@rk

: (A.3)

and must now calculate the four partial derivatives in that expression.

For convenience we �rst recall some de�nitions and abreviations:

�i =
p
1 +m2 zi �m�i;�t ; (A.4)

j�i;�tj = ri;�t (A.5)

sgn(�i;�t) =

(
+1 if the track passes above wire i

�1 if the track passes below wire i
(A.6)

In addition we de�ne

si � sgn(�i;�t) : (A.7)
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From (A.2) we obtain by simple di�erentiation:

@ri;�t
@m

=
1

1 +m2
[sgn(�i;�t) zi

p
1 +m2 � ri;�tm] =

1

1 +m2
si �i (A.8)

@ri;�t
@c

=
1p

1 +m2
si (A.9)

The other two terms are determined by minimizing

�2 =

nX
i=1

1

�2(ri)
[ri � ri;�t(m; c)]

2 (A.10)

with respect to m and c in the track �t:

0
!
=

@�2

@m
= �

nX
i=1

2

�2(ri)
[ri � ri;�t]

@ri;�t
@m

(A.11)

0
!
=

@�2

@c
= �

nX
i=1

2

�2(ri)
[ri � ri;�t]

@ri;�t
@c

(A.12)

Inserting (A.8) and (A.9) we get

0 =
nX
i=1

1

�2(ri)
[ri;�t � ri] si �i (A.13)

0 =

nX
i=1

1

�2(ri)
[ri;�t � ri] si (A.14)

Now we di�erentiate (A.13) and (A.14) with respect to rk:

0 =

nX
i=1

si

�
� 2

�3(ri)

d�

dr
Æik [ri;�t � ri] �i

+
1

�2(ri)

��
dri;�t
drk

� Æik

�
�i + (ri;�t � ri)

d�i
drk

��
(A.15)

0 =

nX
i=1

si

�
� 2

�3(ri)

d�

dr
Æik [ri;�t � ri] +

1

�2(ri)

�
dri;�t
drk

� Æik

��
(A.16)

Insertion of (A.3) and

d�i
drk

=

�
zi

mp
1 +m2

� �i;�t � �i
m

1 +m2

�
@m

@rk
� mp

1 +m2

@c

@rk

= � 1

1 +m2
�i;�t

@m

@rk
� mp

1 +m2

@c

@rk
(A.17)
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yields the equations

0 =

nX
i=1

�
@m

@rk

1

�2(ri)

1

1 +m2

�
�2i + (ri � ri;�t)ri;�t

�
+
@c

@rk

1

�2(ri)

1p
1 +m2

[�i + si(ri � ri;�t)]

� 1

�2(ri)
Æik si �i +

2

�3(ri)
Æik si �i(ri � ri;�t)

d�

dr

�
(A.18)

0 =

nX
i=1

�
@m

@rk

1

�2(ri)

1

1 +m2
�i

+
@c

@rk

1

�2(ri)

1p
1 +m2

� 1

�2(ri)
Æik si +

2

�3(ri)
Æik si(ri � ri;�t)

d�

dr

�
(A.19)

Writing (A.18) and (A.19) in the form

0 = Ak
@m

@rk
+Bk

@c

@rk
+ Ck (A.20)

0 = Dk
@m

@rk
+Ek

@c

@rk
+ Fk (A.21)

with

Ak =

nX
i=1

1

�2(ri)

1

1 +m2

�
�2i + (ri � ri;�t)ri;�t

�
(A.22)

Bk =

nX
i=1

1

�2(ri)

1p
1 +m2

[�i + si(ri � ri;�t)] (A.23)

Ck =

nX
i=1

�
� 1

�2(ri)
Æik si �i +

2

�3(ri)
Æik si �i(ri � ri;�t)

d�

dr

�
(A.24)

Dk =
nX
i=1

1

�2(ri)

1

1 +m2
�i (A.25)

Ek =

nX
i=1

1

�2(ri)

1p
1 +m2

(A.26)

Fk =

nX
i=1

�
� 1

�2(ri)
Æik si �i +

2

�3(ri)
Æik si �i(ri � ri;�t)

d�

dr

�
(A.27)

we recognize that we have to deal with a linear system of equations which we can resolve for @m
@rk

and @c
@rk

:

@m

@rk
=

Ck Ek �Bk Fk
BkDk �Ak Ek

(A.28)

