Upgrade of the ATLAS Muon Spectrometer for Operation at the HL-LHC

Event Number: 82599795 Date: 2012-06-10, 13:12:52 CET

EtCut>0.4 GeV PtCut>1.0 GeV

Muon: blue Cells:Tiles, EMC Oliver Kortner on behalf of the ATLAS muon collaboration

Max-Planck-Institut für Physik, Munich

February 18, Vienna Conference on Instrumentation 2016

The roadmap to High-Luminosity LHC

- Plan to increase the LHC luminosity by an order of magnitude.
- Physics motivation with selected examples on the next 3 slides.
- Increase of the particle fluxes/rates by an order of magnitude from the LHC to the HL-LHC requires a major detector upgrade.
- Muon spectrometer upgrade in two steps during long shut downs 2 and 3.

Higgs physics at the HL-LHC

 Precision measurements of Higgs boson couplings and spin-CP quantum numbers as a probe for physics beyond the Standard Model.

Measurement of deviations of Higgs couplings from SM values with per-cent precision at the HL-LHC.

Search for deviations from SM and for rare and invisible Higgs decays.

Evidence for Higgs boson self-coupling possible at the HL-LHC.

 3-4 times higher sensitivity in direct searches for additional Higgs bosons at the HL-LHC than the LHC.

Supersymmetric and other new particles at the HL-LHC

Search for supersymmetric particles

- Much larger area of the SUSY parameter space accessible at the HL-LHC than at the LHC.
- Sensitivity to 1.5 times larger neutralino and chargino masses in *WZ*-mediated SUSY at the HL-LHC than the LHC.
- If SUSY is found at the LHC, the HL-LHC needed to study its exact nature.

Model independent search for heavy resonances (di-jet, di-photon $\ell\ell$, tt)

- Search performed in several final states, e.g. di-jet, di-photon, di-lepton, $t\bar{t}$.
- Di-jet resonances predicted by several theories, e.g. excited quarks, quantum black holes.
- 4 times higher sensitivity to di-jet resonances at the HL-LHC than at the LHC.

Dark matter at the HL-LHC

Search for dark matter in Higgs boson decays

- Signature of Higgs boson decays into dark matter: $H \rightarrow invisible$.
- Direct search in vector boson fusion and W/Z associated Higgs boson production.

95% confidence upper limits on $BR(H \rightarrow inv.)$

Run I	LHC	HL-LHC
0.49	0.22	0.13

 Indirect search via precision measurement of Higgs boson couplings.

Search for dark matter production in association with Standard Model particles Similar increase in sensitivity from LHC to HL-LHC as above.

The ATLAS muon spectrometer at the LHC

• Fast trigger chambers: RPC, TGC

(<10 ns time resolution, moderate spatial resolution \sim mm-cm).

- High-resolution tracking detectors: <u>CSC</u>, MDT (40 μ m spatial resolution).
- \bullet Optical alignment system with 50 μm resolution.
- Pseudorapidity coverage: $|\eta| < 2.7$.

The ATLAS 1st level muon trigger in LHC run I

- ATLAS uses as 3-level trigger system.
- The level-1 high $p_{\rm T}$ muon trigger built out of a coincindence of three RPCs in the barrel or three TGCs in the big end-cap wheel.
- Muon momentum estimate from the size of the deviation of hits from an infinite momentum track from the interaction point.

Sources of 1st level muon triggers in LHC run I

- Muon trigger rate dominated by fake triggers in the end-caps caused by charged particle not emerging from the interaction point.
- Real muon triggers contaminated with sub- $p_{\rm T}$ -threshold muon due to the reduced momentum resolution caused by the moderate spatial resolution of the trigger chambers.

The ATLAS muon spectrometer at the HL-LHC

- <u>New small wheel</u> with high-resolution trigger chambers to reject fake muon triggers and improve momentum resolution at trigger level.
- New TGCs with higher resolution to cope with background at $|\eta| \sim 2.7$.
- New thin-gap RPCs to close acceptance gaps of the barrel muon trigger.
- New sMDT chambers to free space for new RPCs.
- High- η tagger to identify muons up to $|\eta| = 4.0$.
- + New on- and off-chamber electronics for new trigger architechture.

New small end-cap wheels

Extrapolated hit rates

- The ATLAS muon spectrometer is operated in a large background of neutrons and γ rays.
- At the HL-LHC the background rates in the present small wheels would exceed the rate capabilities of the CSC and MDT chambers.
- ⇒ New small wheels with chambers with increased high-rate capability:
 - Small strip TGCs (sTGCs) for triggering,
 - MicroMegas for triggering and precision tracking.

Installation 2019-2020 during LS2.

Micromegas schematic

- Longevity of the RPCs depends on the charge accumulated during ten years of HL-LHC operations.
- According to irradiation tests in the GIF limit for safe operation of present RPCs: 100 Hz/cm².

Limit exceeded by up to a factor of 2 at $|\eta|\gtrsim\!\!0.7!$

- Plan to reduce operating voltage to keep the gap currents/accumulated charge within the safety margin.
- ⇒ Reduced gas gain/pulse heights lead to inefficiencies as the preamplifiers cannot be replaced by more sensitive ones.

Barrel muon trigger coverage

The high $p_{\rm T}$ muon trigger acceptance is limited to $\approx 72\%$ due to non-instrumented regions of the muon spectrometer.

- $\eta = 0$: Non-instrumented region of the spectrometer to provide space for services of the inner detector and the calorimeters.
- $\eta = 0.4, 0.75, 1.0$: Non-instrumented region due to toroid and rib structures.

