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Part 2: Time Evolution of a Neutral Kaon State

Suppose that at time t = 0 we have the state

ψ(0) = |K0

S〉 ≡ |K0

S(t = 0)〉 (1)

and we want to know how does this state evolve in time. We should have at time t,

ψ(t) = e−iHt|K0

S〉. (2)

For a free particle, the energy is

ωS =
√

p2 +m2

S , (3)

where mS is the mass of the K0

S flavor state. However, if we just use this state for H , we won’t have a particle
which decays in time. We know that, if we start with a particle at t = 0 the probability to find it undecayed at
a later time t if it has a lifetime τS = 1/ΓS is given by

P (t) = e−ΓS t. (4)

Thus, the amplitude should have an exp(−ΓS t/2) time dependence, in addition to the phase variation

ψ(t) = e−iωSt−ΓSt/2|K0

S〉. (5)

Letting ωL =
√

p2 +m2

L, where mL is the mass of the K0

L, and ΓL = 1/τL, we similarly have for an initial K0

L

state (ψ(0) = |K0

L〉):
ψ(t) = e−iωLt−ΓLt/2|K0

L〉. (6)

In the {|K0

S〉, |K0

L〉} basis, the Hamiltonian operator is:

H =

(

ωS − iΓS/2 0
0 ωL − iΓL/2

)

. (7)

How did we know that H is diagonal in this basis and not, perhaps, in the |K0〉, |K0〉 basis? The answer is that
we are assuming that CP is conserved and hence, [H, CP ] = 0. The Hamiltonian cannot mix states of differing
CP quantum numbers, so there are no off-diagonal terms in H in the |K0

S〉, |K0

L〉 basis.
The second point is that we have allowed the possibility that the masses of the two CP eigenstates are not

the same, having already noted that the lifetimes are different. This might be a bit worrisome since the C

operation does not change mass. 1 However, the |K0

S〉 and |K0

L〉 are not antiparticles of one another, so there is
no constraint that their masses must be equal. Therefore, we allow the possibility that they may be different.

Now suppose that at time t = 0 we have a pure K
0

state

ψ(0) = |K0〉. (8)

1It is a fundamental theorem in relativistic quantum mechanics that particle and anti-particle have the same mass (as well as
the same total lifetime).
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Experimentally, this is a reasonable proposition, since we may produce such states via the strong interaction.
For example, if we collide two particles with no initial strangeness (perhaps a proton and an anti-proton), we
make strange particles in “associated production”, that is in the production of ss̄ pairs. Thus, we might have

the reaction p̄p→ nΛK
0

. The presence of the Λ, which contains the s̄ quark, suggests that the kaon produced

is a K
0

, since it contains the s quark.

So, one could realistically imagine producing a K
0

at t = 0. But the time-evolution to later times is governed

by the Hamiltonian, which is not diagonal in the |K0〉, |K0〉 basis. Thus, we might expect that at some later
time we may observe a K0.

We now are interested in estimating the probability, PK0(t) that a K0 meson is observed at time t, given a

pure K
0

state at t = 0. The way to proceed it by first noting that ψ(0) = |K0〉 =
(

|K0

S〉 − |K0

L〉
)

/
√
2, and thus

PK0(t) = |〈K0|ψ(t)〉|2 (9)

=
1

2
|〈K0|K0

S〉e−iωSt−ΓSt/2 − 〈K0|K0

L〉e−iωLt−ΓLt/2|2

=
1

4

{

e−ΓSt + e−ΓLt − 2e−
ΓS+ΓL

2
t cos [(ωS − ωL)t]

}

. (10)

By measuring the frequency of the oscillation in the last term, we may measure the mass difference between
the K0

S and the K0

L when the momentum is small, ωS − ωL ≈ mS −mL. Because this difference is very small,
it is experimentally intractable to attempt this with direct kinematic measurements. Measurements of the
oscillation frequency yield a mass difference of

|mS −mL| = 0.5× 1010 s−1 (11)

=
0.5× 1010 s−1

3× 1023 fm/s
200× 106 eV-fm

= 3 µeV, (12)

a difference comparable to the energy of a microwave photon. Since the mass of the kaon is approximately 500
MeV, this is a fractional difference of order one part in 1014!

