B mesons and CP violation

Tests of the Standard Model of Particle Physics II, SS 2020

Prof. Dr. H. Kroha

(updates by Dr. M. Spalla)

Flavor mixing in quarks (1)

- In quarks, the weak SU(2) eigenstates are different from the mass eigenstates
 - > Mass eigenstates: mass operator is diagonal, fixed masses
 - Weak eigenstates: left-handed SU(2) doublet and right-handed SU(2) singlet
 - Experimental evidence from weak decays of K, D and B mesons
- The mass eigenstates U'_L and D'_L are connected to the weak eigenstates U_L and D_L by unitary transforms

Flavor mixing in quarks (2)

 Charged weak interaction mediates transition between weak eigenstates within each generation

$$\begin{aligned} \mathcal{L}_{CC} &= -\frac{g}{\sqrt{2}} [j_{CC}^{\mu+} W_{\mu}^{-} + j_{CC}^{\mu-} W_{\mu}^{+}] \\ &= -\frac{g}{\sqrt{2}} \left[(\overline{U}_{L} \gamma^{\mu} 1 D_{L}) W_{\mu}^{-} + (\overline{D}_{L} \gamma^{\mu} 1 U_{L}) W_{\mu}^{+} \right] \\ &= -\frac{g}{\sqrt{2}} \left[(\overline{U}_{L}^{\prime} U_{u}^{\dagger} \gamma^{\mu} U_{d} D_{L}^{\prime}) W_{\mu}^{-} + (\overline{D}_{L}^{\prime} U_{d}^{\dagger} \gamma^{\mu} U_{u} U_{L}^{\prime}) W_{\mu}^{+} \right] \\ &= -\frac{g}{\sqrt{2}} \left[(\overline{U}_{L}^{\prime} \gamma^{\mu} V_{CMK} D_{L}^{\prime}) W_{\mu}^{-} + (\overline{D}_{L}^{\prime} V_{CKM}^{\dagger} \gamma^{\mu} U_{L}^{\prime}) W_{\mu}^{+} \right] \end{aligned}$$

• The unitary matrix $V_{CKM} = U_u^+ U_d$ (Cabibbo-Kobayashi-Maskawa matrix) describes charged weak interactions between quark mass eigenstates

Flavor mixing in quarks (3)

- \circ V_{CKM} is responsible for flavor mixing in quarks
- Not diaginal: transition between different generations due to charged weak current

$$\begin{pmatrix} u'\\c'\\t' \end{pmatrix} \longleftrightarrow \begin{pmatrix} d_C\\s_C\\b_C \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d'\\s'\\b' \end{pmatrix}$$

• E.g.

$$u' \leftrightarrow d_C = V_{ud}d' + V_{us}s' + V_{ub}b'$$

Number of independent parameters in V_{CKM} (1)

- For n=2 generations (before discovery of *b*)
 - One real parameter (Cabibbo angle $\theta_{\rm C}$)
 - No complex phase

• Cabibbo matrix:

$$V = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix}$$

$$\Rightarrow \quad \sin \theta_C \approx 0.23$$
$$\Rightarrow \quad \cos \theta_C \approx 0.95$$

Number of independent parameters in V_{CKM} (2)

• For n=3 generations

- 3 real parameters
 - > mixing angles θ_{ij} (*i*,*j* = 1,2,3 with *j*>*i*)
- and 1 complex phase $e^{i\delta}$

 $\succ V_{CKM}^* \neq V_{CKM}$ for at least 3 generations

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

With:
$$c_{ij} = \cos \theta_{ij} > 0, \ s_{ij} = \sin \theta_{ij} > 0$$

V_{CKM} parameters

- The complex phase of V_{CKM} allows CP-violation within Standard Model
 - Occurs for weak interaction
 - Originates from fermion to Higgs coupling, i.e. the mass matrix

- Elements of V_{CKM} not predicted by Standard Model
 - Need to be determined experimentally
 - Very active field, particularly in heavy quarks physics (c, b, t)

Experimental information on V_{CKM} (1)

Known from:

V _{ud}	nuclear eta decays, neutron lifetime
<i>V</i> _{us}	semileptonic kaon decay ($K \rightarrow \pi \ell \nu_{\ell}$), also hyperon and τ decays
<i>V_{ub}</i>	semileptonic <i>B</i> decay ($B \rightarrow X_u \ell \nu_\ell : b \rightarrow u$)
<i>V_{cd}</i>	semileptonic <i>D</i> decays $(D \rightarrow \pi \ell \nu_{\ell} : c \rightarrow d)$, <i>c</i> production in neutrino scattering
<i>V</i> _{cs}	semileptonic <i>D</i> decays $(D \rightarrow K \ell \nu_{\ell} : c \rightarrow s)$
V _{cb}	semileptonic <i>B</i> decays ($b \rightarrow c$)
V _{td}	$B^0_d \overline{B}^0_d$ mixing
<i>V</i> _{ts}	$B_s^0 \overline{B}_s^0$ mixing
$ V_{td}/V_{ts} $	combination of $B^0_d \overline{B}^0_d$ and $B^0_s \overline{B}^0_s$ mixing, $B \to X_s \gamma$ decay
$ V_{ts} / V_{cb} $	$B \to X_s \gamma$ decay
V _{tb}	top quark decay ($t \rightarrow bW^+$)

 $\left(\begin{array}{cccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$

Source: Particle Data Group (2019), http://pdg.lbl.gov/2019/reviews/rpp2019rev-ckm-matrix.pdf

Experimental information on V_{CKM} (2)

• Best determination of V_{CKM} magnitudes comes from global fit to all measurements:

 $V_{\rm CKM} = \begin{pmatrix} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359^{+0.00010}_{-0.00011} & 0.04214 \pm 0.00076 \\ 0.00896^{+0.00024}_{-0.00023} & 0.04133 \pm 0.00074 & 0.999105 \pm 0.000032 \end{pmatrix}$

Source: Particle Data Group (2019), http://pdg.lbl.gov/2019/reviews/rpp2019-rev-ckm-matrix.pdf

• There's a clear hierarchy:

$$s_{12} = 0.22 \gg s_{23} = \mathcal{O}(10^{-2}) \gg s_{13} = \mathcal{O}(10^{-3})$$

 $m_t = 174 \text{ GeV}$ $m_b = 5 \text{ GeV}$ $m_c \approx 1.6 \text{ GeV}$

Wolfenstein parametrisation of V_{CKM}

- Useful tool for phenomenological considerations
- The hierarchical structure of V_{CKM} becomes very transparent

$$s_{12} \equiv \lambda = 0.22, \quad s_{23} \equiv A\lambda^2, \quad s_{13}e^{-i\delta_{13}} \equiv A\lambda^3(\rho - i\eta)$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

The Unitarity Triangle (1)

• Orthogonality condition of V_{CKM} columns defines triangles in the complex ρ - η plane

$$V_{ud}^* V_{us} + V_{cd}^* V_{cs} + V_{td}^* V_{ts} = 0,$$

$$V_{us}^* V_{ub} + V_{cs}^* V_{cb} + V_{ts}^* V_{tb} = 0,$$

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0,$$

- The third triangle has nonzero surface if we have a nonzero complex phase: $\delta \neq 0$ (which implies $V_{ub} \neq 0$)
 - i.e. if there is CP-violation

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

The Unitarity Triangle (2)

- Orthogonality condition of V_{CKM} columns defines triangles in the complex ρ - η plane
- The triangles have nonzero surface if the complex phase is different from 0: $\delta \neq 0$
 - i.e. if there is CP-violation
- The most useful, to study V_{CKM} unitarity, is the third equation
 - Describes CP-violation in B mesons decay
 - large B⁰B⁰ mixing and V_{ub}/V_{cb} not so small imply large area, which imply strong CP violation in B's

B mesons production

			Centre of mass energy [Ge
Lifetime	$\sigma(b\overline{b})$	$N_{B\overline{B}}$	Process
1989 - 2000	7 nb	10 ⁶ /Exp.	$e^+e^- \rightarrow Z^0 \rightarrow b\overline{b} \rightarrow B\overline{B} + X$
1979 - 2008	1 nb	$2.0 \cdot 10^{7}$	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
1999 - 2008	1 nb	$2.5 \cdot 10^8$	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
1999 - 2010	1 nb	$4 \cdot 10^{8}$	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$
1983 - 2011	0.1 mb	$1.5\cdot10^{10}$	$p\bar{p} \rightarrow b\bar{b} + X$
2010 -	0.5 mb (14 TeV)	${\sim}10^{12} \ b \overline{b}$ /year (expected)	$pp \rightarrow b\overline{b} + X$

$e^+e^- \rightarrow \Upsilon(4S) \rightarrow h$	$B\overline{B}$
---	-----------------

27/04/20

2019 -

1 nb

Exp.

