Development of Muon Drift Tube Detectors for High-Luminosity Upgrades of the LHC

B. Bittner, J. Dubbert, O. Kortner, <u>H. Kroha</u>, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich

O. Biebel, A. Engl, R. Hertenberger, F. Rauscher Ludwig-Maximilians University, Munich

Pisa Meeting on Advanced Detectors 26/05/2009

LHC Luminosity Upgrade Program

Phase 1 upgrade:

3 x design luminosity

Phase 2 upgrade (S-LHC):

up to 10 x design luminosity

Increase of radiation background.

Consequences for pixel and tracking detectors, electronics, trigger and even muon detectors.

Radiation Levels at the LHC

Background counting rates **including** safety factor 5 in the ATLAS muon spectrometer at LHC design luminosity 10³⁴/cm²s.

Due to low-energy neutrons from pp collisions and sec. interactions in the detector and γ rays.

In ATLAS Muon Drift-Tube (MDT) chambers with 30 mm diameter drift tubes.

Highest rates in ATLAS MDT chambers (2m long tubes) for

LHC design lumi: 500 Hz/cm², 300 kHz/ tube

Phase 1 upgrade: 1500 Hz/cm², 900 kHz/ tube

S-LHC upgrade: 5000 Hz/cm², 3000 kHz/ tube

Assume background rates to increase roughly proportional to the luminosity.

Monitored Drift Tube (MDT) Chambers

- □ 1150 chambers, 5000 m² area
- 350000 aluminum drift tubes,
 30 mm diameter,
 0.4 mm wall thickness
- □ Ar:CO₂ (93:7) gas at 3 bar

- □ 3080 V operating voltage (gas gain 20000)
- □ Max. drift time ~ 700 ns
- □ Wire pos. accuracy 20 µm
- □ Single-tube resolution 80 µm
- □ Chamber resolution 35 µm

Rate capability of Drift-Tube Chambers

Measurements at the CERN Gamma Irradiation Facility GIF in 2004 with high-energy muon beam and a silicon strip-detector beam telescope:

Smaller Drift-Tube Diameter for Highest Rates

Baseline: 15 mm instead of 30 mm \emptyset tubes, with tube length, drift gas and gas gain unchanged (i.e. 2730 V op. voltage):

- □ Occupancy proportional to max. drift time: 3.5 x smaller.
- Tube counting rate ~ tube circumference: 2.0 x smaller. Occupancy 7 x smaller in total!
- □ Gain drop (due to space charge) ~ tube radius $R^3 \ln(R/R_{wire})$: 10 x less.
- Degradation of spatial resolution due to radiation induced space charge fluctuations (non-linear r-t-relationship) and gain drop strongly reduced.

Drift Tube Occupancies at High Rates

LHC luminosity upgrades: maximum rates incl. safety factor 5:

Luminosity (cm ^{_2} s ^{_1})	Background hit rate (kHz/cm²)	Counting rate (kHz/tube)	Occupancy (%)	Occupancy (%)	
Tube \varnothing	15 mm/30 mm	15 mm	15 mm	30 mm	
1 x 10 ³⁴	0.5	150	3%	21%	LHC design
2 x 10 ³⁴	1.0	300	6%	42%	Phase 1
3 x 10 ³⁴	1.5	450	9%	63%	upgrade
10 x 10 ³⁴	5.0	1500	30%	100%	S-LHC

Drift-Tube Spatial Resolution at High Rates

High-Rate Test at GIF 2008

Background rates up to 1400 Hz/cm², 300 kHz/tube

Drift Tube Efficiency

Chamber Efficiency

Segment reconstruction efficiency requiring at least 4 out of N hits

Chamber Design

Second coordinate and trigger chamber

2 x 8 layers of drift tubes with 15 mm Ø
fit into the same volume as the present
2 x 4 layers of 30 mm Ø tubes.

Efficient operation up to highest background rates (50 x nominal at S-LHC).

 \leq 40 µm spatial resolution up to 5 kHz/cm² counting rate (same as present MDT chambers at low background rate) with 50 µm rms wire positioning accuracy.

Consequences:

4 x denser tube package of gas and HV supplies, readout electronics.More tube layers to be assembled.

Chamber design

Builds on experience with the design of the existing MDT chambers

Drift Tube Design

Electrical and Gas Connections

Gas Distribution System

Chamber Assembly

Assembly of 8 tube layers (one multilayer) per day in a single step

H. Kroha, MPI Munich

Chamber Assembly

Assembly of a 12 x 8 tube unit

Standard aluminum tubes with 0.4 mm wall thickness and ± 0.1 mm tolerance on diameter, concentricity and roundness, ± 0.5 mm straightness work fine.

~ 50 µm rms tube positioning accuracy achieved as required.

Readout Electronics Upgrade

New radiation hard front-end electronics (ASD and TDC chips) needed for new and part of remaining muon tracking chambers for Phase 1 and S-LHC luminosity upgrades.

 \rightarrow Implementation of circuits in modern CMOS technology.

New radiation hard chamber readout modules (CSM) with increased bandwidth for S-LHC.

 \rightarrow Implementation using next generation FPGAs.

Conclusions

- Cylindrical drift tube detectors provide robust, high-efficiency precision tracking up to very high background rates.
- 15mm drift tube diameter suitable for highest rate regions at S-LHC background rates.
- Construction of a complete prototype chamber in progress.