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1 Theoretical overview

In the SM, boson and fermion masses are generated through the action of
one complex scalar field φ. As an SU(2) doublet, this field has four real
degrees of freedom. When the field acquires a vacuum expectation value
(vev), three degrees of freedom become associated with the longitudinal
polarisation modes of the W and Z bosons, leaving the fourth degree of
freedom to become the Higgs boson H.

This is a minimal prescription for electroweak symmetry breaking, how-
ever it is not unique. The simplest non-minimal approach would be to
introduce a second scalar SU(2) doublet, φ2.1 This is called a two Higgs
doublet model (2HDM). In the general case, its description is rather compli-
cated, so it is conventional to assume that the Higgs sector conserves CP and
that certain terms are absent from the Lagrangian density due to discrete
symmetries. In this case, the combined potential of both Higgs doublets can
be written as follows:2
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In principle, what we should do next, as in the SM case, is to minimise
this potential function, requiring that at least one Higgs doublet obtains a
non-zero vev, and study the oscillations around this minimum. In practice,
this function can have multiple minima, including ones that produce charge-
and/or CP-violating vacua. Excluding these solutions, the position of the

1From this point on, we will call the first scalar doublet φ1.
2We assume that all coefficients are real.
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minimum can be written in this form:

φ1 =

(
0
v1√
2

)
; φ2 =

(
0
v2√
2

)
. (2)

Exercise: Consider adding a term
(
w2/
√

2
0

)
to the minimum of φ2. Find

some of the additional mass-like terms that would arise from the La-
grangian density. What kinds of interactions would these allow? Hint:
Re-read tutorial 3 if you are not sure how to do this.

Note that each doublet obtains its own vev.3 As we will see later, the
quadrature sum of these vevs is constrained by electroweak measurements
(and must be equal to the SM vev), and so it is useful to introduce a pa-
rameter β to describe how the vev is shared between the two doublets:

v2 = v2
SM = v2

1 + v2
2, (3)

tanβ =
v2
v1

⇒ sinβ =
v2
v

; cosβ =
v1
v
. (4)

At the minimum point, the derivatives of Vφ must all be zero, which
leads to the following constraints on the model parameters:
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Naturally, if these equations cannot be satisfied for any values of v1 and v2,
then such a vacuum is impossible.

1.1 Higgs mass eigenstates

Unlike the BEH theory in the SM, there are a number of possible excitations
around the minimum of Equation (2), rather than just one. This means
that there are multiple observable Higgs bosons. It turns out that these
excitations can be written in the following way:

φi =

(
H+
i

vi+H
0
i +iA0

i√
2

)
for i = 1, 2. (6)

3At this point, there is ambiguity in how the two doublets are defined. In fact, they
can be rotated into each other arbitrarily without changing the phenomenology. Later,
when we discuss fermion interactions, we will see how this ambiguity might be resolved.
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To determine the masses and properties of these states, we need to com-
pute the Lagrangian terms involving them. We will start by finding the mass
eigenstates of the charged Higgs bosons. These can be found by replacing
Equation (6) into Equation (1) and selecting only those terms proportional
to H−i H

+
j . These terms can be written in the following matrix form:
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)(m2
11 + 1

2λ1v
2
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2
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)
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(7)

Exercise: Derive Equation (7) explicitly.

This can be simplified considerably by using Equation (5):
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The two eigenvalues of the mass matrix in Equation (8) are 0 and
secβ cscβ = v2/v2

1v
2
2. The first eigenvalue corresponds to a Goldstone par-

ticle (absorbed by the W ), while the second gives a physical, charged Higgs
boson H±. By convention, this state is defined as

H± = −H±1 sinβ +H±2 cosβ

with m2
H± =

[
m2

12

v1v2
− λ4 + λ5

2

]
v2. (9)

A similar analysis of the pseudoscalar states A0
i yields a similar result –

one Goldstone boson that is absorbed by the Z, and one physical eigenstate
rotated from the original basis by an angle of β (with a squared mass that
depends on m2

12
v1v2

v2).

Exercise: Complete the analysis to find an explicit form for the physical
A0 state and its mass.