LEP

CLEO

BaBar

BELLE

LHCb

CDF/D0

BELLE 2

Tests of the Standard Model of Particle Physics II, SS 2020

 $5 \cdot 10^{10}$ (expected)

B factories: BaBar detector

• On PEP-II collider in SLAC

B factories: Belle detector

- On the KEK-B storage ring at the KEK Accelerator Center, Japan
- New detector (Belle 2) recently started operations

A B-dedicated detector at hadron colliders: LHCb

- On the LHC at CERN
 - 1-arm spectrometer: focusing on $b\overline{b}$ production in the forward direction

Weak decays of B mesons (1)

• B-mesons:

 $B^+=(\overline{b}u)$, $B^0_d=(\overline{b}d)$, $B^0_s=(\overline{b}s)$

- Semileptonic decays
 - ► BR ~ 20% ($\ell = e, \mu$)
 - $b \to c \ell \nu_{\ell}$ (e.g. $B^0 \to D^{(*)-} \ell^+ \nu_{\ell}$)
 - $b \to u\ell \nu_{\ell}$ (e.g. $B^0 \to \rho^- \ell^+ \nu_{\ell}$)
- Allow to access $|V_{cb}|$ and $|V_{ub}|$
 - by measuring BR of weak semileptonic decay

Weak decays of B mesons (2)

- Allow to access $|V_{cb}|$ and $|V_{ub}|$
 - by measuring BR of weak semileptonic decay

$$BR(B \to X \ell \nu_{\ell}) = \frac{\Gamma(B \to X \ell \nu_{\ell})}{\Gamma_{\text{tot}}^{B}}$$
$$= \frac{G_{F}^{2} m_{b}^{5}}{192\pi^{3}} (r_{c}(x) |V_{cb}|^{2} + r_{u}(x) |V_{ub}|^{2})$$
$$\cdot (1 + \delta_{QCD}) \cdot \tau_{B}$$

Γ^B_{tot} = τ⁻¹_B
 r_q(x) = phase space factor, with x = m_q/m_b (r_c≈0.5, r_u≈0.5)
 δ_{QDC} is a model-dependent QCD correction factor

Measurements of $|V_{cb}|$ and $|V_{ub}|$

Quark flavour oscillation (1)

- Particle-antiparticle oscillation in neutral mesons.
 - Weak interaction violate flavour conservation.

$$egin{aligned} K^0 &= (dar{s}) & \longleftrightarrow & \overline{K}^0 &= (ar{d}s) & (|\Delta S| = 2) \ D^0 &= (car{u}) & \longleftrightarrow & \overline{D}^0 &= (ar{c}u) & (|\Delta C| = 2) \ B^0_d &= (dar{b}) & \longleftrightarrow & \overline{B}^0_d &= (ar{d}b) & (|\Delta B| = 2) \ B^0_s &= (sar{b}) & \longleftrightarrow & \overline{B}^0_d &= (ar{s}b) & (|\Delta B| = 2). \end{aligned}$$

- Predicted by Gell-Mann and Pais in 1955 for the K⁰ mesons
- Flavour eigenstates are different from mass/CP eigenstates
 - Flavour eigenstates: K^0 (S=-1) and \overline{K}^0 (S=1)
 - CP-eigenstates with defined masses and half-lives:
 - $\succ K_S^0$ (K-short):

$$au_S pprox 10^{-10}$$
 s; $K^0_S
ightarrow \pi^+\pi^-$, $\pi^0\pi^0~(CP=+1)$.

