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1 Theoretical overview

In the SM, boson and fermion masses are generated through the action of one
complex scalar field φ. Recall that this is an SU(2) doublet, and hence has
four degrees of freedom. When the field acquires a vacuum expectation value
(vev), three degrees of freedom become associated with the longitudinal
polarisation modes of the W and Z bosons, leaving the fourth degree of
freedom to become the Higgs boson h.

This is a minimal prescription for electroweak symmetry breaking, how-
ever it is not unique. The simplest non-minimal approach would be to
introduce a second scalar SU(2) doublet, φ2.1 This is called a two Higgs
doublet model (2HDM). In the general case, its description is rather compli-
cated, so it is conventional to assume that the Higgs sector conserves CP and
that certain terms are absent from the Lagrangian density due to discrete
symmetries. In this case, the combined potential of both Higgs doublets can
be written as follows2:
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In principle, what we should do next, as in the SM case, is to minimise this
potential function, requiring that at least one Higgs doublet obtains a non-
zero vev, and study the oscillations around this minimum. In practice, this
function can have multiple minima, including ones that produce charge-
and/or CP-violating vacua. Exclusing these solution, the position of the

1From this point on, we will call the first scalar doublet φ1.
2We assume that all coefficients are real.
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minimum can be written in this form:
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)
. (2)

Note that each doublet obtains its own vev3. As we will see later, the
quadrature sum of these vevs is constrained by electroweak measurements
(and must be equal to the SM vev), and so it is useful to introduce a pa-
rameter β to describe how the vev is shared between the two doublets:
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v
. (4)

At the minimum point, the derivatives of Vφ must all be zero, which
leads to the following constraints on the model parameters:
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Naturally, if these equations cannot be satisfied for any values of v1 and v2,
then such a vacuum is impossible.

1.1 Higgs mass eigenstates

Unlike the BEH theory in the SM, there are a number of possible excitations
around the minimum of Equation (2), rather than just one. This means
that there are multiple observable Higgs bosons. It turns out that these
excitations can be written in the following way:

φi =

(
H+
i

vi+H
0
i +iA0

i√
2

)
for i = 1, 2. (6)

To determine the masses and properties of these states, we need to com-
pute the Lagrangian terms involving them. We will start by finding the mass
eigenstates of the charged Higgs bosons. These can be found by replacing

3At this point, there is ambiguity in how the two doublets are defined. In fact, they
can be rotated into each other arbitrarily without changing the phenomenology. Later,
when we discuss fermion interactions, we will see how this ambiguity might be resolved.
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Equation (6) into Equation (1) and selecting only those terms proportional
to H−i H

+
j . These terms can be written in the following matrix form:
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This can be simplified considerably by using Equation (5):
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The two eigenvalues of the mass matrix in Equation (8) are 0 and
secβ cscβ = v2/v2

1v
2
2. The first eigenvalue corresponds to a Goldstone par-

ticle (absorbed by the W ), while the second is a physical, charged Higgs
boson state H±. By convention, this state is defined as

H± = −H±1 sinβ +H±2 cosβ

with m2
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]
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A similar analysis of the pseudoscalar states A0
i yields a similar result –

one Goldstone boson that is absorbed by the Z, and one physical eigenstate
rotated from the original basis by an angle of β (with a squared mass that
depends on m2

12
v1v2

v2).
The scalar fields H0

i have a more complex behaviour. As in the SM
case, these are not absorbed during electroweak symmetry breaking, and
thus two physical states are obtained. Conventionally, h and H denote the
less massive and more massive states, respectively. They are an admixture
of the original H0

i states, with a mixing angle α that is in general not equal
to β. The neutral Higgs boson states are defined as follows:
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)
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The masses for h and H are difficult to write in closed form, however if
mH is sufficiently larger than mh, it scales with mH± and mA forming a
near-degenerte set of Higgs states at high mass.

1.2 Couplings to gauge bosons

As in the SM, the gauge boson masses and couplings to the Higgs field are
all described by the kinetic terms for the Higgs fields in the Lagrangian.
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From tutorial 3, we recall the form of the covariant derivative for the Higgs
field:
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(11)
Upon expansion of (Dφi

µ φi)†Dµφiφi, and re-expression in terms of the phys-
ical Higgs boson eigenstates, the interactions of the gauge bosons with the
Higgs fields can be determined. We will not attempt a complete overview
of these interactions, but simply select a few of the most interesting terms
for study.

The mass of the Z boson is determined by those terms proportional to
ZµZ

µ and contain no other fields (vevs are allowed). The only such terms
arise from the product of the lower right element of Dφi

µ with vi, which is
then squared to give
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µ. (12)

This is the same term that arises in the SM Lagrangian, as anticipated in
Equation (4). The same conclusion holds for the W boson, namely that
the mass of each boson depends not on v1 and v2 individually, but only
the combination v (at leading order). As in the SM, the photon remains
massless, and only interacts with H± through its electric charge.

