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1 The CKM matrix

In tutorial 3, we wrote down the SM Lagrangian for one quark/lepton gen-
eration. The emphasis was on the BEH mechanism and mass in the boson
sector, however we also noted that the treatment of the fermion sector de-
pends on the number of fermion generations. Extended to three generations,
the Yukawa couplings for the quarks become 3 × 3 matrices Y ij

u and Y ij
d ,

where the indices i and j indicate the generation number. The quark mass
terms in the Lagrangian therefore become1

Lmq = −q̄iLφY
ij
d d

j
R −

(
−d̄iL ūiL

)
φ∗Y ij

u u
j
R + h.c. (1)

The matrices Y ij
u and Y ij

d need not be real, but must be Hermitian, and can
be diagonalised via a unitary transformation:2

u′L = U †uuL, u′R = V †uuR,

d′L = U †ddL, d′R = V †d dR. (2)

If we repeat the above exercise, giving generation indices to the gauge
fields, it is easy to see that, for example, d̄′iLGij

µ d
′j
L = d̄iLGij

µ d
j
L is left un-

modified. This is true for all of the Lagrangian terms associated with the
exchange of electrically neutral gauge bosons (γ, Z, g), and these interac-
tions are therefore unaffected by the transformation of Equation (2). In
the case of W boson exchange (the only SM charged current), the terms in
the Lagrangian couple up-type fields to down-type fields, and therfore gain
factors of either (U †uUd)ij or its Hermitian conjugate. Thus, the entire de-
sciption of flavour mixing in the SM is dependent on a single 3×3 Hermitian
matrix, called the CKM matrix after its inventors Cabibbo, Kobayashi and
Maskawa:

VCKM = U †uUd =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (3)

1The quark fields in Equation (1) refer to the interaction basis, where the W boson
only couples quarks within a generation, not between generations.

2Here, and for the rest of this section, the generation indices on uL etc. are implicit.
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In terms of Feynman rules, the elements of VCKM appear as additional factors
at q − q̄′ −W vertices, effectively modifying the weak coupling g.

The CKM matrix, as a 3× 3 complex matrix, would appear to have 18
free parameters. However, the unitarity condition V †CKMVCKM = 1 imposes
nine constraints (one for each element), leaving nine free parameters – three
mixing angles and six complex phases. Five of these phases can be removed
by further redefinitions of the quark fields (e.g. uL → eiφuuL etc.), which do
not affect the gauge or Higgs interactions at all.

Exercise: Why can we not redefine the phases of all six quark fields? Hint:
consider the transformation VCKM → diag(e−iφu , e−iφc , e−iφt)·VCKM ·
diag(eiφd , eiφs , eiφb) and find a way to reduce the number of indepen-
dent phases to five. Try again to reduce it to four – why does this not
work?

Thus, only three angles and one phase are physically relevant. For our pur-
poses, it is more enlightening to re-express these four parameters in another
way, called the Wolfenstein parameterisation:

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (4)

This takes advantage of the observed hierarchy in the CKM matrix elements,
parameterised in this case by λ. Equation (4) is correct up to O(λ4).

The CKM matrix affects the weak interactions of quarks. The strong
force normally governs quark dynamics, and therefore the elements of the
CKM matrix can only be measured in very specific processes. Most often,
these processes are the decays of mesons, where decays via the strong or
EM forces are forbidden by conservation laws – i.e. for the least massive
meson with a given quark content. Some details of how individual CKM
matrix elements are measured are given in the lecture notes, but see also
the exercises below. Numerically, the absolute values of the CKM matrix
elements are measured to be

V meas.
CKM =

0.97425± 0.00022 0.2252± 0.0009 (4.15± 0.49)× 10−3

0.230± 0.011 1.006± 0.023 (40.9± 1.1)× 10−3

(8.4± 0.6)× 10−3 (42.9± 2.6)× 10−3 0.89± 0.07

 ,

(5)
and the best-fit values for the Wolfenstein parameters are:3

λ = 0.22535± 0.00065, A = 0.811+0.022
−0.012,

ρ̄ = 0.131+0.026
−0.013, η̄ = 0.345+0.013

−0.014. (6)

3ρ̄ and η̄ are defined to take into account higher order corrections in λ.
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It should be noted that the matrix in Equation (5) is nearly diagonal
– in particular, the elements in the third row and column are extremely
small, except for Vtb. This latter observation explains why weakly-decaying
B hadrons have relatively long lifetimes, O(ps), compared to what would be
expected from phase space considerations alone.