Now, let us see examples in more detail.

1. Find the neutral kaon Hamiltonian in the |K0〉, |K0〉 basis. Is the symmetry of this result consistent with
the notion that the masses of particles and antiparticles are the same? Same question for the decay rates.

2. Repeat the derivation of Eq. 10, but work in the density matrix formalism. We did not consider the
possibility of decay when we developed this formalism, so we should be careful; we may find that we need
to modify some of our discussion. Show that in the end

PK0(t) = tr
[

ρ(t)|K0〉〈K0|
]

= · · · (13)

=
1

4

{

e−ΓSt + e−ΓLt − 2e
−

(

ΓS+ΓL

2

)

t
cos [(ωS − ωL)t]

}

. (14)

3. We discussed the neutral kaon (K) meson, and in particular the phenomenon of K0 − K̄0 mixing. Let
us think about this system a bit further. The K0 and K̄0 mesons interact in matter, dominantly via the
strong interaction. Approximately, the cross section for an interaction with a deuteron (the nucleus of
deuterium 2H) is:

σ(K0d) = 36millibarns (15)

σ(K̄0d) = 59millibarns, (16)

at a kaon momentum of, say, 1.5 GeV. Note that a “barn” is a unit of area equal to 10−24 cm2.

(a) Consider a beam of kaons (momentum 1.5 GeV) incident on a target of liquid deuterium. Let λ
be the K0 “interaction length”, that is the average distance that a K0 will travel in the deuterium
before it interacts according to the above cross section. Similarly, let λ̄ be the K̄0 interaction length.
To a good enough approximation for our purposes, you may treat the deuterium as a collection of
deuterons. The density of liquid deuterium is approximately ρ = 0.17 g/cm3. What are λ and λ̄, in
centimeters?
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(b) Suppose we have prepared a beam ofK0

L mesons, for example by first creating aK0 beam and waiting
long enough for theK0

S component to decay away. If we let this K0

L beam traverse a deuterium target,
theK0 and K̄0 components will interact differently, and we may end up with someK0

S mesons exiting
the target. Let us make an estimate for the size of this effect.

Since the kaon is relativistic, we need to be a little careful compared with our previous discussion.
In the K0

L rest frame, the amplitude depends on time t∗ according to:

exp(−imLt
∗ − ΓLt

∗/2), (17)

where ΓL = 1/τL is the K0

L decay rate. In the laboratory frame, where the kaon is moving with
speed v (c = 1), and γ = 1/

√
1− v2, t∗ → t/γ, where t is the time as measured in the laboratory

frame. In the lab frame, we have t/γ = x/γv, and we may write the amplitude as for the K0

L as:

exp(−imLx/γv − ΓLx/2γv), (18)

Let us consider a deuterium target, of thickness w, along the beam direction. At a distance x into
the target, an interaction may occur, resulting in a final state:

1√
2
(f |K0〉 − f̄ |K̄0〉), (19)

where, for example, the amplitude f for the K0 component traversing distance dx is just:

f = e−dx/2λ ≈ 1− dx

2λ
. (20)

Put all this together and find an expression for the probability to observe a K0

S to emerge from
the deuterium, for a K0

L incident. Assume that w ≪ λ. You may wish to use ∆m ≡ mL − mS ,
ΓS,L ≡ 1/τS,L, and ∆Γ ≡ ΓL − ΓS ≈ −ΓS

(c) Suppose w = 10 cm and γv = 3. What is the probability to observe a K0

S emerging from the target?
What is the probability to observe a K0

L? You may use:

ΓS = 1.1× 1010 s−1, (21)

∆m = 0.5× 1010 s−1. (22)
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