Reinforcement of the barrel muon trigger

- Installation of additional RPCs with increased high-rate capability in the inner barrel layer to recuperate the reduced muon trigger efficieny.
- Replacement of MDT chambers with sMDT chambers in small barrel sectors to free space for RPCs.
- Pilot project: BIS-7/8.

Installation of trigger chambers in BI closes acceptance gaps and recuperates RPC inefficiencies!

Barrel upgrade pilot project

- 16 new muon stations inside the barrel toroid coils at the boundary between barrel and end caps.
- Purposes:
 - Improvement the selectivity of the muon trigger in the barrel end-cap transition region.
 - Increase of high-rate capability.
- Technology: Integrated sMDT-RPC chambers.
 - sMDT chambers for precision tracking.
 - New thin-gap resistive plate chambers (RPC) for triggering.
- Installation during LS2 (2019-2020).

Thin-gap RPCs

Very challenging space constraints: \sim 5 cm space for a triplet of 1 mm gas gaps.

A new highly sensitive low-noise preamplifier in SiGe technology allows the efficienct operation at 4 times smaller gas gain than with the current ATLAS preamplifier.

⇒ >4 times greater high-rate capability, which is substantially more than required.

sMDT chambers

Characteristics of sMDT chambers

- Monitored drift-tube chambers with 15 mm diameter tubes instead of 30 mm diameter tubes as currently in ATLAS.
- ⇒ 10 times greater high-rate capability than present ATLAS chambers.

Unprecedented wire positioning accuracy of 5 μm

(4 times higher accuracy than in present MDT chambers)

• Further details: H. Kroha's presentation.

ATLAS trigger scheme for HL-LHC

- New trigger scheme:
 - Only two trigger levels: level 0 (L0) and high-level trigger (HLT).
 - L0 rate: 1 MHz. L0 latency: 6-10 μ s.
- \Rightarrow In this scheme all muon chambers have to send their data off to USA15 continuously for further processing.
- ⇒ New on-chamber (MDT ASD and TDC chips, multiplexers) and off-chamber electronics (trigger logic, Felix) needed!

The ATLAS 1st level muon trigger at the HL-LHC

Processing step

Time after pp collision

 $1 \,\mu s$

- 1. Continuous stream of muon hit data to off-detector trigger logic.
- 2. Pre-muon-trigger based on coincidences of trigger-chamber hits in the $2 \mu s$ inner, middle, and outer layers.
- 3. Use of precision NSW and MDT hits for the refinement of muon $p_{\rm T}$ 3 μ s measurement in regions of interest defined by the trigger chambers.
- 4. Final muon trigger based on refined momentum measurement. $6 \ \mu s$

Reason for integrating MDT data in the 1st trigger level

Inclusive muon cross section

Muon first-level trigger efficiency

- The interesting electroweak physics is mainly at $p_{\rm T}>20$ GeV.
- ${\circ}\,$ The inclusive muon cross section is very steeply rising with decreasing $p_{\rm T}.$
- Present 1st level 20 GeV muon trigger accepts a lot of muons with 10 GeV< $p_{\rm T}$ <20 GeV due limited spatial resolution of trigger chambers.
- ⇒ Sharpening of trigger turn-on curve by the use of precision muon drift-tube (MDT) chambers to limit the trigger rate.

MDT trigger: fast track reconstruction algorithm

- Restrict pattern recognition to the ROI.
- Incident angle is known from trigger chambers (with 3 mrad resolution).
- Project hits into the plane perpendicular to the trigger chamber track and fill the into a histogram.
- Correct hit pattern leads to the highest peak in the histogram (ideally with 6 hits).
- Final track: straight line fitted to the correct hit pattern.

MDT trigger: fast track reconstruction algorithm

- Restrict pattern recognition to the ROI.
- Incident angle is known from trigger chambers (with 3 mrad resolution).
- Project hits into the plane perpendicular to the trigger chamber track and fill the into a histogram.
- Correct hit pattern leads to the highest peak in the histogram (ideally with 6 hits).
- Final track: straight line fitted to the correct hit pattern.
- In practice there are less than 6 hits due to
 - the dead area introduced by the tube walls,
 - $\circ\,$ masking of muon hits by $\delta\,$ and Compton electrons.

First timing study results

Demonstrator hardware

- Plan to use a microprocessor for fast floating point operations.
- Demonstrator hardware: Xilinx Evaluation Kit ZC806 (SoC Zynq-7045 with 1 GHz ARM Cortex-A9).
- Algorithm programmed in ARM assembler.

Test under realistic background conditions

- Test with experimental data recorded in CERN's gamma irradiation facility.
- Processing time $< 3.5 \ \mu s$ even at 20% occupancy!

Single-muon trigger rates at the HL-LHC

Single-muon trigger rates (estimated from run-l data)

- Unacceptably high rate of run-I 20 GeV muon trigger: ~150 kHz.
- Removal of fake triggers by including the NSW in the trigger coincidence.
 - \Rightarrow Rate reduced to ~ 70 kHz.
- Sharpening of the turn-on curve with MDT data reduces trigger rate to $\sim 18~\rm kHz.$
- $\Rightarrow~\sim 150~\rm kHz$ free for other triggers!

Black and blue points from

https://twiki.cern.ch/twiki/pub/AtlasPublic/MuonTriggerPublicResults/NSWRate.eps

- LHC and HL-LHC will dominate accelerator particle physics for the next two decades.
- Upgrade of the ATLAS detector to fully exploit the HL-LHC's physics potential.
- The upgrade of the muon spectrometer driven by the need for a highly efficient and selective single muon trigger:
 - New small wheel to reject fake muon trigger.
 - New RPCs in the inner barrel to maximize acceptance.
 - Inclusion of MDT data in the 1st level muon trigger to maximize selectivity.