# Testing the Standard Model of Elementary Particle Physics II

Introduction

23th April 2020



### **Contact details**

Main Lecturer:

Prof. Dr. Hubert Kroha Max-Planck-Institut für Physik Föhringer Ring 6 80805 München Room 120 E-mail: kroha@mppmu.mpg.de

Assistant:

Dr. Dominik Duda Max-Planck-Institut für Physik Föhringer Ring 6 80805 München Room 121 E-mail: dduda@mppmu.mpg.de

### Curriculum

- 1. Standard Model of Particle Physics
  - 1.1 Field Theories of Elementary Particle Physics
  - **1.2 Gauge Theories and Interactions**
  - 1.3 Fundamental Forces and their Unification
  - 1.4 Origin of Particle Masses (i.e. the Higgs mechanism)
  - 1.5 Theory meets Experiment (using Feynman Diagrams)
- 2. Recent experimental Tests on the Standard Model of Particle Physics
  - 2.1 Precision Measurements of the Electroweak Interaction
  - 2.2 Physics at the Large Hadron Collider
  - 2.3 The Higgs Boson (Searches and Measurements)
  - 2.4 Ongoing Searches for Beyond the Standard Model Physics
  - 2.5 B-Hadron Decays and CP Violation
  - 2.6 Neutrino Masses and Oscillation

### Curriculum

3. Extension of the Standard Model of Particle Physics

- 3.1 Open Questions
- 3.2 Great Unification
- 3.3 Supersymmetry
- 3.4 Dark Matter

### Literature

- B. Povh, K.Rith, Ch. Scholz, F. Zetsche: **Teilchen und Kerne**, Springer, 4th edition, 1997.
- Ch. Berger: **Elementarteilchenphysik**, Springer, 2002.
- P. Schmüser: **Feynmangraphen und Eichtheorien für Experimentalphysiker**, Springer, 2nd edition, 1995.
- I.J.R. Aitchison, A.J.G. Hey: **Gauge Theories in Particle Physics**, Vol. 1, Institute of Physics Publishing, new edition, 2002.
- W. Greiner, B. Müller: **Quantum Mechanics–Symmetries**, Springer, 2nd edition, 1994.
- Ian Brock, Thomas Schörner-Sadenius: Physics at the Terascale, WILEY-VCH, 2011
- D. Griffiths, Introduction to Elementary Particles, WILEY-VCH, 2008, 2nd edition
- Amitabha Lahiri, Palash B. Pal: **A first book of QUANTUM FIELD THEORY**, Alpha Science, 2nd edition, 2007

# Testing the Standard Model of Elementary Particle Physics II

First lecture

23th April 2020

### **Physics at the Large Hadron Collide**r



## **The Large Hadron Collider**



Instantaneous luminosity



- $N_1$ ,  $N_2$  = Number of hadrons per bunch
  - n = Number of bunches per beam
  - f = Resolution frequency
  - A = Beam cross section
- Integrated luminosity

$$L = \int \mathcal{L} dt$$

• CoM energy:  $\sqrt{s}$ 

### Magnet system

Instantaneous luminosity



# Luminosity

- Design goal of LHC:
  - 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
    - n = 2835 proton bunches per beam
    - f = 40MHz
    - N<sub>1</sub>/N<sub>2</sub> = 10<sup>11</sup> protons per bunch







### **Event rates/cross sections**

 $\frac{dN}{dt} = \mathcal{L} \cdot \sigma$ 

| Inelastic pp collisions                | ~10 <sup>7</sup> Hz  |
|----------------------------------------|----------------------|
| b-quark production                     | ~10⁴ Hz              |
| Jet production $E_T^> 250 \text{ GeV}$ | ~1 Hz                |
| W->Iv                                  | ~1 Hz                |
| top-quark production                   | ~10 <sup>-2</sup> Hz |
| Higgs bosons                           | ~10 <sup>-4</sup> Hz |



### **The ATLAS Detector**



### **Inner Detector**





### **Calorimeter system**



### Calorimetry



http://pdg.lbl.gov/2009/reviews/rpp2009-rev-passage-particles-matter.pdf

## Calorimetry



### **ATLAS calorimeter system**





### **Muon spectrometer**

- The muon spectrometer measures the deflection of the muon tracks in the magnetic field
  - Based on gaseous detectors for precision tracking and triggering
- Characteristics:
  - Momentum resolution of 2-10% for muons with a pT between 10GeV - 1TeV
  - Spatial resolution of 30 μm

Thin-gap chambers (TGC) Cathode strip chambers (CSC) **Barrel** toroid **Resistive-plate** chambers (RPC) End-cap toroid Monitored drift tubes (MDT)