 $\succ K_L^0$ (K-long):

$$au_Lpprox 10^{-7}$$
 s; $K^0_L
ightarrow \pi^+\pi^-\pi^0$, $\pi^0\pi^0\pi^0$ $(CP=-1)$

Quark flavour oscillation (2)

• Time evolution of $K^0 \overline{K}^0$ system

$$egin{aligned} \phi(t)>&=a(t)|K^0>+b(t)|\overline{K}^0>&=\left(egin{aligned} a(t)\b(t)\end{array}
ight),\ &|K^0>&=\left(egin{aligned} 1\b(t)
ight),\ &\overline{K}^0=\left(egin{aligned} 0\1\end{array}
ight), \end{aligned}$$

• In Schrödinger formalism:

$$irac{\partial}{\partial t}|\phi>=H\phi>$$

Where H is an effective Hamiltonian (H⁺ ≠ H): H = M̂ - i Γ̂/2
M̂ and Γ̂ being the mass and decay matrices
not diagonal, as K⁰K̄⁰ are not mass eigenstates

$$\widehat{M}-rac{i}{2}\widehat{\Gamma} ~=~ \left(egin{array}{cc} m_{11} & m_{12} \ m_{21} & m_{22} \end{array}
ight)-rac{i}{2}\left(egin{array}{cc} \Gamma_{11} & \Gamma_{12} \ \Gamma_{21} & \Gamma_{22} \end{array}
ight)$$

Quark flavour oscillation (3)

 $\circ K^0 \overline{K}^0$ effective Hamiltonian: $H = \hat{M} - i\hat{\Gamma}/2$

- CPT invariance implies: $m_{11} = m_{22}$, $m_{21} = m_{12}^*$
- While assuming CP invariance one has: $m_{12} = m_{21} = m_{12}^*$

$$egin{array}{rcl} \widehat{M}-rac{i}{2}\widehat{\Gamma}&=&\left(egin{array}{ccc} m_{11}&m_{12}\ m_{21}&m_{22}\end{array}
ight)-rac{i}{2}\left(egin{array}{ccc} \Gamma_{11}&\Gamma_{12}\ \Gamma_{21}&\Gamma_{22}\end{array}
ight)\ &=&\left(egin{array}{ccc} m_K&m_{12}\ m_{12}&m_K\end{array}
ight)-rac{i}{2}\left(egin{array}{ccc} \Gamma_K&\Gamma_{12}\ \Gamma_{12}&\Gamma_K\end{array}
ight) \end{array}$$

Where:

$$m_K = \frac{m_S + m_L}{2}$$
$$\Gamma_K = \frac{\Gamma_S + \Gamma_L}{2}$$

► CP-violation in mixing will be due to

$$m_{12} \neq m_{21}$$

i.e.
 $P(K^0 \to \overline{K}^0) \neq P(\overline{K}^0 \to K^0)$

Quark flavour oscillation (4)

- Diagonalizing the Hamiltonian, the two mass states K_L and K_S are defined
 - Without CP violation, they are also eigenstates of CP

$$egin{array}{rcl} K^0_S &=& rac{1}{\sqrt{2}}(K^0+\overline{K}^0); \ K^0_L &=& rac{1}{\sqrt{2}}(K^0-\overline{K}^0), \end{array}$$

• Masses and half-lives defined by:

$$egin{array}{rcl} m_{S,L} &=& m_K \pm \mathcal{R}e \sqrt{ig(m_{12} - rac{i}{2} \Gamma_{12}ig)ig(m_{12}^* - rac{i}{2} \Gamma_{12}ig)} \ \Gamma_{S,L} &=& \Gamma_K \mp \mathcal{I}m \sqrt{ig(m_{12} - rac{i}{2} \Gamma_{12}ig)ig(m_{12}^* - rac{i}{2} \Gamma_{12}ig)} = au_{S,L}^{-1} \end{array}$$

Quark flavour oscillation (5)

- Interactions responsible for mixing (i.e. causing the nonzero m_{12} and Γ_{12} terms)
 - diagrams of second order in the weak interactions ($\Delta S=2$)

- Interaction proportional to the mass of the up-type quark in the loop: c contribution dominates over u ($m_c >> m_u$)
- t contribution is CKM-suppressed (will dominate for $B^0\overline{B}^0$ oscillation)

Quark flavour oscillation (6)