Exercise: Draw Feynman diagrams for the processes below. In each case,
work out which CKM element(s) could be constrained by measure-
ments of the process.

• π+ → π0e+νe;
• K+ → µ+νµ;
• K̄0 → π+π−;
• K0 → π−e+νe;
• νµd→ µ−c followed by c→ dµ+νµ;
• B+ → D+X (what could X be?);
• B+ → K+γ (see Figure 6 for inspiration);
• Bs → µ+µ−;
• t→W+b.

2 The unitarity triangle

Unitarity demands that the rows and columns of the CKM matrix are or-
thogonal to each other, i.e. they satisfy the following constraints:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (7)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (8)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0. (9)

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0, (10)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0, (11)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0, (12)

Plotted in an Argand diagram, the three terms in each sum form the sides
of a triangle. It can be demonstrated that the areas of these triangles are
equal, and they are related to the size of the complex phase, i.e. to the
amount of CP violation in weak interactions. It is therefore interesting to
measure the sides and angles of these triangles, to test if δ (Equation (4))
is the only source of CP violation in the weak interaction. Four of the six
triangles are, however, extremely elongated and difficult to measure. For
example, in Equation (9), the magnitudes of the last two terms are ∼ Aλ2,
while the first term is ∼ Aλ4, or only about 5% of the size of the other
two terms. This makes it difficult to differentiate between a triangle and a
straight line in these cases.
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Figure 1: Definition of the sides and angles of the unitarity triangle.

Exercise: Check the sizes of all the elements in Equations (7) to (12).

The remaining two triangles, from Equations (8) and (11), have sides all
of a similar length ∼ Aλ3. However, every term in Equation (11) involves
a top quark coupling. As these are less well-known experimentally, “the”
unitarity triangle is usually understood to correspond to Equation (8).

The unitarity triangle is shown in Figure 1, where the terms in Equa-
tion (8) have been normalised by VcdV ∗cb, which has the smallest overall un-
certainty of the three terms (see Equation (5)). Experimental measurements
of the three angles and two non-trivial sides can be used to over-constrain
the three free parameters of the triangle, and its closure is an important
test of the SM. An overview of the current constraints is shown in Figure 2.
With two corners of the triangle fixed, all of the constraints can be expressed
in terms of the location of the third point. The six constraints (three an-
gles, two sides and one product of real and imaginary components) are all
in agreement at the 95% confidence level, supporting the SM hypothesis of
flavour mixing via VCKM.

Many of the measurements that contribute to Figure 2 involve the phe-
nomenon of oscillation. It is on this that we now focus, with particular
emphasis on CP violation.

3 Oscillations

Flavour oscillations can arise in electrically neutral, weakly decaying mesons
because the conservation laws that apply to the strong and weak nuclear
forces are different. The strong force conserved flavour, and therefore must
produce a meson with a specific flavour eigenstate, for example K0 = ds̄.
The weak force does not conserve flavour, but does very nearly conserve
CP. Therefore, where possible, the weak decay of mesons proceeds via CP
eigenstates. In the case of the neutral mesons, the antiparticle (e.g. K̄0 = sd̄
in this example) is related to the particle by a CP transformation, and so
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Figure 2: Constraints on the unitarity triangle, expressed as 95% CL uncer-
tainty bands on the position of the upper point of the triangle. The best-fit
region is shaded in yellow.

we can easily identify the CP eigenstates of the system:

|K0
+〉 =

1√
2

(
|K0〉+ |K̄0〉

)
,

|K0
−〉 =

1√
2

(
|K0〉 − |K̄0〉

)
. (13)