The scalar fields H0
i have a more complex behaviour. As in the SM

case, these are not absorbed during electroweak symmetry breaking, and
thus two physical states are obtained. Conventionally, h and H denote the
less massive and more massive states, respectively. They are an admixture
of the original H0

i states, with a mixing angle α that is in general not equal
to β. The neutral Higgs boson states are defined as follows:

h =
√

2
(
H0

1 sinα−H0
2 cosα

)
H = −

√
2
(
H0

1 cosα+H0
2 sinα

)
A =

√
2
(
A0

1 sinβ −A0
2 cosβ

)
. (10)

The masses for h and H are difficult to write in closed form, however if
mH is sufficiently larger than mh, it scales with mH± and mA forming a
near-degenerte set of Higgs bosons at high mass.
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1.2 Couplings to gauge bosons

As in the SM, the gauge boson masses and couplings to the Higgs field are
all described by the kinetic terms for the Higgs fields in the Lagrangian.
From tutorial 3, we recall the form of the covariant derivative for the Higgs
field:

Dφi
µ φi =

(
∂µ + ieAµ + ig cos 2θW

2 cos θW
Zµ i g√

2
W+
µ

i g√
2
W−µ ∂µ − i g

2 cos θW
Zµ

)(
H+
i

vi+H
0
i +iA0

i√
2

)
.

(11)
Upon expansion of (Dφi

µ φi)†Dµφiφi, and re-expression in terms of the phys-
ical Higgs boson eigenstates, the interactions of the gauge bosons with the
Higgs fields can be determined. We will not attempt a complete overview
of these interactions, but simply select a few of the most interesting terms
for study.

The mass of the Z boson is determined by those terms proportional to
ZµZ

µ and contain no other fields (vevs are allowed). The only such terms
arise from the product of the lower right element of Dφi

µ with vi, which is
then squared to give

LmZ =
g2

8 cos2 θW
v2
1ZµZ

µ +
g2

8 cos2 θW
v2
2ZµZ

µ =
g2

8 cos2 θW
v2ZµZ

µ. (12)

This is the same term that arises in the SM Lagrangian, as anticipated in
Equation (3). The same conclusion holds for the W boson, namely that
the mass of each boson depends not on v1 and v2 individually, but only
the combination v (at leading order). As in the SM, the photon remains
massless, and only interacts with H± through its electric charge.

Next, we examine the interactions of the Z boson with the scalar fields
h and H. Again, only the lower right element of Dφi

µ is relevant, and (apart
from a combinatorial factor of two) we simply replace one vev in each term
of Equation (12) with the corresponding scalar field:

LZH =
g2

4 cos2 θW

{
v1H

0
1 + v2H

0
2

}
ZµZ

µ

= − g2v

4
√

2 cos2 θW
{h sinβ cosα+H sinβ sinα

−h cosβ sinα+H cosβ cosα}ZµZµ

= − g2v

4
√

2 cos2 θW
{h sin(β − α) +H cos(β − α)}ZµZµ (13)

Again, similar results hold for the W boson.

Exercise: Compute the mass terms and interaction terms for the W boson,
equivalent to Equations 12 and 13.
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The couplings to bosons thus depend on the relative alignment of the angles
α and β. An interesting possibility is the case where sin(β − α) = 1. In
this case, called the decoupling limit, h behaves as the SM Higgs boson,
and H does not couple to the W or Z at all. Their roles are reversed if
cos(β − α) = 1, although this is regarded as a less plausible scenario as it
requires the lighter state h to remain unobserved at LEP and the LHC.

1.3 Couplings to fermions

Unlike the bosons, whose masses and couplings are determined by the elec-
troweak symmetry breaking itself, the fermions are assigned couplings to
the SM Higgs field in an ad-hoc manner. Nevertheless, with a single Higgs
doublet, the assignment is unique. In 2HDM models, either or both dou-
blet can be assumed to couple to each fermion. However, if the couplings
are completely arbitrary, large flavour-changing neutral currents would be
expected, as the mass eigenstates could not be diagonal in the interaction
bases of both Higgs doublets simultaneously, in general. These effects have
not been observed, and so most models assume that each fermion couples
to just one of the doublets.

By convention, it is assumed that the up-type quarks (u, c, t) couple
only to φ2. In fact, this defines what we mean by φ2, resolving the ambigu-
ity between the two doublets mentioned in footnote 3. For the down-type
quarks and the leptons, a number of different choices can be made, which
are classified as follows:

Type I: All fermion fields couple to φ2 only.

Type II: Down-type fermions couple to φ1.

Type III or X: d-quarks couple to φ2, charged leptons to φ1.

