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Neutrinos hold a unique place in the Standard Model. They are the only
fermions which do not interact via either the strong or the electromagnetic
force, a fact which makes them notoriously difficult to detect and measure.
In addition, their masses are known to be exceedingly small, far less than
for the other SM particles. Furthermore, it is not yet known whether the
right-handed neutrino νR even exists, as it would be neutral under all of the
SM gauge groups and could be very massive. We will explore the current
knowledge and theory of neutrinos in this tutorial, with a focus on their
masses and mixings.

1 Describing neutrino masses

In the Standard Model, neutrinos are massless. Certainly, within the mea-
surement precision of the time this was a valid approximation.1 With the
discovery of neutrino oscillations (see Section 3), we now know that at least
two of the three neutrino species have non-zero masses.

There are, in fact, many possible mechanisms to allow the neutrinos
to have non-zero masses, all of which extend the field content of the SM.
One of the conceptually simplest approaches is to introduce right-handed
neutrino fields νR, with appropriate couplings to the Higgs field that allow
mass generation in the same way as for other fermions. This possibility
was already noted in tutorial 3. After electroweak symmetry breaking, the
neutrino mass terms for one generation would be

Lmν = −mν (νLνR + νRνL) . (1)

These terms have exactly the same structure as the mass terms for the
charged leptons and the quarks. Similarly to the quarks, a more complex
structure can emerge when this procedure is extended to three generations,
where the interaction basis (defined by the charged lepton mass states) does
not necessarily correspond to the mass basis (defined by the extension of
Equation (1)). The leptonic equivalent of the CKM matrix is the PMNS

1If we consider only kinematic measurements, e.g. of β decays, this is still true.
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matrix, named after Pontecorvo, Maki, Nakagawa and Sakata. It is a 3× 3
unitary matrix UPMNS, defined as follows:νeνµ

ντ

 = UPMNS

ν1

ν2

ν3

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 , (2)

where ν1, ν2 and ν3 are the three mass eigenstates.
As with the CKM matrix, the PMNS matrix can be parameterised by

three angles (θ12, θ23 and θ13) and a complex phase, δ. Measurements of
oscillations (see Section 3) indicate that the mixing between the second and
third mass states is nearly maximal, i.e. θ23 ∼ 45◦, and that mixing between
the first and third states is small (θ13 ≈ 8.5◦). This allows us to write the
PMNS matrix in the following approximate form:

UPMNS ≈

 c12 s12 s13e
−iδ

− 1√
2
s12

1√
2
c12

1√
2

1√
2
s12 − 1√

2
c12

1√
2

 , (3)

where s12 = sin θ12 and c12 = cos θ12. Note the lack of hierarchical structure
– unlike the CKM matrix, only one element, Ue3, is small.

With this simple theory, one can accommodate our current knowledge
of neutrino masses. However, one may perhaps wonder why the neutrino
mass parameters are so small with respect to the other fermion masses.
One attraction of the above theory is that it is compatible with the seesaw
mechanism, which could explain this apparent anomaly.2

1.1 The seesaw mechanism and Majorana masses

Equation (1) is not the most general Lagrangian that can be written for
neutrino masses involving νR. A more complete expression includes an ad-
ditional pair of terms (again returning to the case of just one generation):3

Lmν = −MD (νLνR + νRνL)− 1
2
MR

(
νcRνR + νRν

c
R

)
. (4)

The last terms are possible because νR is a gauge singlet. In other words, it
only interacts with the Higgs field, and it does not couple to the photon, W ,
Z or gluon. Therefore, explicit mass terms do not violate any gauge sym-
metries of the SM, and can be included even without the BEH mechanism,
unless it is forbidden by some (as yet unknown) high-scale symmetry. In
addition, it would be natural for MR to have a high scale, � 1 TeV.

