## Ausbau des ATLAS-Myonspektrometers für hohe LHC-Luminositäten

Bernhard Bittner<sup>1</sup> Jörg Dubbert<sup>1</sup> Oliver Kortner<sup>1</sup> Hubert Kroha<sup>1</sup> Robert Richter<sup>1</sup> Philipp Schwegler<sup>1</sup> Otmar Biebel<sup>2</sup> Albert Engl<sup>2</sup> Ralf Hertenberger<sup>2</sup> André Zibell<sup>2</sup>

philipp.schwegler@cern.ch

<sup>1</sup>Max-Planck-Institut für Physik, München

<sup>2</sup>Ludwig-Maximilians-Universität, München



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) DPG Frühjahrstagung Göttingen, 1. März 2012



# **Das ATLAS Myonspektrometer**



Präzisionskammern

1150 Monitored Drift Tube Kammern (MDT) 32 Cathode Strip Chambers (CSC)

#### Triggerkammern

606 Resistive Plate Chambers (RPC) 3588 Thin Gap Chambers (TGC)

# LHC Langzeitplanung



## Hochratenproblematik I

Untergrundtreffer im ATLAS Myonspektrometer

- Neutronen, γ's und geladene Hadronen aus Sekundärreaktionen in Detektorkomponenten und Abschirmung verursachen hohe Untergrundrate.
- Untergrundrate steigt proportional mit dem Luminositätsanstieg.
- $\Rightarrow$  Rate in innerer Vorwärtsrichtung *(Small Wheel)* übersteigt die Ratenfähigkeit der jetzigen Detektoren.



## Hochratenproblematik I

Untergrundtreffer im ATLAS Myonspektrometer

- Neutronen, γ's und geladene Hadronen aus Sekundärreaktionen in Detektorkomponenten und Abschirmung verursachen hohe Untergrundrate.
- Untergrundrate steigt proportional mit dem Luminositätsanstieg.
- $\Rightarrow$  Rate in innerer Vorwärtsrichtung *(Small Wheel)* übersteigt die Ratenfähigkeit der jetzigen Detektoren.



# **Die ATLAS MDT-Kammern**



- Gasgemisch: Ar/CO<sub>2</sub> (93/7)
- bei 3 bar absolutem Druck
- Max. Driftzeit:  $\approx$  700 ns
- Einzelrohrauflösung: 80 μm
- Genauigkeit der Drahtpositionierung:  $\approx$  20  $\mu m$
- Spurrekonstruktionsauflösung einer Kammer:  $\approx 40\,\mu\text{m}$



## Entwicklung neuer hochratenfähiger Myondetektoren

sMDT-Kammern mit reduziertem Rohrdurchmesser





Halbieren des äußeren Rohrdurchmessers:

- 7.8× geringere Belegungsrate
  - kürzere max. Driftzeit (700→185 ns)
  - Rohrdurchmesser (14.6→7.1 mm)
- unempfindlicher auf Raumladung
- mehr Rohrlagen im gleichen Volumen
  - $\Rightarrow$  robustere Spurrekonstruktion



## Raumladungseffekte

Abnahme der Gasverstärkung bei Photonbestrahlung:



Iterative Berechnung der Gasverstärkung mit Diethorn-Formel:

$$G = \left[rac{E_{
m wire}}{3E_{
m min}}
ight]^{rac{r_{
m wire}E_{
m wire}\ln 2}{\Delta V}}$$

 $E_{\rm wire}$  ist das elektrische Feld und hängt von der Raumladungsdichte und damit von der Untergrundrate ab.

 $G_0 = \text{nom. Gasverst.} = 20000$ 

#### Raumladung

- $\sim~R^3$  für Photonen  $\Rightarrow$  Verbesserung um Faktor 8
- $\sim R^4$  für geladene Hadronen  $\Rightarrow$  Verbesserung um Faktor 16

## Erste sMDT-Prototypkammer in voller Geometrie



# Gasverteilungssystem und Elektronikkarten







## Kammertests



#### MDT-Teststand der LMU in Garching

- Ziel Messung der individuellen Drahtpositionen mit kosmischen Myonen
- Ergebnis geforderte Genauigkeit erreicht
  - mehr T 61.2 Do 17:05