Type IV or Y: d-quarks couple to φ1, charged leptons to φ2.

These assignments affect the fermion-Higgs couplings, and hence the phe-
nomenology observed in Higgs boson production and decay, as given in Ta-
ble 1. To see how these are computed, consider the mass term for a fermion
f in a Type I model (or up-type quarks in any model):

Lmf
= −

yfv2√
2
f̄f = −mf f̄f. (14)

In terms of the SM Higgs sector parameters, mf = ySM
f v/

√
2. Therefore,

yf = ySM
f v/v2 = ySM

f / sinβ. Now, the coupling of the fermion to the neutral,
scalar Higgs sector is given by

Lmf
= −

yf√
2
H0

2 f̄f. (15)
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Using Equation (10) to express H0
2 in terms of mass eigenstates, it is evident

then that the couping to the lighter field h is proportional to cosα/ sinβ,
and the coupling to the heavier field H is proportional to sinα/ sinβ. The
fermion couplings in the other models (and to A) arise in a similar way, via
modifications of the Yukawa couplings from the SM values and the mixing
between the different Higgs fields. Note that in the case of a Type I model,
it is possible for the h (or H) to be fermiphobic, i.e. to have zero or negligible
couplings to fermions. This is strongly disfavoured by the LHC observations,
as the gluon fusion production channel would be absent.

Exercise: For what value(s) of α and β is h indistinguishable from the
SM Higgs boson? The answer may be different to what you expect.
Compute also the couplings of H and A to the SM particles in this
case.

Table 1: Couplings to the neutral Higgs boson fields in 2HDM models that
forbid FCNCs at tree level, relative to the SM. The couplings for gauge
bosons and up-type quarks are independent of the model variety, but are
included for completeness.

u d ` W/Z

Type I
h cosα/ sinβ sin(β − α)
H sinα/ sinβ cos(β − α)
A cotβ − cotβ 0

Type II
h cosα/ sinβ − sinα/ cosβ sin(β − α)
H sinα/ sinβ cosα/ cosβ cos(β − α)
A cotβ tanβ 0

Type III(X)
h cosα/ sinβ − sinα/ cosβ sin(β − α)
H sinα/ sinβ cosα/ cosβ cos(β − α)
A cotβ − cotβ tanβ 0

Type IV(Y)
h cosα/ sinβ − sinα/ cosβ cosα/ sinβ sin(β − α)
H sinα/ sinβ cosα/ cosβ sinα/ sinβ cos(β − α)
A cotβ tanβ − cotβ 0

2 LHC constraints on 2HDMs

When considering 2HDM models at the LHC, it is usually assumed that the
recently discovered scalar boson is h. If this is correct, then these models
can be probed in two main ways:

• Precision measurements of the couplings of h.
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• Searches for the direct or indirect production of the other Higgs bosons
(H, A and H±).

We will now briefly consider each in turn.

2.1 Precision measurements of the m = 125 GeV scalar boson

From Table 1, we see that in 2HDM models it is possible for the couplings of
h to differ substantially from those of the SM Higgs boson. This means that
the measurements of the boson’s couplings, discussed in the previous tuto-
rial, can set very stringent constraints on the parameters α and β. Figure 1
show a selection of constraints from the ATLAS experiment on the 2HDM
parameter space, for each of the four model types. In each case, the x axis
is chosen to be cos(β−α), which is directly constrained by measurements of
the Higgs boson’s coupling to the W and Z bosons. The y-axis, chosen to
be tanβ, varies the fermionic couplings for fixed values of cos(β − α), in a
way that is different for the four model types. Current measurements are all
in agreement with the Standard Model predictions, and in particular values
of | cos(β − α)| greater than about 0.5 are almost entirely ruled out.

Exercise: In most panels of Figure 1, cos(β − α) is less well constrained
when tanβ ∼ 1. Why do you think this might be? (Refer to Table 1
for help).

Exercise: Following on from the previous question, why are Type I models
less constrained than the other types for tanβ >> 1?

2.2 Searches for additional Higgs bosons

Like the SM, 2HDM models do not explicitly predict the masses of the asso-
ciated Higgs bosons. However, it seems natural that the additional bosons
H, A and H± should have masses not too far from those of the lightest state
h. Many searches for these additional bosons have been performed at the
LHC and other colliders, including in the low mass range m < 125 GeV.
Here, we will focus on the high-mass range, where the additional bosons are
expected to be nearly degenerate in mass.

