Performance of Fast High-Resolution Muon Drift Tube Chambers for LHC Upgrades

B. Bittner*, J. Dubbert*, M. Kilgenstein* O. Kortner*, S. Kortner*, H. Kroha*, F. Legger*, J. v. Loeben*, R. Richter*,
P. Schwegler*, S. Adomeit[†], O. Biebel[†], A. Engl[†], R. Hertenberger[†], F. Rauscher[†], A. Zibell[†]

* Max-Planck-Institut für Physik [†] Ludwig-Maximilians-Universität München

IEEE Nuclear Science Symposium and Medical Imaging Conference 2010

November 4, 2010

joerg.von.loeben@mppmu.mpg.de

Max-Planck-Institut für Physik

The ATLAS Detector at CERN

Monitored Drift Tube Chamber (MDT)

- o Gas mixture: $Ar/CO_2 = 93/7$
- Gas gain: $2 \cdot 10^4$
- o Max. drift time: \approx 700 ns
- o Single tube resolution: 80 $\mu{\rm m}$
- o Mechanical accuracy: 20 μ m
- o Track point reconstruction accuracy: 35 μ m
- o Optical alignment system

Background Rates in the Muon Spectrometer

Background irradiations are mainly γ 's and neutrons ($\bar{\mathsf{E}} \sim 1\,\text{MeV})$ from secondary reactions in the calorimeters, shielding, beam-pipe and other detector components.

- $\circ~$ Track reconstruction efficiency $>90\,\%$ for a tube occupancy up to 30 % (green)
- $\circ\,$ Max. occupancy in forward region: 14 $\%\,$

IEEE Nuclear Science Symposium and Medical Imaging Conference 2010

Background Rates in the Muon Spectrometer

Background irradiations are mainly γ 's and neutrons ($\bar{\mathsf{E}} \sim 1\,\text{MeV})$ from secondary reactions in the calorimeters, shielding, beam-pipe and other detector components.

- $\,\circ\,$ Track reconstruction efficiency $>90\,\%$ for a tube occupancy up to 30 % (green)
- o Max. occupancy in forward region: 28% (dark green)

Background Rates in the Muon Spectrometer

Background irradiations are mainly γ 's and neutrons ($\bar{\mathsf{E}} \sim 1\,\text{MeV})$ from secondary reactions in the calorimeters, shielding, beam-pipe and other detector components.

- $\circ~$ Track reconstruction efficiency $>90\,\%$ for a tube occupancy up to 30 % (green)
- $\,\circ\,$ Max. occupancy in forward region: 70 $\%\,$

IEEE Nuclear Science Symposium and Medical Imaging Conference 2010

Exchange of the Inner Muon Wheels

MDT chambers of inner forward region have to be replaced

To improve tracking:

- Faster detectors
- Smaller readout pitch to minimize occupancy
- More layers for better redundancy in pattern recognition

Constraints:

- Coverage of about $2 \times 40 \text{ m}^2$.
- $\rightarrow~$ Reasonable cost-performance ratio
- o Replacement maybe already 2016
- $\rightarrow~$ Established technology preferable

Currently: Cathode Strip Chambers (CSC) in region of highest irradiation. \Rightarrow Can we find a unique technology for the whole inner muon wheel ?

Smaller Tube Diameter at High Rates

Baseline

15 mm instead of 30 mm diameter tubes. Same drift gas and gas gain as current MDT chambers.

- o Occupancy prop. to max. drift time: $\sim 3.5\times$ smaller
- $\circ~$ Tube count rate prop. to r: 2 \times smaller
- \Rightarrow Occupancy per tube 7 \times smaller
- o Gain drop (space charge) prop. r^3: $\sim 8\times$ smaller
- ⇒ Degradation of resolution by gain drop and space charge fluctuations greatly reduced

Maximum hit rate and counting rate/tube in the CSC region

Luminosity $cm^{-2}s^{-1}$	Background hit rate (kHz cm ⁻²)	Counting rate in 0.55 m tubes (kHz/tube)	Occupancy of 0.55 m tubes (%)
$1 imes10^{34}$	1.7	165	3.3
$2 imes10^{34}$	3.4	330	6.6
$5 imes 10^{34}$	8.5	825	16.5

 \Rightarrow Safe operation up to highest background even in worst-case scenario

IEEE Nuclear Science Symposium and Medical Imaging Conference 2010

Prototype Chamber

- $\,\circ\,$ Chamber size: $1.1\,m\,\times\,1.0\,m$
- o Trapezoidal shape
 - Three different tube lengths of 560, 760, 960 mm
- o Dimensions to fit in CSC-region
- 1152 tubes (3 times as many as largest muon chamber in ATLAS)
 - 2×8 tube layers
 - 72 tubes per layer
- $\circ~$ Aimed wire position accuracy: 20 $\mu m~$ RMS

Aim: Prove assemble procedure and chamber precision, operate full size chamber in test-beams.

 \rightarrow See poster N48–222 for details on chamber construction.

Prototype Chamber – Front-End

- $\circ~$ New passive readout and high voltage boards
 - Low noise: Most channels below 100 Hz (32 mV)
 - No HV-trips observed
 - Low leakage currents: $\,\sim\,1.5\,{\rm nA}$ / tube
- Standard ATLAS active readout electronics for chamber testing

Noise Rate per Channel

New radiation hard readout electronic under development: - New preamplifier-shaper-discriminator chip \rightarrow N47-113

- Use of Triple Modular Redundancy technology \rightarrow N29-238

Test-Beam Efforts 2010

- o 180 GeV muon beam at CERN
 - 27 M events collected
 - First and long-term operation of prototype chamber
 - Drift-tube resolution and efficiency measurement
- Gamma Irradiation Facility at CERN (¹³⁷Cs source)
 - Measuring cosmic muons.
 - High intensity $\gamma\text{-}\mathrm{irradiation}~(\sim 150\,\mathrm{GBq})$
 - Drift-tube resolution and efficiency measurement
- Proton Beam at Maier-Leibnitz-Laboratorium in Munich
 - Measuring cosmic muons
 - Irradiation with 20 MeV DC proton beam
 - Study response to strongly ionizing particles
 - Efficiency studies at highest background rates (up to 20 MHz/tube)

Efficiency for hit on muon track within the drift-tube resolution

- o Efficiency as expected
- No recovery of second hits necessary
- o 3 sigma track eff. > 97 %at 500 kHz/tube(10% occupancy)

Intrinsic Resolution

- o Mean resolution of 15 mm tubes: $122.7\pm5.6\,\mu\mathrm{m}$
- o Good agreement with resolution of 30 mm tubes

Resolution

Prediction to be confirmed - Data being analysed as we speak

IEEE Nuclear Science Symposium and Medical Imaging Conference 2010

Advantages of Thin Drift Tube Chambers

- o Drift tubes are proven technology in ATLAS
- o Assembly procedure and achievable precision well understood
- Can use existing services (gas and power system)

Conclusions

- Assembly and test of prototype chamber successful and working as expected
- Excellent performance even in region with highest expected irradiation (CSC region)
- Thin drift tube chambers good candidate for the replacement of precision chambers of the inner muon wheel ($\sim 2016)$