Precision Drift Tube Detectors for High Counting Rates

O. Kortner, <u>H. Kroha</u>, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich, Germany A. Engl, R. Hertenberger, F. Rauscher Ludwig-Maximilians University, Munich, Germany

ATLAS Muon Spectrometer

□ Large area (5000 m²) precision tracking (muon chambers with 35 µm position resolution).

High muon detection efficiency at high background rates at LHC (air-core toroid magnet).

Monitored Drift Tube (MDT) Chambers

- □ 1150 chambers, 5000 m² area
- 350 k aluminum drift tubes, 30 mm diameter, 0.4 mm wall thickness
- □ Ar:CO₂ (93:7) gas at 3 bar
- □ 3080 V operating voltage (gas gain 20000)
- □ Max. drift time ~ 700 ns
- □ Wire pos. accuracy 20 µm
- □ Single-tube resolution 80 µm
- □ Chamber resolution 35 µm

Radiation levels at the LHC

- Background hit rates including safety factor 5 [Hz/cm²] in the ATLAS muon spectrometer at LHC design luminosity 10³⁴/cm²s. Low-energy neutrons from collision products and γ rays. Highest rate: 500 Hz/cm², 300 kHz/ tube (2 m long tubes and 2 x 4 layer chambers).
- Up to 10 x higher background rates to be expected at a high-luminosity upgrade of the LHC (S-LHC): maximum 5 kHz/cm², 3 MHz/ tube in very forward regions.

Quadrant of the ATLAS muon spectrometer with 3 layers of chambers in barrel and endcap regions

Rate capability of Drift Tube Chambers

Measurements at the CERN Gamma Irradiation Facility GIF 2003/04 with high-energy muon beam and beam telescope:

H. Kroha, MPI Munich

Advantages of smaller drift tube diameter

15 mm instead of 30 mm diameter tubes, same drift gas and gas gain, same tube length:

- □ Occupancy ~ max. drift time: 3.5 x smaller.
- □ Tube counting rate ~ tube circumference: 2 x smaller.
- Gain drop (due to space charge) ~ tube radius r ³:
 8 x smaller.
- Degradation of spatial resolution due to radiation induced space charge fluctuations and gain drop strongly reduced.

Advantages of smaller drift tube diameter

Drift time spectra

Cosmic ray lab test setup

High rate tests at CERN GIF 2008

Adjustable background rates up to 1400 Hz/cm², only about 300 kHz/ tube in 1 m long tubes

Space-drift time relationship

H. Kroha, MPI Munich

Drift tube resolution

Drift tube efficiency

Chamber tracking efficiency

Segment reconstruction efficiency requiring at least 4 out of N hits

Builds on experience with the design of the existing MDT chambers

H. Kroha, MPI Munich

Endplugs Endplug complete Method for precise sense wire positioning with 10 µm accuracy follows existing concept. tube Ø15x0,4 Allows for automated drift tube stopper wiring and assembly. twister □ Gas connections simplified. Endplug □ HV stability critical design issue. -contact surface (ground) ground pinbrass insert qas crimp tube connection contact spring (ground) signal pin Endplug cap

Chamber assembly

H. Kroha, MPI Munich

Conclusions

- Cylindrical drift tube detectors provide high-efficiency precision tracking at high background rates.
- Mechanically robust detector design for large detector areas.
- Option for muon detector upgrades for high-luminosity phase of the LHC: smaller tube diameters (50%) in high-background regions sufficient.
- Plan for complete prototype chamber next year.
- Performance extrapolation from high-rate tests of present ATLAS muon drift tube (MDT) chambers straight forward.
- For complete test at S-LHC background rates a new Gamma Radiation Facility at CERN with higher-intensity source and a muon beam is necessary.

Backup slides

Space charge limitations

\Rightarrow Occupancy, not space-charge defines operating limit!

Cosmic-ray tests: drift time spectrum

- Experimental max drift time: 180 ns
- Simulated max drift time: 177 ns

Drift tube efficiency

For 30 mm Ø tube test with muon beam telescope:

