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The roadmap to High-Luminosity LHC
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o Plan to increase the LHC luminosity by an order of magnitude.

o Physics motivation with selected examples on the next 3 slides.

o Increase of the particle fluxes/rates by an order of magnitude from the
LHC to the HL-LHC requires a major detector upgrade.

o Muon spectrometer upgrade in two steps during long shut downs 2 and 3.
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Higgs physics at the HL-LHC

o Precision measurements of Higgs boson couplings and spin-CP quantum numbers
as a probe for physics beyond the Standard Model.
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Supersymmetric and other new particles at the HL-LHC

Search for supersymmetric particles
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o Sensitivity to 1.5 times larger neutralino and
chargino masses in WZ-mediated SUSY at
the HL-LHC than the LHC.

o If SUSY is found at the LHC, the HL-LHC
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Model independent search for heavy resonances (di-jet, di-photon #¢, tt)
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theories, e.g. excited quarks, quantum black
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Dark matter at the HL-LHC

Search for dark matter in Higgs boson decays
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The ATLAS muon spectrometer at the LHC
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o Fast trigger chambers: RPC, TGC
(<10 ns time resolution, moderate spatial resolution ~mm-cm ).

o High-resolution tracking detectors: CSC, MDT (40 um spatial resolution ).
o Optical alignment system with 50 um resolution.
o Pseudorapidity coverage: |n| <2.7.



The ATLAS 14 level muon trigger in LHC run |

Measure of momentum
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o ATLAS uses as 3-level trigger system.

o The level-1 high pt muon trigger built out of a coincindence of three
RPCs in the barrel or three TGCs in the big end-cap wheel.

o Muon momentum estimate from the size of the deviation of hits from an
infinite momentum track from the interaction point.




Sources of 1! level muon triggers in LHC run |

ATLAS Run 201289 [LB 96-566], LHC Fill 2516, Apr. 15 2012, 50ns spacing
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o Muon trigger rate dominated by fake triggers in the end-caps caused by
charged particle not emerging from the interaction point.

o Real muon triggers contaminated with sub-pp-threshold muon due to the
reduced momentum resolution caused by the moderate spatial resolution
of the trigger chambers.



The ATLAS muon spectrometer at the HL-LHC
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o New small wheel with high-resolution trigger chambers to reject fake
muon triggers and improve momentum resolution at trigger level.

New T GCs with higher resolution to cope with background at |n| ~ 2.7.
New thin-gap RPCs to close acceptance gaps of the barrel muon trigger.
New sMDT chambers to free space for new RPCs.

High-n tagger to identify muons up to |n| = 4.0.

New on- and off-chamber electronics for new trigger architechture.
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New small end-cap wheels

Extrapolated hit rates 0 The ATLAS muon spectrometer is operated
G T in a large background of neutrons and -y rays.
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Installation 2019-2020 during LS2.
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Pads used in trigger coincidence
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Mode of safe RPC operation at the HL-LHC

RPC rate estimates [Hz/cm?] for HL-LHC
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o Plan to reduce operating voltage to keep the gap currents/accumulated
charge within the safety margin.

= Reduced gas gain/pulse heights lead to inefficiencies as the preamplifiers
cannot be replaced by more sensitive ones.
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Barrel muon trigger coverage
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The high pr muon trigger acceptance is limited to ~ 72% due to
non-instrumented regions of the muon spectrometer.

o 1 =0: Non-instrumented region of the spectrometer to provide space for
services of the inner detector and the calorimeters.

o 1 =0.4, 0.75, 1.0: Non-instrumented region due to toroid and rib
structures.
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Reinforcement of the barrel muon trigger

o Installation of additional RPCs with increased high-rate
capability in the inner barrel layer to recuperate the
reduced muon trigger efficieny.

o Replacement of MDT chambers with sMDT chambers in
small barrel sectors to free space for RPCs.

o Pilot project: BIS-7/8.
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Barrel upgrade pilot project

Inner end-cap wheel
(NSW)

BIS-7/8
sMDT-RPC

muon stations

ATLAS-MDT Il

16 new muon stations inside the
barrel toroid coils at the boundary
between barrel and end caps.

Purposes:

e Improvement the selectivity of
the muon trigger in the barrel
end-cap transition region.

e Increase of high-rate capability.
Technology: Integrated sMDT-RPC
chambers.

e sSMDT chambers for precision

tracking.

e New thin-gap resistive plate
chambers (RPC) for triggering.

Installation during LS2 (2019-2020).
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Thin-gap RPCs
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Very challenging space constraints:
~5 cm space for a triplet of 1 mm gas
gaps.

A new highly sensitive low-noise
preamplifier in SiGe technology allows
the efficienct operation at 4 times
smaller gas gain than with the current
ATLAS preamplifier.

= >4 times greater high-rate
capability, which is substantially
more than required.
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sMDT chambers

Characteristics of sMDT chambers

o Monitored drift-tube chambers with 15 mm
diameter tubes instead of 30 mm diameter
tubes as currently in ATLAS.

= 10 times greater high-rate capability than
present ATLAS chambers.

’Unprecedented wire positioning accuracy of 5 um‘

(4 times higher accuracy than in present MDT chambers)
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o Further details: H. Kroha's presentation.
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ATLAS trigger scheme for HL-LHC

o New trigger scheme:
e Only two trigger levels: level 0 (LO) and high-level trigger (HLT).
e LO rate: 1 MHz. LO latency: 6-10 ps.
= In this scheme all muon chambers have to send their data off to USA15
continuously for further processing.
= New on-chamber (MDT ASD and TDC chips, multiplexers ) and off-chamber
electronics (trigger logic, Felix ) needed!

On-detector electronics ! Off-detector electronics
ASDs Multiplexer '
ASDs Multiolexer Mm Felix read out data after LO trigger

to ethernet switch/ROD
LO muon trigger LO trigger

E Central trigger processor

ASDs m= TDCs e Multiplexer
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The ATLAS 14 level muon trigger at the HL-LHC
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. small wheel
Processing step Time after pp collision
1. Continuous stream of muon hit data to off-detector trigger logic. 1 us
2. Pre-muon-trigger based on coincidences of trigger-chamber hits in the 2 us
inner, middle, and outer layers.
3. Use of precision NSW and MDT hits for the refinement of muon pr 3 us

measurement in regions of interest defined by the trigger chambers.
4. Final muon trigger based on refined momentum measurement. 6 us
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Reason for integrating MDT data in the 14 trigger level

Inclusive muon cross section Muon first-level trigger efficiency
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o The interesting electroweak physics is mainly at pr > 20 GeV.
o The inclusive muon cross section is very steeply rising with decreasing pr.

o Present 1% level 20 GeV muon trigger accepts a lot of muons with
10 GeV< pr <20 GeV due limited spatial resolution of trigger chambers.

= Sharpening of trigger turn-on curve by the use of precision muon
drift-tube (MDT) chambers to limit the trigger rate.
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MDT trigger: fast track reconstruction algorithm

Muon o Restrict pattern recognition to the ROI.

o Incident angle is known from trigger chambers
(with 3 mrad resolution).

o Project hits into the plane perpendicular to the
trigger chamber track and fill the into a
histogram.

Histogram with
projected hit

positions o Correct hit pattern leads to the highest peak in

the histogram (ideally with 6 hits).

o Final track: straight line fitted to the correct hit
pattern.

( Tube in ROI

Drift radius

* Hit positions (two-fold ambiguity)
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MDT trigger: fast track reconstruction algorithm

Muon o Restrict pattern recognition to the ROI.

o Incident angle is known from trigger chambers
(with 3 mrad resolution).

o Project hits into the plane perpendicular to the
trigger chamber track and fill the into a
histogram.

Histogram with
projected hit

positions o Correct hit pattern leads to the highest peak in

the histogram (ideally with 6 hits).

o Final track: straight line fitted to the correct hit
pattern.

In practice there are less than 6 hits due to

o the dead area introduced by the tube
(O TubeinROI v walls,

Drift radius o masking of muon hits by ¢ and Compton

* Hit positions (two-fold ambiguit
P ( guilty) electrons.

21



First timing study results

Demonstrator hardware

Plan to use a microprocessor for
fast floating point operations.

Demonstrator hardware: Xilinx
Evaluation Kit ZC806 (SoC
Zyng-7045 with 1 GHz ARM
Cortex-A9).

Algorithm programmed in ARM
assembler.
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o Test with experimental data
recorded in CERN’s gamma
irradiation facility.

1500

1000

o Processing time < 3.5 us even at
20% occupancy!

501

3

0 500 1000 1500 2000 2500 3000 3500
Processing time [ns]
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Single-muon trigger rates at the HL-LHC

Single-muon trigger rates
(estimated from run-| data)
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Muon 1st level trigger rate [kH

\s=14 TeV, L=710% cm2s™
e Run-I muon trigger

e Muon trigger with NSW
e Muon trigger with NSW+MDTs
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Black and blue points from
https://twiki.cern.ch/twiki/pub/AtlasPublic/MuonTriggerPublicResults/NSWRate.eps

=

Unacceptably high rate of run-I

20 GeV muon trigger: ~150 kHz.

Removal of fake triggers by
including the NSW in the trigger
coincidence.

= Rate reduced to ~ 70 kHz.
Sharpening of the turn-on curve
with MDT data reduces trigger
rate to ~ 18 kHz.

~ 150 kHz free for other triggers!
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o LHC and HL-LHC will dominate accelerator particle physics for the next
two decades.

o Upgrade of the ATLAS detector to fully exploit the HL-LHC's physics
potential.

o The upgrade of the muon spectrometer driven by the need for a highly
efficient and selective single muon trigger:

e New small wheel to reject fake muon trigger.

o New RPCs in the inner barrel to maximize acceptance.

e Inclusion of MDT data in the 1% level muon trigger to maximize
selectivity.
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