@c

@rk
=

Ak Fk � CkDk

BkDk �Ak Ek
(A.29)
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Since (A.1) requires the derivatives to be evaluated at "(tk) = Ærk = 0, we have to set

ri = ri;�t (A.30)

in the coeÆcients Ak to Fk. Thus we obtain

@m

@rk

����
"(tk)=Ærk=0

= (1 +m2) sk

nX
l=1

1

�2(rk)�2(rl)
(�l � �k)

 
nX
l=1

1

�2(rl)
�l

!2

�
 

nX
l=1

1

�2(rl)

!0@ nX
j=1

1

�2(rj)
�2j

1
A

(A.31)

@c

@rk

����
"(tk)=Ærk=0

=
p
1 +m2 sk

nX
l=1

1

�2(rk)�2(rl)
�l (�k � �l)

 
nX
l=1

1

�2(rl)
�l

!2

�
 

nX
l=1

1

�2(rl)

!0@ nX
j=1

1

�2(rj)
�2j

1
A

(A.32)

Finally we can collect the terms (A.8), (A.9), (A.31) and (A.32) in (A.3), then (A.1) gives us
the result:

Mik = Æik � sgn(�i;�t) sgn(�k;�t)

nX
l=1

1

�2(rk)�2(rl)
(�i � �l) (�l � �k)

 
nX
l=1

1

�2(rl)
�l

!2

�
 

nX
l=1

1

�2(rl)

!0@ nX
j=1

1

�2(rj)
�2j

1
A

(A.33)
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Proof of rank(M ) � dim(M )� 2 for
the Autocalibration Matrix M

Let M be the autocalibration matrix as given in (8.45). It has the dimension n.
We will show that M has only n � 2 linearly independent rows ~Mi. For this purpose it is

suÆcient to prove the equation

~0 =

nX
i=1

siwi (�j � �i) ~Mi 8j � f1; : : : ng (B.1)

where we have introduced the abreviations

si � sgn(�i) (B.2)

wi � 1

�2(ri)
(B.3)

Equation (B.1) is equivalent to

~Mk =
X

i�f1;:::ngnfkg
si sk

wi
wk

�j � �i
�j � �k

~Mi 8j; k � f1; : : : ng; j 6= k (B.4)

which means that any row ~Mk can be expressed by a linear combination of all other rows except
one to which we have given the index j. The contribution of ~Mj vanishes. Other contributions

cannot be zero because by geometry i 6= j ) �i 6= �j . With other words, ~Mk is a linear
combination of n� 2 other rows, which is what we want to show.

To ease the manipulations with (B.1), we �rst multiply it by

D �
 

nX
l=1

wl �l

!2

�
 

nX
l=1

wl

!0@ nX
j=1

wj �
2
j

1
A (B.5)

and work on the right side of (B.1) for the kth column. In the �rst step we replace Mik by the
explicite expression (8.45):
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Now all we have to do is to transform this expression until it yields zero:
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Appendix C

The Distributions of Track Incidence

Angles for ATLAS Chambers

On the following pages for all types of ATLAS chambers the distributions of track incidence
angles are displayed.

Their positions in the detector can be looked up in the Figures C.1 for the small sectors
and C.2 for the large sectors. A transverse cut through the spectrometer de�ning the sectors is
given in Figure 2.2.

The chamber names have the following meaning:

� First letter: B = barrel, E = end-cap.
The letter `F' for `forward' was replaced by `E' but is still present in the drawings. In this
work we write `E'.

� Second letter: I = inner, M = middle, O = outer, E = extra (special chambers).

� Third letter: S = small sector, L = large sector.

� Some exceptional chambers don't �t into this nomenclature scheme: BIR (barrel chambers
below the rails, see [TDR 97b]), BEE (visible in Figure C.1).

� The number after the three letters speci�es the location of the chamber along jzj (in
the barrel) or along r (in the end-cap). The distinction between positive and negative z
(forward/backward direction along the beam) needs an additional parameter.
Examples: BIS 1 designates the BIS chambers closest to the middle plane z = 0 of the
detector. EOS 6 labels the outermost EOS chambers.

Due to the eight-fold azimuthal symmetry of the ATLAS detector we did not distinguish the
chambers by their octant.

Some angular distributions exhibit two peaks (e.g. BOL). They are due to muons with
positive and negative charge respectively.
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Figure C.1: Longitudinal cut through a small sector of the muon spectrometer.

Figure C.2: Longitudinal cut through a large sector of the muon spectrometer.
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The station BIR0 does not get any hits with the simulation software used (DICE 3.21).
From the chamber position and geometry (radial position of the chamber centre: r = 5:8m;
position of chamber centre along the beam direction: z = 0; chamber width: �z = 0:54m) one
can infer the approximate angular range of [�5o;+5o].
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