2More precisely, it allows a Type I seesaw mechanism.
3νcR refers to the antiparticle of the νR, which has opposite chirality, lepton number

etc. It is necessary to use this in order to ensure that all terms in Equation (4) are Lorentz
scalars, by coupling a right-handed field to the adjoint of a left-handed field.
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The νR field in Equation (4) is a Majorana field, as theMR term mediates
transitions between νR and its antiparticle, νcR. This means that the right-
handed neutrino and anti-neutrino share the same relationship as (say) the
right- and left-handed electron, i.e. in a sense they are “the same” particle.
This motivates the construction of explicitly Majorana neutrino states:

L =
1√
2

(νL + νcL) ; R =
1√
2

(νR + νcR) . (5)

Using these states, Equation (4) can be re written in a matrix form:

Lmν = −
(
L R

)( 0 MD

MD MR

)(
L
R

)
, (6)

Exercise: Derive Equation (6). You will need to take special care of the
order of operations (i.e. adjoint vs. charge conjugation), and recall that
νL = PLν and νR = PRν.

Exercise: Diagonalise the mass matrix in Equation (6), and find the cor-
responding mass eigenstates in terms of νL and νR to leading order in
MD/MR.

The mass matrix has eigenvalues of magnitude MR and M2
D/MR, as-

suming MR � MD. The first eigenvalue corresponds to a mostly νR state,
which remains massive, while the mass of the νL state varies inversely as
MR. This is an attractive feature, as it could explain the smallness of the
(left-handed) neutrino masses in a natural way. For example, if we assume
that MD is of the same order as a top mass (∼ 200 GeV), and that MR is
of order the GUT scale (∼ 1015 GeV), the left-handed neutrino mass comes
out as ∼ 40 meV, which, as we will see, is of the correct order of magnitude
to describe the oscillation data.

In this version of the seesaw mechanism, neutrinos are necessarily Ma-
jorana particles, due to the influence of the right-handed component. One
consequence of this is that the PMNS matrix obtains two additional com-
plex phases. Another is that ν ↔ ν̄ transitions would be allowed. There are
hopes that this could be observed in rare variations of double beta decays
like 76Ge → 76Se + 2e− + 2ν̄e. If one of the antineutrinos undergoes a he-
licity flip (the amplitude of this is proportional to its mass), then it could
be absorbed by the second beta decay, resulting in 76Ge → 76Se + 2e−, a
neutrinoless double beta decay. The rate of this process depends upon a
combination of neutrino masses and PMNS matrix elements:

Γ ∝ 〈mββ〉2 =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣
2

. (7)

Thus, searches for double beta decay are sensitive to the neutrino mass
scale, but cancellations between the PMNS elements could reduce 〈mββ〉 to
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Figure 1: Allowed neutrino masses, expressed in terms of the smallest neu-
trino mass and mββ .

arbitrarily small values. With the currently measured values of the PMNS
matrix, this kind of cancellation is only possible if the lightest neutrino
mass lies between approximately 2 meV and 10 meV, as shown in Figure 1.
In all other cases 〈mββ〉 is bounded from below (& 1 meV), meaning that
neutrinoless double beta decay should be observable. Current experimental
limits disfavour values of 〈mββ〉 above about 200 meV.

2 Neutrino oscillations

As with quarks, the non-trivial nature of the PMNS matrix allows for
flavour-changing interactions involving neutrinos. Unlike quarks, the dif-
ferent neutrino mass eigenstates are not immediately distinguishable, and
so we cannot simply measure, say, the relative rates of ν1 and ν2 produced
from a source of νe. Instead, as we can only produce and measure flavour
eigenstates, we must measure transition rates between the flavours, which
occur via flavour oscillations. There are some similarities here with the neu-
tral meson oscillations discussed in the previous tutorial, the main difference
being that we now work in an ultra-relativisitc regime, and this changes the
dependence of the oscillation frequency with mass.