Exercise: Consider the neutralA andH bosons, assumingmA/H & 200GeV .
Assuming that cos(β−α) ∼ 0 (see Figure 1), what are the likely decay
modes? Consider the couplings listed in Table 1 and also couplings to
other Higgs bosons.

Exercise: In a similar way, what decay modes might be available to the
charged Higgs boson H±?
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Figure 1: Constraints on 2HDMs from measurements of the Higgs boson
coupling strengths by ATLAS. A value of cos(β−α) = 0 corresponds to the
decoupling limit, where the coupling of h to bosons is the same as in the
SM.
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The pseudoscalar A is CP-odd, and therefore the symmetric decays like
A→ ZZ and A→ hh are suppressed (Why?). Therefore the decay channel
A→ Zh is a promising one for discovery, as long as the A is not so massive
as to allow A→ tt̄.4 In the Zh channel, events are easily triggered using the
decays Z → e+e− and Z → µ+µ−, allowing sensitivity to the experimentally
challenging h→ bb̄ and h→ τ+τ− decays. These decay channels were used
to obtain the constraints shown in Figure 2, assuming a massmA = 300 GeV.
For low values of tanβ, the constraints are much improved over those of
Figure 1. For tanβ & 5, the results become highly dependent on the type of
2HDM model considered, with stronger constraints for Type II and Type IV
models.

Exercise: Using this fact, what can you deduce about the relative strengths
of the h→ τ+τ− and h→ bb̄ search channels?

The final search examples focus on a particular form of Type II 2HDM
model based on the ideas of supersymmetry, which we will return to later
in the course. In this case, the neutral boson H and A are both expected
to have substantial branching fractions to the τ+τ− final state. If their
masses are much larger than mh, then the difference between them cannot
be experimentally resolved, and the search is performed assuming that both
are produced. Results for this channel are shown in Figure 3, where the mass
scale of the additional Higgs bosons is parametrised by mA.5 This model
also predicts mh, contours of this parameter can be seen in the diagram for
comparison with the measured value. The constraints are complementary
to those from LEP, such that mA < 130 GeV is nearly completely ruled out
(in this particular model).

Exercise: Why is the constraint in this channel best for high values of
tanβ? (Again, use Table 1 to help.)

It is also possible to search for the charged Higgs state H± at the LHC.
Like the neutral Higgs bosons, it couples to mass, but its production and
decay modes differ substantially from the other Higgs bosons due to its
non-zero electric charge.

Exercise: Try to come up with at least one way that a H± could be pro-
duced at the LHC, via the H± − t − b vertex. Hint: Try working
backwards from the H± boson. In all of the most likely cases, at least
one other particle (quark) is produced along with the charged Higgs
boson.

4Do not be confused by the “zero” coupling between A and the gauge bosons in Table 1.
This is referring to the A − Z − Z and A −W −W vertices, while here we consider the
A−Z − h vertex. If you are interested, the coupling can be deduced from Equation (11).

5There is no need to consider cos(β − α) in this case, as it is constrained by other
assumptions of the theory.
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Figure 2: Constraints on 2HDMs from a search for A → Zh, assuming
mA = 300 GeV.
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Figure 3: 95% CL limits on additional Higgs bosons in the MSSM, from the
H/A→ τ+τ− channel.

In the MSSM, decays to taus are preferred, as for the A and H, however in
this case the decay is H± → τ±ντ . Two different signatures are considered,
depending on whether the charged Higgs boson mass is less than or greater
than mt:

• pp→ tt̄→ (H+b)(b̄W−) for mH± < mt,

• pp→ t̄(b)H+ for mH± > mt.

In both cases, the charge-conjugate processes are also allowed. The event sig-
nature therefore consists of one hadronically-decaying tau lepton, a number
of jets (including b-jets) and non-zero Emiss

T . This is challenging to separate
from sources of SM background (in particular tt̄ production), however ex-
tremely strong results can be obtained in the low-mass case. This is shown
in Figure 4, which displays the results for the same model as Figure 3 in the
mH± − tanβ plane. Charged Higgs boson masses below about 155 GeV are
completely ruled out in this model.
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Figure 4: 95% CL limits on charged Higgs bosons in the MSSM, from the
low- and high-mass H± → τν channels.
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