Apart from very small corrections (see Section 4), these can be identified
with the weak eigenstates. Each state has its own mass, dependent on the
mixing process, and lifetime, dependent on the available decay channels for

Figure 3: The two leading diagrams for K0 − K̄0 oscillations.
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each meson. Similar expressions hold for the D0(cū), B0(db̄) and B0
s (sb̄)

mesons, but we will primarily use the K0 as an example.
The physical mechanism of flavour oscillation is a second-order weak

interaction. The main diagrams contributing to kaon mixing are shown in
Figure 3. In principle, all of the up-type quarks contribute inside each loop,
although for the reasons explained in the lecture notes the charm quark
is the most important in this case.4 The oscillation rate is in principle
calculable, therefore measurements of it can help constrain various CKM
matrix parameters and combinations of them (e.g. the band marked “∆md

& ∆ms” in Figure 2). As the process is highly suppressed, it is also a
powerful test of (non-SM) flavour-changing neutral currents.

As an aside, the difference between the CP-even and CP-odd eigenstates
is particularly extreme in the kaon system. The CP-even state has two-pion
decay channels (π+π− and π0π0) available to it; these are forbidden to a CP-
odd state by Bose-Einstein statistics. The decay of the CP-odd state to three
pions (π+π−π0 and π0π0π0) is strongly phase-space suppressed as the mass
difference between initial and final states is only about 70 MeV.5 As a result,
the lifetimes of the two states differ by three orders of magnitude, leading
to the labels of “short” (K0

S, τ ∼ 10−10 s) and “long” (K0
L, τ ∼ 10−7 s) to

describe the two physical states.
As the name implies, flavour oscillations have a time-dependence that

can be measured by detectors with sufficient resolution.6 Suppose that we
consider the state |ψ(t)〉 of a kaon that is a pure K0 state at the point of
production. That is:

|ψ(0)〉 = |K0〉 =
1√
2

(
|K0

S〉+ |K0
L〉
)
. (14)

The K0
S and K0

L states propagate independently, with their own masses and
lifetimes. Using this fact, we can express the state at time t in terms of CP
and quark flavour eigenstates:

|ψ(t)〉 =
1√
2

(
e

“
imS− 1

2τS

”
t|K0

S〉+ e

“
imL− 1

2τL

”
t|K0

L〉
)

=
1
2

{(
e

“
imS− 1

2τS

”
t + e

“
imL− 1

2τL

”
t
)
|K0〉

+
(
e

“
imS− 1

2τS

”
t − e

“
imL− 1

2τL

”
t
)
|K̄0〉

}
. (15)

4This is very different from B0 and B0
s mixing, where the top quark is most important,

making these oscillations essential for measurements of Vtd and Vts.
5In fact, it is so suppressed that the semileptonic decays K0

L → π±`∓ν become domi-
nant.

6Here, we mean spatial resolution, as the displacement of the meson’s decay from its
point of production can be used to infer its proper lifetime, if its momentum is known.
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Figure 4: Illustration of the interference between meson and anti-meson
states when τL � τS. Unphysical parameter values are used, to emphasise
the oscillations. The blue line represents Equation (16) and the red shows
Equation (17), while the yellow line shows 1

4e
−t/τL .

Using Equation (15), we can calculate the probability of finding a K0 or a
K̄0 as a function of time:

|〈K0|ψ(t)〉|2 =
1
4

[
e−t/τS + e−t/τL + 2e−t

“
1

2τS
+ 1

2τL

”
cos ∆mt

]
, (16)

|〈K̄0|ψ(t)〉|2 =
1
4

[
e−t/τS + e−t/τL − 2e−t

“
1

2τS
+ 1

2τL

”
cos ∆mt

]
. (17)

Exercise: Derive these two expressions from Equation (15).