We consider a simple model in one dimension, with just two neutrino
mass eigenstates |1〉 and |2〉. These states have masses m1 and m2, respec-
tively. The two flavour eigenstates, |a〉 and |b〉, are related to the mass
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Figure 2: Sketch of two wave-packets travelling along x with momenta p1

and p2.

eigenstates by a rotation angle θ:

|a〉 = cos θ|1〉+ sin θ|2〉,
|b〉 = − sin θ|1〉+ cos θ|2〉. (8)

We suppose that a neutrino |a〉 is created at t = x = 0, with energy E,
travelling along the positive x axis. The two mass eigenstates propagate in-
dependently in space, with dfferent momenta p1 and p2, due to their different
masses, as sketched in Figure 2.

To proceed further, we should use a full wave-packet description of the
propagation, however it turns out that a much simpler plane-wave approach
suffices to obtain the main results. Consider the state at a later time t, after
which the neutrino has travelled a distance x = L ≈ ct:

|ψ(t)〉 = cos θe−i(Et−p1L)|1〉+ sin θe−i(Et−p2L)|2〉. (9)

The probability of detecting a neutrino in state |b〉 (i.e. that an oscillation
has occurred) is proportional to the square of the corresponding amplitude:

|〈b|ψ(t)〉|2 = | − sin θ cos θe−i(Et−p1L) + cos θ sin θe−i(Et−p2L)|2

= 2 sin2 θ cos2 θ [1− cos(p1 − p2)L] . (10)

Thus, the oscillation probability depends upon the difference between the
momenta of the two mass eigenstates. If we assume that both masses are
small compared to E, we can expand the momenta in powers of m2

i /E
2:

p1 − p2 =
√
E2 −m2

1 −
√
E2 −m2

2

≈ E
(

1− m2
1

2E2
− 1 +

m2
2

2E2

)
=

∆m2

2E
. (11)
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With a little rearrangement of the trigonometric terms, we find that:

|〈b|ψ(t)〉|2 = sin2 2θ sin2

(
∆m2L

4E

)
. (12)

From Equation (12), we observe that:

• Oscillations occur with a period of 4πE/∆m2, so states with higher
∆m2 oscillate more rapidly. Equivalently, for a given neutrino energy,
detectors placed at different distances probe different values of ∆m2.

• Measurements must be made at multiple values of E and/or L to
accurately measure both θ and ∆m2.

• The oscillations do not depend on the sign of ∆m.

• The amplitude of the oscillations varies as sin2 2θ, and vanish as θ
tends to 0 or π.

In reality, the oscillation amplitude also diminishes with distance. This is
not evident in Equation (12) because we did not consider the uncertainty
on the neutrino’s energy. In reality, if the typical spread in energy is δE,
only about E/δE oscillations can be observed before interference between
different energy eigenstates washes the oscillations out, leaving just the long-
term average transition probability of 1

2 sin2 2θ.

3 Measurements of neutrino oscillations

The detection of neutrinos can be achieved in several ways. Some early mea-
surements used the reactions of neutrinos with nuclei, for example 37Cl +
νe → 37Ar + e− in the Homestake experiment in the 1960s. The electron
neutrino flux was inferred from the rate of production of argon in the detec-
tor, however this method is only sensitive to electron neutrinos and provides
no information about the direction or the energy of incoming neutrinos, only
the number that are above the reaction threshold.

More modern detectors aim to at least partially reconstruct the neutrino
interactions, recording the direction and energy of at least one outgoing par-
ticle. A good example of this is the SNO experiment,4 which first confirmed
that oscillations occurred for solar neutrinos. SNO was a heavy water (2H)
detector, where high-energy electrons could be detected by the Čerenkov
radiation that they produce. It was able to attribute the missing neutrinos
to other flavours through the use of a three-channel detection system:

4Sudbury Neutrino Observatory.
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Charged current: νe +n→ e−+ p, which produces an energetic electron.
Solar neutrinos are not energetic enough to produce muons or taus,
hence this measures only the νe rate, but with higher energy sources
muon and tau production can also be observed.

Neutral current: ν + 2H → ν + p + n. The neutron can be captured by
another deuterium atom, releasing a gamma ray. This gamma ray
scatters off one or more electrons in the heavy water, which in turn
emit Čerenkov radiation. All neutrino flavours contribute equally to
this interaction.

