Development and Construction of Muon Drift Tube (sMDT) Chambers for High-Luminosity LHC Upgrades

B.Bittner, J.Dubbert, O.Kortner, H.Kroha, A.Manfredini, S.Nowak, S.Ott, R. Richter, Ph.Schwegler, D.Zanzi Max-Planck-Institut für Physik, Munich

> O.Biebel, A.Engl, R.Hertenberger, A.Zibell Ludwig-Maximilians University, Munich

36th International Conference on High Energy Physics

4 – 11 July 2012 Melbourne Convention and Exhibition Centre 06/07/2012

ATLAS Muon Spectrometer and HL-LHC Upgrade

Max. background hit rates of neutrons and γ 's in ATLAS from particle interactions in the detector and shielding expected at LHC design luminosity and energy (in Hz/cm²), confirmed by actual backgr. measurements during ATLAS operation:

At HL-LHC (5-7 x LHC design luminosity): max. background hit rates of 14 kHz/cm² expected.

Design rate capability of ATLAS MDT chambers: 500 Hz/cm², 300 kHz/tube (2 m) , 21% occupancy.

Parameters of ATLAS Muon Drift Tube (MDT) chambers:

Smaller Diameter Drift Tubes (sMDT) for High Rates: Occupancy

- 15 mm \varnothing instead of 30 mm \varnothing tubes, same gas mixture and gas gain:
- Huge improvement of tracking efficiency at high bg. rates due to:
- \Box Occupancy ~ max. drift time (700 ns \rightarrow 185 ns): 3.8 x smaller.
- □ Background hit rate ~ tube cross section: $2 \times \text{smaller}$. ⇒ Occupancy 7.6 x smaller for given tube length.
- □ Twice the number of tube layers in the same detector volume.

Smaller Diameter Drift Tubes for High Rates: Spatial Resolution

- 15 mm \varnothing instead of 30 mm \varnothing tubes, same gas mixture and gas gain G_0 Degradation of the spatial resolution at high bg. rates because of
- \Box gain loss due to \neg tube inner radius r³ (for γ , neutrons): 8.7 x smaller, space charge J~ tube inner radius r⁴ (for charged part.): 18 x smaller,
- radiation induced space charge fluctuations: additional factor 2 x smaller.
- □ Furthermore: saturation of space charge generation.

Gain loss G/G₀ strongly suppressed by factor of 8.7 for 15 mm diameter tubes. Saturation of space charge:

iterative calculation using Diethorn's formula.

sMDT Prototype Chamber Construction

2 x 8 layers of 15 mm \oslash drift tubes assembled in 2 working days

Chamber Assembly

Drift Tube Design

Gas System and Electronics Interfaces: 4 x Density

Active readout electronics: from ATLAS MDT

06/07/2012

Measurement of Sense Wire Positions

Parameter

Wire position measurement with < 5 μ m/wire accuracy using cosmic ray tracks and two MDT reference chambers with precisely known wire positions

Wire positioning accuracy of better than 20 μ m achieved for the whole prototype chamber as required.

Nominal value [mm]

Measured value [mm]

Measured parameters of the wire grid:

Muon Beam Test: Spatial Resolution

CERN SPS-H8 180 GeV muon beam. Agreement between 15 and 30 mm \oslash tubes in the common radial range, as expected, and with the Garfield simulation No background radiation. (identical readout electronics with bipolar shaping): Single tube resolution [mm] 0.2 0.15 0. 30mm Ø tubes (no TSC) sMDT 15mm Ø tubes (no TSC) 30mm Ø tubes - Garfield (no TSC) 0.2 15mm Ø tubes - Garfield (no TSC) Downstream scintillator (behind the sMDT) 0.05 TGC 10 12 Drift radius [mm] Improvement of drift tube resolution by 20 µm using time slewing corrections Upstream (TSC) based on the measurement of the leading-edge signal charge, scintillator agreement between 15 and 30 mm \oslash tubes also after TSC: Active trigger area Single tube resolution [mm] 0.20 0.10 0.10 Single tube resolution [mm] 0.20 0.12 0.12 15mm Ø tubes (no TSC) 30mm Ø tubes (with TSC) 15mm Ø tubes (with TSC) 15mm Ø tubes (with TSC) 15mm Ø tubes - Garfield (no TSC) 0.05 0.05 = 106 \pm 2 µm with TSC σ_{15mm} 0.00^L 5 6 12 2 6 8 10 14 4 Drift radius [mm] Drift radius [mm]

Hubert Kroha, MPI Munich

Irradiation Tests

Tracking efficiency and spatial resolution measured at the CERN Gamma Irradiation Facility (GIF) up to background hit rates of 1400 kHz/ tube, corresponding to background flux of 19 kHz/cm² (in 0.5 m long tubes in the highest-rate region in ATLAS).

No muon beam at GIF:

Shielded regions of the sMDT chamber serve as precise reference for cosmic muon tracks extrapolated to irradiated tubes.

Irradiation Tests

Spatial resolution degradation due to space charge also measured under irradiation with a 20 MeV high-intensity (100-200 kHz/10 cm²) proton beam (4.5 x higher prim. ionization than γ rad.) at the Munich Van der Graaf Tandem accelerator up to equivalent γ hit rates of almost 100 kHz/cm².

Spatial Resolution at High Rates

Average drift-tube resolution over huge range of the equivalent γ background flux, consistent results from GIF and Tandem measurements:

- Strongly suppressed gain loss effects for 15 mm diameter tubes.
- Saturation of space charge and gain loss effect clearly visible for 15 mm tube diameter (model fit).
- Resolution degradation limited up to very high space charge and background rates.

Spatial Resolution at High Rates

Average drift-tube resolution as a function of the γ background flux at GIF:

700 ns

Muon Detection Efficiency

Muon detection efficiency of 15 mm diameter drift tubes as a function of the gas gain measured in the CERN muon beam by reducing the applied voltage and under proton irradiation.

Tubes fully efficient down to 40% of the nominal gain, corresponding to 50 kHz/cm² γ flux!

Tracking Efficiency at High Rates

" 3σ efficiency" of 15 mm diameter drift tubes, relevant for tracking efficiency, measured at GIF (probability of reconstructing a hit on the extrapolated muon track within 3 x drift tube resolution) follows the MC expectations, which are determined by the adjustable electronics dead time (maximum of 700 ns for 30 mm \emptyset , minimum of 200 ns for 15 mm \emptyset).

Track efficiency above 99% at max.expected rate due to larger number of 15 mm \varnothing tube layers.

Track Resolution at High Rates

Expected sMDT track segment resolution in the inner endcap layer of the ATLAS muon spectrometer which experiences the highest background hit rate, increasing exponentially with decreasing distance R to the beam pipe ($R_{min} = 100$ cm corresponds to $|\eta| = 2.7$).

Excellent resolution up to the maximum expected rate (35 μ m), only minor degradation due to background radiation.

Other Developments

 Drift tube aging tests: Irradiation of 15 mm Ø tubes with 200 MBq ⁹⁰Sr source over 6 months showed no sign of aging for > 6 C/cm accumulated charge on the wire (max. requirement for HL-LHC: 4 C/cm, ATLAS MDT tubes certified up to 0.6 C/cm).

Ar:CO₂ gas was chosen for MDT chambers to prevent aging. In addition: low gas gain, chromatized aluminum tubes, only certified endplug materials with no outgassing, clean gas distribution system.

- Development of a new version of the MDT chamber readout electronics in progress, with higher radiation hardness (130 nm CMOS technology) and bandwidth.
- Concept for using MDT and sMDT chambers in the ATLAS L1 muon trigger: improving decisively the momentum resolution and selectivity of the trigger at high-luminosity upgrades of the LHC (see ATLAS trigger upgrade talk in this session).

Conclusions

- New muon drift tube (sMDT) chamber technology ready for LHC upgrades.
- Excellent high-rate performance of 15 mm diameter drift tubes far beyond the requirements.
- Straight-forward integration into the existing ATLAS detector.
- First sMDT chamber installation in the 2013/14 LHC shutdown.

Saturation of resol. degradation for 30 mm \oslash tubes at GIF: M.Aleksa thesis, TU Vienna, 1999.