The final term of each line is an interference term, which depends on the
mass difference ∆m between K0

S and K0
L. If τS � τL, the oscillations decay

with a lifetime of ∼ 2τS. The general form of this interference is shown
in Figure 4, although the details depend strongly on the two lifetimes and
∆m. In this case, the parameters have been chosen to highlight the decay of
the oscillations. In the physical kaon system, ∆m and 1/τS are of the same
order of magnitude, so typically only ∼ 1 oscillation can occur before the
K0

S decays away. In the D0 system, the oscillation time is much longer than
the mesons’ lifetimes, making its observation very challenging, while in the
B0 and B0

s systems, all of the oscillation times and lifetimes are O(10−12) s.

4 CP violation in neutral meson oscillations

Figure 5 shows the measured rate of K0 → ππ decays in the CPLEAR ex-
periment, as a function of the proper decay time τ . This is proportional to
the probability of finding the kaon in the CP-even eigenstate K0

+. Up to
τ ∼ 12τS, this falls nearly exponentially (with time constant τS), modified
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Figure 5: The rate of K → ππ decays as a function of proper time divided
by τS. The rate is shown separately for kaons that are initially K0 (red
squares) and K̄0 (blue circles), tagged by the charge of a K± produced in
association with the neutral kaon. Note the interference between K0

S and
K0

L states for 6 . τ/τS . 17, not to be confused with the oscillations shown
in Figure 4.

by some interference between the K0
S and K0

L states (not shown in Equa-
tion (15). However, at larger times, the rate flattens out to a nearly constant
value, long after the K0

S component has decayed away. This indicates that
the K0

L → ππ decay is occurring, consequently that the weak interaction
does not perfectly conserve CP in this decay.7

The dominant CP-violating effect in this case is indirect CP violation.
This arises because the K0

S and K0
L particles do not correspond exactly to

the CP eigenstates K0
± from Equation (13). Instead, the physical states

have small admixtures of the “wrong” CP eigenstate:

|K0
S〉 =

1√
1 + ε2

(
|K0

+〉+ ε|K0
−〉
)
,

|K0
L〉 =

1√
1 + ε2

(
|K0
−〉 − ε|K0

+〉
)
. (18)

Via the CPT theorem, the cause of this can be understood as a difference
between the amplitudes for K0 → K̄0 and K̄0 → K0 oscillations. The K0

L →
ππ decay itself proceeds via the K0

+ component of the K0
L, and conserves

7Cronin and Fitch were awarded the Nobel prize in 1980 for this observation.
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Figure 6: Example of a penguin diagram, responsible for direct CP violation
in kaon decays.

CP. The observed CP violation is independent of the decay channel, as it
depends only on the size of ε, measured to be (2.228± 0.011)× 10−3.

In contrast, direct CP violation is a property of the decay process itself.
Direct CP violation is possible in certain Feynman diagrams, such as the
K̄0 → ππ decay illustrated in Figure 6. For historical reasons, this is called a
penguin diagram, and in this case it competes with direct s→ uW−∗ → udū
decays that lead to the same final state. To see why this diagram can violate
CP, consider just the diagram mediated by a charm quark. The K̄0 → ππ
amplitude is in this case proportional to VcsVcd. The decay K0 → ππ is
obtained from this by a CP transformation, and the amplitude must be
unchanged if the interaction conserved CP. However, the vertex term in this
case is proportional to V ∗csV

∗
cd, and may have a non-zero complex phase with

respect to the K̄0 → ππ decay. The contributions from the other up-type
quarks will add with different phases, resulting in a different decay rate for
the two states in this channel.

Unlike indirect CP violation, the amplitude for direct CP violating de-
cays depends on the decay channel. For example, the rates for K0

L → π+π−

and K0
L → π0π0 can be measured separately, and compared to the equiva-

lent K0
S decays to remove uncertainties in the non-perturbative corrections

to the amplitudes. The direct CP violation in these decays is quantified by
a parameter ε′ that depends on the ratio of the two K0

L decay amplitudes.
The system is measured to have a small, but non-zero, direct CP violation:

Re
(
ε′

ε

)
≈ ε′

ε
= (1.66± 0.23)× 10−3, (19)

thus confirming that both mechanisms contribute in this decay.

9