Electron scattering: ν + e− → ν + e−. Here the scattered electron is
detected directly. All neutrino flavours contribute to this interaction
via the neutral current, but electron neutrinos can also exchange a W
boson. Overall, about 75% of the rate comes from νe, the remainder
from νµ and ντ .

Similar multi-channel detection techniques can be achieved through the use
of scintillators and photographic emulsion. The technology choice ultimately
depends upon the required detector size, energy threshold, and cost.

The kind of measurement made in a neutrino experiment depends on
the capabilities of the detector and the nature of the neutrino source. Os-
cillation experiments can be separated into appearance experiments, where
the detected neutrino type (e.g. νe) is different from the flavour produced
by the source (e.g. νµ), and disappearance experiments, where the produced
and detected flavours are the same.

3.1 Measurements of atmospheric neutrinos

Cosmic rays striking the upper atmosphere produce muon and electron neu-
trinos in well-predicted ratios, through the production and subsequent de-
cays of charged pions. The energies of these neutrinos can be very high
(∼ TeV), allowing them to be detected and identified by large underground
detectors. Detectors capable of measuring the direction of the neutrino (such
as Super Kamiokande) can differentiate between upward- and downward-
going neutrinos, allowing the baseline L to be varied from several kilometres
to the diameter of the Earth. These observations demonstrate that muon
neutrinos disappear at a rate consistent with oscillations corresponding to
∆m2

atm. ∼ 2.4× 10−3 eV2 and tan2 θatm. ∼ 1.3. These results are quoted in
terms of effective parameters, which are experimentally accessible but may
be combinations of the underlying PMNS matrix parameters. As the loss
of muon neutrinos does not correspond to a gain in electron neutrinos, it
is assumed that they oscillate to tau neutrinos, therefore the atmospheric
results are associated (by convention) with mixing between mass eigenstates
2 and 3.
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Figure 3: The solar neutrino spectrum at a distance of 1 AU. The thresholds
for different detection technologies are also shown.

Muon neutrinos can also be produced with reasonably high purity by
particle beams. In these, low energy pions are allowed to decay into muons
and (anti-)neutrinos, with relatively small contamination from muon decays.
The characteristics of the beam can be precisely controlled, giving a high-
intensity source of ∼ GeV neutrinos. The disappearance of muon neutrinos
in particle beams have been confirmed to be consistent with atmospheric
neutrino oscillations.

3.2 Measurements of solar and reactor neutrinos

Electron neutrinos are produced copiously in the Sun via the reaction p →
n + e+ + νe. Mostly this occurs in the conversion of hydrogen to helium,
producing neutrinos with a typical energy of ∼ 0.3 MeV, but energies of up
to ∼ 10 MeV can be produced in the decays of 8B (see Figure 3). Measure-
ments of the solar neutrino flux by SNO confirm that the electron neutri-
nos disappear via oscillations to other flavours, with effective parameters of
∆m2

solar ∼ 8× 10−5 eV2, and tan2 θsolar ∼ 0.5.

Exercise: Why can SNO not tell which neutrino flavour(s) the νe oscillate
to? Hint: Consider the detection mechanisms outlined at the start of
the section, and the neutrino energies involved.
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Figure 4: Illustration of the two potential hierarchies of neutrino masses,
together with their flavour compositions. The normal hierarchy is shown on
the left, and the inverted hierarchy on the right.

There is a large difference (about a factor of 30) between the values
of ∆m2 governing atmospheric and solar neutrino oscillations. This tells
us that solar oscillations must occur between two nearly degenerate mass
eigenstates (conventionally labeled 1 and 2), separated from the third state,
which is involved in atmospheric oscillations. It is not known, however,
whether m3 is greater or less than m1,2, due to the ambiguity in the sign
of ∆m2

atm..
5 This is illustrated in Figure 4, which shows both the normal

hierarchy with m3 > m1,2 and the inverted hierarchy with m3 < m1,2.
These results can be cross-checked by using nuclear reactors as a source of

electron anti-neutrinos (via n→ p+e−+ν̄e). The energies of these neutrinos
are similar to those from the Sun (i.e. a few MeV), and the baselines are
typically ∼ 10− 105 m. Reactor experiments initially confirmed oscillations
corresponding to the solar oscillation parameters. More recently, oscillations
have been observed at distances corresponding to ∆m2

atm., the first evidence
for a non-zero value of θ13, now measured by the Daya Bay experiment to
be sin2 2θ13 = 0.084± 0.005.