Next, we examine the interactions of the Z boson with the scalar fields
h and H. Again, only the lower right element of Dφi

µ is relevant, and (apart
from a combinatorial factor of two) we simply replace one vev in each term
of Equation (12) with the corresponding scalar field:
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g2

4 cos2 θW

{
v1H

0
1 + v2H

0
2

}
ZµZ

µ

= − g2v

4
√
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Again, similar results hold for the W boson. The couplings to bosons thus
depend on the relative alignment of the angles α and β. An interesting
possibility is the case where sin(β−α) = 1. In this case, called the decoupling
limit, h behaves as the SM Higgs boson, and H does not couple to the W
or Z at all. Their roles are reversed if cos(β − α) = 1, although this is
regarded as a less plausible scenario as it requires the lighter state h to
remain unobserved at LEP and the LHC.
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1.3 Couplings to fermions

Unlike the bosons, whose masses and couplings are determined by the elec-
troweak symmetry breaking itself, the fermions are assigned couplings to
the SM Higgs field in an ad-hoc manner. Nevertheless, with a single Higgs
doublet, the assignment is at least unique. In 2HDM models, either or both
doublet can be assumed to couple to each fermion. However, if the couplings
are completely arbitrary, large flavour-changing neutral currents would be
expected, as the mass eigenstates could not be diagonal in the interaction
bases of both Higgs doublets simultaneously, in general. These effects have
not been observed, and so most models assume that each fermion couples
to just one of the doublets.

By convention, it is assumed that the up-type quarks (u, c, t) couple
only to φ2. In fact, this defines what we mean by φ2, resolving the ambigu-
ity between the two doublets mentioned in footnote 3. For the down-type
quarks and the leptons, a number of different choices can be made, which
are classified as follows:

Type I: All fermion fields couple to φ2 only.

Type II: Down-type fermions couple to φ1.

Type III or X: d-quarks couple to φ2, charged leptons to φ1.

Type IV or Y: d-quarks couple to φ1, charged leptons to φ2.

These assignments affect the fermion-Higgs couplings, and hence the phe-
nomenology observed in Higgs boson production and decay, as given in Ta-
ble 1. To see how these are computed, consider the mass term for a fermion
f in a Type I model (or up-type quarks in any model):

Lmf
= −

yfv2√
2
f̄f = −mf f̄f. (14)

In terms of the SM Higgs sector parameters, mf = ySM
f v/

√
2. Therefore,

yf = ySM
f v/v2 = ySM

f / sinβ. Now, the coupling of the fermion to the neutral,
scalar Higgs sector is given by

Lmf
= −

yf√
2
H0

2 f̄f. (15)

Using Equation (10) to express H0
2 in terms of mass eigenstates, it is evident

then that the couping to the lighter field h is proportional to cosα/ sinβ,
and the coupling to the heavier field H is proportional to sinα/ sinβ. The
fermion couplings in the other models (and to A) arise in a similar way, via
modifications of the Yukawa couplings from the SM values and the mixing
between the different Higgs fields. Note that in the case of a Type I model, it
is possible for the h (or H) to be fermiphobic, i.e. to have zero or negligible
couplings to fermions. This is strongly disfavoured by the LHC observations,
as the gluon fusion production channel would be absent.

5



u d ` W/Z

Type I
h cosα/ sinβ sin(β − α)
H sinα/ sinβ cos(β − α)
A cotβ − cotβ 0

Type II
h cosα/ sinβ − sinα/ cosβ sin(β − α)
H sinα/ sinβ cosα/ cosβ cos(β − α)
A cotβ tanβ 0

Type III(X)
h cosα/ sinβ − sinα/ cosβ sin(β − α)
H sinα/ sinβ cosα/ cosβ cos(β − α)
A cotβ − cotβ tanβ 0

Type IV(Y)
h cosα/ sinβ − sinα/ cosβ cosα/ sinβ sin(β − α)
H sinα/ sinβ cosα/ cosβ sinα/ sinβ cos(β − α)
A cotβ tanβ − cotβ 0

Table 1: Couplings to the neutral Higgs boson fields in 2HDM models that
forbid FCNCs at tree level. The couplings for gauge bosons and up-type
quarks are independent of the model variety, but are included for complete-
ness.

2 LHC constraints on 2HDMs

The predictions of 2HDM models fall into two main categories. First, the
couplings of the known Higgs boson (usually assumed to be h) can devi-
ate from those predicted by the SM, by the amounts listed in Table 1. The
strongest constraints come from measurements of couplings to bosons, which
limit the allowed range of (β − α). Constraints from measurements of the
couplings to fermions constrain different combinations of β and α, in a way
that depends on the assumed coupling scheme. Current constraints from
the ATLAS experiment are shown in Figure 2, where the constraints from
leptonic modes are expressed in terms of tanβ. In all cases, SM-like cou-
plings are preferred, corresponding to cos(β − α) ≈ 0 and tanβ ∼ 1 (this
corresponds to β ≈ −α ≈ π

4 ).
The second main set of predictions is that there should be additional

Higgs bosons, the H, A and H±. Figure 1 shows an example search for
H/A→ τ+τ− in the minimal supersymmetric SM (which is a kind of Type II
2HDM). The parameter mA corresponds to the general scale of the new
bosons, although substantial mixing occurs between the H and h at the
lower end of the scale. Comparing with Table 1, we see that the couplings
for down-type quarks and charged leptons to the (pseudo-)scalar bosons
all increase as tanβ increases (and therefore cosβ decreases), and this is
the reason that the constraint is best for large values of tanβ. Searches
have also been carried out for the charged Higgs boson, in the channel
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Figure 1: 95% CL limits on additional Higgs bosons in the MSSM, from the
H/A→ τ+τ− channel.

t→ H+b→ τ+ντ b, with negative results. This allows nearly the full range of
mH± < 160 GeV to be excluded, except for in a narrow range of tanβ ∼ 10.
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Figure 2: Constraints on 2HDMs from measurements of the Higgs boson
coupling strengths by ATLAS. A value of cos(β−α) = 0 corresponds to the
decoupling limit, where the coupling of h to bosons is the same as in the
SM.
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