#### **Construction of muon chambers**



### **Magnet system**

Toroids:
 Field strength: 4T

- Solenoid

   Field strength: 2T
- Responsible for bending trajectories of charged particles
  - Enables measurement of momenta



## Construction













## **Grid computing**



## Data taking



## **Particle identification**

#### Hadronic particle shower

 Cone shaped jets build from calorimeter clusters or tracks

#### • Muons

• Combined tracks from Inner Detector and Spectrometer

#### • Electrons

- Inner Detector track
- Energy clusters in calorimeter system



### Jets

- **Jets:** Collimated bunches of stable hadrons, originating from partons (quarks and gluons) after fragmentation and hadronization
- Require collinear- and infrared-safety i.e. jets are unchanged by:
  - Collinear splitting
  - Soft emissions
- LHC experiments preferrably use so called **sequential clustering algorithms**
- Application: Calculate for all pairs of particles i an j:

$$\begin{split} \textbf{d}_{ij} &= min(\textbf{k}_{i,T}^{2p}, \textbf{k}_{j,T}^{2p}) \; \frac{\Delta_{ij}^2}{R^2} \\ \textbf{d}_{iB} &= \textbf{k}_{i,T}^{2p} \end{split}$$



### Jets

- **Jets:** Collimated bunches of stable hadrons, originating from partons (quarks and gluons) after fragmentation and hadronization
- Require collinear- and infrared-safety i.e. jets are unchanged by:
  - Collinear splitting
  - Soft emissions
- LHC experiments preferrably use so called **sequential clustering algorithms**
- Application: Calculate for all pairs of particles i an j:

$$\begin{split} \textbf{d}_{ij} &= min(\textbf{k}_{i.T}^{2p}, \textbf{k}_{j,T}^{2p}) \; \frac{\Delta_{ij}^2}{R^2} \\ \textbf{d}_{iB} &= \textbf{k}_{i,T}^{2p} \end{split}$$



The pair with the smallest d is clustered if  $d_{ij} < d_{iB}$ , for  $d_{iB} < d_{ij}$  object i is called a jet

### **The CMS Detector**



### **The CMS Detector**



### **The LHCb Detector**



### **Monte Carlo simulation**

- Observations in data are compared to SM predictions (Monte Carlo simulations)
- Use factorisation approach:
  - Parton distribution functions (PDF)
  - Hard process (matrix element/scattering amplitude)
  - Parton shower (fragmentation, hadronization, decay of unstable particles)
  - Detector simulation (including overlay with pile-up)


### **Monte Carlo simulation**

- Observations in data are compared to SM predictions (Monte Carlo simulations)
- Use factorisation approach:
  - Parton distribution functions (PDF)
  - Hard process (matrix element/scattering amplitude)
  - Parton shower (fragmentation, hadronization, decay of unstable particles)
  - Detector simulation (including overlay with pile-up)





### W boson production and decay

### • W boson decay (Lepton universality):

- All three types of charged lepton particles interact in the same way with other particles.
- The three lepton types are created equally often in particle transformations, or decays (once differences in their mass are accounted for)

| Decay Mode              | BR                   |  |
|-------------------------|----------------------|--|
| $W \rightarrow e v$     | $(10.71 \pm 0.16)\%$ |  |
| $W \rightarrow \mu \nu$ | $(10.63 \pm 0.15)\%$ |  |
| $W \to \tau \nu$        | $(11.38 \pm 0.21)\%$ |  |
| $W \rightarrow hadrons$ | $(67.41 \pm 0.27)\%$ |  |





### **Z** + jets production and decay

| Decay Mode                       | BR                      |  |  |
|----------------------------------|-------------------------|--|--|
| $Z \rightarrow e^+ e^-$          | $(3.3632 \pm 0.0042)\%$ |  |  |
| $Z \rightarrow \mu^+ \mu^-$      | $(3.3662\pm 0.0066)\%$  |  |  |
| $Z \rightarrow \tau^+ \tau^-$    | $(3.3696 \pm 0.0083)\%$ |  |  |
| $Z \rightarrow \text{invisible}$ | $(20.000 \pm 0.055)\%$  |  |  |
| $Z \rightarrow hadrons$          | $(69.911 \pm 0.056)\%$  |  |  |





Run: 267639 Event: 173263110 2015-06-14 13:13:03 CEST

Z -> ee

proton-proton collisions at 13 TeV

### **W/Z** production





## Charge asymmetry in W boson production

 PDFs of u and d quarks in the proton differ (as largely due to there being two valence u quarks and one valence d quark)





### **Diboson production (WW, WZ, ZZ)**







Run Number: 284420, Event Number: 546213887

Date: 2015-11-02 00:56:41 CET







# **Triple-Gauge-Coupling (TGC)**

• Diagrams with the ZZZ and ZZgamma neutral TGC vertices **do not** exist in the SM.



### **Triboson production**

 $V_1$ 

 $V_2$ 

- Rare processes with cross sections in the order of 1pb
- Important background to Di-Higgs searches



# **Top quark production**





√s [TeV]



# **Top quark decay**

• Top quark decays almost exclusively via t->bW

 $|v_{tb}| \approx 1$   $U_{tb} = 1$   $U_{t} = 1$ 

• Top quark decays are characterised by high pT leptons, jets and missing transverse momentum



# **Top quark mass**

1



| ATLAS+CMS Preliminary<br>LHCtopWG                                                                                                | m <sub>top</sub> f                                                     | rom cross-section measu                                                                                                                                                                                                                                                                          | rements<br>Sep 2019                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| total st                                                                                                                         | <del>•</del> ⊢ –∣<br>at                                                | $m_{top} \pm tot \; (stat \pm syst \pm theo)$                                                                                                                                                                                                                                                    | Ref.                                                |  |  |
| $\sigma(t\bar{t})$ inclusive, NNLO+NNLL                                                                                          |                                                                        |                                                                                                                                                                                                                                                                                                  |                                                     |  |  |
| ATLAS, 7+8 TeV                                                                                                                   | • •                                                                    | 172.9 <sup>+2.5</sup><br>-2.6                                                                                                                                                                                                                                                                    | [1]                                                 |  |  |
| CMS, 7+8 TeV                                                                                                                     |                                                                        | 173.8 <sup>+1.7</sup><br>-1.8                                                                                                                                                                                                                                                                    | [2]                                                 |  |  |
| CMS, 13 TeV 🛏 🖬                                                                                                                  |                                                                        | 169.9 $^{+1.9}_{-2.1}$ (0.1 $\pm$ 1.5 $^{+1.2}_{-1.5}$ )                                                                                                                                                                                                                                         | [3]                                                 |  |  |
| ATLAS, 13 TeV                                                                                                                    | <b>-</b>                                                               | 173.1 <sup>+2.0</sup><br>-2.1                                                                                                                                                                                                                                                                    | [4]                                                 |  |  |
| $\sigma$ (tī+1j) differential, NLO                                                                                               |                                                                        |                                                                                                                                                                                                                                                                                                  |                                                     |  |  |
| ATLAS, 7 TeV                                                                                                                     |                                                                        | 173.7 $^{+2.3}_{-2.1}$ (1.5 $\pm$ 1.4 $^{+1.0}_{-0.5}$ )                                                                                                                                                                                                                                         | [5]                                                 |  |  |
| CMS, 8 TeV                                                                                                                       |                                                                        | 169.9 $^{+4.5}_{-3.7}$ (1.1 $^{+2.5}_{-3.1}$ $^{+3.6}_{-1.6}$ )                                                                                                                                                                                                                                  | [6]                                                 |  |  |
| ATLAS, 8 TeV                                                                                                                     |                                                                        | 171.1 $^{+1.2}_{-1.0}$ (0.4 $\pm$ 0.9 $^{+0.7}_{-0.3}$ )                                                                                                                                                                                                                                         | [7]                                                 |  |  |
| $\sigma$ (tt̄) n-differential, NLO                                                                                               |                                                                        |                                                                                                                                                                                                                                                                                                  |                                                     |  |  |
| ATLAS, n=1, 8 TeV                                                                                                                |                                                                        | $173.2 \pm 1.6 \; (0.9 \pm 0.8 \pm 1.2$                                                                                                                                                                                                                                                          | ) [8]                                               |  |  |
| CMS, n=3, 13 TeV 🛏                                                                                                               |                                                                        | $170.9 \pm 0.8$                                                                                                                                                                                                                                                                                  | [9]                                                 |  |  |
| <ul> <li>m<sub>top</sub> from top quark decay</li> <li>■ CMS, 7+8 TeV comb. [10]</li> <li>■ ATLAS, 7+8 TeV comb. [11]</li> </ul> | [1] EPJC 74 (20<br>[2] JHEP 08 (20<br>[3] EPJC 79 (20<br>[4] ATLAS-COP | 014) 3109         [5] JHEP 10 (2015) 121         [9] arXiv:19           016) 029         [6] CMS-PAS-TOP-13-006         [10] PRD 9:           019) 368         [7] arXiv:1905.02302 (2019)         [11] EPJC 7           VF-2019-041         [8] EPJC 77 (2017) 804         [9] arXiv:1905.02302 | 04.05237 (2019)<br>3 (2016) 072004<br>79 (2019) 290 |  |  |
| 55 160 165 170                                                                                                                   | 175<br>n [Go]/]                                                        | 180 185 1                                                                                                                                                                                                                                                                                        | 90                                                  |  |  |
|                                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                  |                                                     |  |  |

### **Production of top + X**



### **Production of top + X**

- Rare processes:
  - Cross section ttV:  $\sim 1 \text{ pb}$
  - $\circ$  Cross section ttbb: ~ 0.1 pb
  - Cross section 4tops: ~ 0.01 pb





#### **Top Quark Production Cross Section Measurements**

Status: November 2018



# Testing the Standard Model of Elementary Particle Physics II

Second lecture

30th April 2020

### The Higgs boson (searches and measurements)



Need:

Intro

Higgs searches at LEP and Tevatron

ttΗ

### **Higgs boson production at the LHC**



• All main production modes are probed at the LHC

### **Higgs boson production cross section**



# Higgs boson decay



Some channels with low BR have a clean signature in the detector
 e.g. H -> ZZ and H->yy

# **Higgs boson decays**

sosser W/Z

• Strength of the coupling between the Higgs boson and other particles is proportional to the particle mass:

$$\mathcal{L}_{Hff} = -\frac{m_f}{v} h f \bar{f} \quad \text{and} \quad \mathcal{L}_{HVV} = \frac{1}{v} \left( 2m_W^2 W_\mu^+ W^{-\mu} + 2m_Z^2 Z_\mu Z^\mu \right) h$$

- Thus decays to massless particles such as photon or gluons is only possible via top quark (or W boson) loops
- The masses of the particles running in these loops are large and thus such decay modes can compete with decays to fermions or W and Z bosons



### H->bb



### H->WW\*



### H->WW\*



### H-> tau tau



### H-> tau tau



### H-> ZZ\*



### H-> ZZ\*



# H-> yy
### **H-> yy**



#### H-> mu mu

- Probe Higgs couplings to 2nd generation fermions
   Low BR
  - Low BR
     Here: Higgs producti
- Here: Higgs production in VBF channel



#### H-> mu mu



## **Differential measurements**

- With large statistics of full Run-II dataset, we can explore differential distribution
  - To isolate phase space regions that are particular sensitive to new physics effects
- Measurement of differential cross sections
  - 1. Measure number of Higgs signal events  $N^{signal}$  in i-th  $p_T^H$  bin (or of any other observable)
  - 2. Background subtraction
  - 3. Unfolding: Derive correction factor from MC information:

 $c_i = rac{N^{
m reco}}{N^{
m part}}$ 

4. Calculate differential cross section:

$$\left(\frac{d\sigma}{dx}\right)_i = \frac{N^{\text{signal}}}{c_i \Delta p_{i,\text{T}}^H \mathcal{L}_{\text{int}}}$$



#### **Differential measurements**



## **Higgs boson mass**



# **Higgs CP/Spin**

ATLAS

۶D

40

Observed

Expected

 $0^+$  SM  $\pm 1\sigma$ 

 $0^+$  SM  $\pm 2 \sigma$ 

 $0^+ SM \pm 3 \sigma$  $J^P \pm 1 \sigma$ 

 $J^P \pm 2 \sigma$ 

 $J^P \pm 3 \sigma$ 

 $H \rightarrow ZZ^* \rightarrow 4l$ 

s = 7 TeV, 4.5 fb<sup>1</sup>

s = 8 TeV, 20.3 fb<sup>1</sup>

s = 8 TeV, 20.3 fb<sup>1</sup>

s = 7 TeV, 4.5 fb<sup>1</sup>

s = 8 TeV, 20.3 fb<sup>1</sup>

 $J^{P} = 2^{+}$ 

p <125 GeV

 $H \rightarrow \gamma \gamma$ 

 $H \rightarrow WW^* \rightarrow e \nu \mu \nu$ 

- Spin and CP state of Higgs-boson are determined probing angular distribution of decay products
  - Data hints very strongly to a Spin CP state of 0+
  - Alternative models are rejected with a CL of more than 99 .9 %
- Spin-1 hypothesis was theoretically excluded by observation of H->yy decay mode (**Yang's theorem**):
  - A massive spin-1 particle cannot decay into a pair of identical massless spin-1 particles.



# **Di-Higgs and Higgs self-coupling**

- Higgs-mechanism of electroweak symmetry breaking and mass generation does not only predict the existence of a scalar boson, but also its self-coupling
- Probing the self-coupling of the Higgs boson allows us to verify the form of the Higgs potential
- Di-Higgs production mode is very sensitive to contribution from BSM physics

$$\sigma_{pp \to HH} = 33.5^{+2.4}_{-2.8} \text{ fb}$$



## **Di-Higgs and Higgs self-coupling**

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 27.5 - 36.1 \text{ fb}^{-1}$ 

Observed

Expected

Expected  $\pm 1\sigma$ 

- So far, we can only set limits on the self-coupling strength and the Di-Higgs production cross section
- Will need the full data from HL-LHC phase until we can measure these observables



## **Di-Higgs prospects**