A summary of neutrino measurement results is shown in Figure 5.
5The sign of ∆m2

solar is known, due to flavour-specific modifications to neutrino mixing
caused by νe interactions in the Sun’s core.
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Figure 5: Summary of current and historical constraints on tan2 θ and ∆m2

for different neutrino mixing experiments, with the exception of the recent
θ13 results. Shaded areas denote measurements (disputed in the case of
LSND), while unshaded areas denote exclusions. The two confirmed mixings
are the atmospheric mixing (marked “SuperK” and “MINOS”) and the solar
mixing (best combination marked “all solar 95%”).
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4 Outstanding questions in neutrino physics

The results presented so far are consistent with the simplest form of the
PMNS matrix given in Equation (2), however there are many outstanding
questions relating to the neutrino sector. These include:

Internal consistency. The PMNS matrix has 4 parameters. As with the
CKM matrix, these can in principle be overconstrained by experi-
mental measurements, and to some extent they already are. As new
processes are measured and higher precision is attained, the ability to
be able to describe all experimental data with just four parameters
will be an important test of the PMNS approach.

CP violation. One of the PMNS parameters is a CP-violating phase δ.
This can be measured by comparing the interactions of neutrinos with
anti-neutrinos. At the moment, there is some evidence that δ ∼ π,
which would indicate that there is no CP violation, but the current
sensitivity is poor.

Which mass hierarchy? Now that θ13 is known to be non-zero, it will
be possible for future experiments to determine the mass hierarchy
by measuring the detailed structure of this oscillation in the reactor
ν̄e disappearance rate. As ∆m2

13 and ∆m2
23 are nearly equal, their

oscillations will interfere, with a phase that depends on which of them
is larger – if ∆m2

13 is larger, the hierarchy is normal, else it is inverted
(see Figure 4).

Majorana vs. Dirac mass. The detection of neutrinoless double beta de-
cay would be an unambiguous sign that neutrinos are Majorana par-
ticles. In the case of an inverted hierarchy, 〈mββ〉 is constrained to be
above 0.01 eV, and could be reached by future experiments. In the
case of a normal hierarchy, there is no lower limit to 〈mββ〉, and so
lack of observation does not necessarily mean that neutrinos are purely
Dirac particles.

What is the absolute neutrino mass scale? If neutrinoless double beta
decay is observed, the neutrino mass scale could be deduced from that.
In addition, the KATRIN experiment is undertaking to measure the
(effective) electron neutrino mass in nuclear beta decays. The ex-
periment is expected to have sensitivity down to masses of approx-
imately 0.2 eV, substantially better than the current limit of about
2.2 eV. Cosmological observations require the lightest neutrino to have
m . 0.1 eV.

Are there sterile neutrinos? Recent results from reactor experiments sug-
gest that, even when accounting for three neutrino flavours, fewer neu-
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trinos are detected than are produced. If attributed to neutrino os-
cillations, this disappearence would correspond to a very large mass
splitting of ∆m2 ∼ 0.1 eV2, incompatible with the three-flavour PMNS
model based on solar and atmospheric oscillations. This has led some
to suggest that the ν̄e are oscillating into a fourth neutrino flavour
over very short (∼ m) distances, where this neutrino does not interact
with other SM fields (i.e. it is sterile). New results from Daya Bay
indicate that, for a fourth neutrino with a squared mass difference in
that range, sin2 2θ14 . 0.05, corresponding to θ14 . 6.5◦.
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