#### Gamma Irradiation Facility (GIF), CERN

- Ziel Messung von Auflösung und Effizienz bei Untergrundraten bis  $20 \, \text{kHz}/\text{cm}^2$
- Ergebnis Einzelrohraufl. 110–160  $\mu$ m,  $3\sigma$ -Effizienz 94–70%

mehr T 62.3 - Fr 9:15

### Kammertests



#### Ziel Integrationstest mit TGC Triggerkammern

180 GeV Myonstrahl (H8), SPS, CERN

mehr T 61.2 - Do 17:05

#### MLL Tandem-Beschleuniger, Garching

Ziel Test der sMDT's bei hohen Bestrahlungsraten stark ionisierender Teilchen

mehr T 62.2 - Fr 9:00

#### aktuell laufend: Alterungstest mit <sup>90</sup>Sr-Quelle

Trigger Scintillators

Ziel Beschleunigte Akkumulation der Ladung am Draht entsprechend der geplanten ATLAS-Laufzeit.

## Hochratenproblematik II

#### Level-1-Triggerraten im ATLAS Myonspektrometer

- Fake-Triggerrate im Endkappenbereich ist  $\approx 10 \times$  höher als erwartet.
- Triggerkammern im Endkappenbereich sitzen ausschliesslich auf der mittleren Detektorlage, den *Big Wheels*.



vorgesehene Abhilfe:

zusätzlich Lagen von Triggerkammern mit Winkelauflösung besser 3 mrad im Small Wheel. Für weitere Triggerschwellenverschärfung in Phase-2 wird eine Winkelauflösung von 1 mrad benötigt.

# Nebenbemerkung: L1-Trigger-Upgrade



- Interessante Ereignisse enthalten hochenergetische Myonen
- Rate der ersten Triggerstufe ist limitiert
- ⇒ Verbesserung der Selektivität der ersten Myontriggerstufe für Phase-2 benötigt, andernfalls werden interessante Ereignisse verpasst

# Nebenbemerkung: L1-Trigger-Upgrade

Konzept zur Verbesserung der Myonimpulsauflösung in der ersten Triggerstufe



 Benötigt Austausch der Kammerelektronik und längere L1-Triggerlatenz → Phase-2

## Konzeptionelles Design neue Small Wheels

Bau neuer Small Wheels mit hochratenfähigen Spurrekonstruktions- und Triggerkammern



## Konzeptionelles Design neue Small Wheels

Bau neuer Small Wheels mit hochratenfähigen Spurrekonstruktions- und Triggerkammern



## Performance der neuen Small Wheels

Einzelrohrergebnisse in Monte Carlo Simulation ⇒ Vorhersage für Ortsauflösung in neuen Small Wheels:



Konzept erfüllt die geforderte Ortsauflösung von 60  $\mu$ m bei den höchsten erwarteten Untergrundraten von 14 kHz/cm<sup>2</sup>.

## Zusammenfassung

- Steigerung der LHC-Luminosität nach 2022 um den Faktor 7 gegenüber der nominellen Luminosität geplant.
- Detektoren der innersten Lage in Vorwärtsrichtung des ATLAS-Myonspektrometers (Small Wheels) müssen bis 2018 durch neue hochratenfähige Detektoren ersetzt werden.
- Über 97 % der Präzisionskammern im ATLAS-Myonspektrometer sind MDT-Kammern. Sie arbeiten sehr zuverlässig und bieten bis zur LHC-Designluminosität sehr gute Spurrekonstruktion.
- sMDT-Kammern mit halbiertem Rohrdurchmesser sind
  - in der Entwicklung abgeschlossen,
  - fertig getestet und gut geeignet,
  - leicht in die existierende Infrastruktur zu integrieren,
  - jetzt bereit f
    ür den Beginn der Produktion
  - und daher die natürlichen Kandidaten für ein Upgrade.
- Nach einer Erhöhung der LHC-Luminosität über den Designwert wird die Selektivität der erste Myontriggerstufe in ATLAS nicht mehr ausreichend sein ⇒ interessante Ereignisse werden verpasst.
- Durch Hinzunehmen von MDT-Information in einem schnellen Auslesekanal kann die Triggerimpulsauflösung und somit die Selektivität auf das nötige Niveau verbessert werden.