- And compute the probability of a K^0 oscillating into a \overline{K}^0 and vice-versa
 - First, write time evolution for mass eigenstates:

$$egin{array}{rll} K^0_S(t) &= ~ {\cal N} e^{-(im_S+rac{\Gamma_S}{2})t}K_S(0) \ K^0_L(t) &= ~ {\cal N} e^{-(im_L+rac{\Gamma_L}{2})t}K_L(0). \end{array}$$

• then, in the approximation of $\Delta \Gamma = \Gamma_L - \Gamma_S = 0$:

$$egin{array}{rcl} K^0(t)&=&\mathcal{N}e^{-(im_K+rac{\Gamma_K}{2})t}\Big[\cos(\Delta mt/2)K^0+\sin(\Delta mt/2)\overline{K}^0\Big]\ \overline{K}^0(t)&=&\mathcal{N}e^{-(im_K+rac{\Gamma_K}{2})t}\Big[\sin(\Delta mt/2)K^0+\cos(\Delta mt/2)\overline{K}^0\Big] \end{array}$$

Quark flavour oscillation (7)

• Probability of a K^0 oscillating into a \overline{K}^0 and vice-versa:

$$egin{aligned} \mathcal{P}(K^0 o K^0(t)) &= & | < K^0 | K^0(t) > |^2 \ &= & rac{1}{2 au_K} e^{-t/ au_K} (1 + rac{\cos\Delta m \ t}{2}) \ \mathcal{P}(K^0 o \overline{K}^0(t)) &= & | < \overline{K}^0 | K^0 > |^2 \ &= & rac{1}{2 au_K} e^{-t/ au_K} (1 - rac{\cos\Delta m \ t}{2}) \end{aligned}$$

• It oscillates as a function of time, with frequency Δm

 $\Delta m = (3.489 \pm 0.008) \cdot 10^{-6} \,\mathrm{eV} = (0.530 \pm 0.001) \cdot 10^{10} \,\mathrm{Hz}.$

First measurements in 1964 at BNL

Oscillations in $B^0 \overline{B}{}^0$

- Mixing due to second order weak interaction as for $K^0 \overline{K}^0$
 - Here t contribution is dominant (large m_t means large oscillation in B's)

$$\Delta m_d = rac{G_F^2}{6\pi^2} M_{B_d} m_{ ext{top}}^2 Figg(rac{m_{ ext{top}}^2}{M_W^2}igg) \eta_{QCD}(f_{B_d}^2 B_{B_d}) |V_{td}V_{tb}^*|^2$$

$B^0 \overline{B}^0$ oscillation measurement (1)

- Distinguish B^0 from \overline{B}^0 measuring the lepton charge in semileptonic *B* decays
- The signal for oscillations is then the fraction of same-charge lepton pairs as a function of the decay time
 - Measured as $t = d/\beta \gamma c$, d is the flight distance from production vertex

$$\frac{N(\ell^{\pm}\ell^{\pm})[t]}{N_{\text{tot}}(\ell\ell)[t]} = \frac{\mathcal{P}(B^{0} \to \overline{B^{0}})[t] + \mathcal{P}(B^{0} \to \overline{B^{0}})[t]}{\mathcal{P}(B^{0} \to B^{0})[t] + \mathcal{P}(B^{0} \to \overline{B^{0}})[t]}$$

$$= \sin^{2}(\Delta m \cdot t/2)$$

$$A_{\text{mix}}(\ell^{\pm}\ell^{\mp} - \ell^{\pm}\ell^{\pm}) = \frac{\mathcal{P}(B^{0} \to B^{0})[t] - \mathcal{P}(B^{0} \to \overline{B^{0}})[t]}{\mathcal{P}(B^{0} \to B^{0})[t] + \mathcal{P}(B^{0} \to \overline{B^{0}})[t]}$$

$$= \cos(\Delta m \cdot t)$$

$B^0_d \overline{B}^0_d$ oscillation

- First discovery:
 - UA1 Experiment at CERN (S $p\bar{p}$ S) 1987,
 - ARGUS Exp. at DESY (DORIS) 1988.
- First time-resolved measurement by ALEPH experiment at LEP
- Observed by B-factories at the Υ(4s) resonance
- Current world-average dominated by LHCb results

$B_s^0 \overline{B}_s^0$ oscillation measurement

$$\mathcal{P}(B^0_s o \overline{B^0_s}) = rac{1}{2 au} e^{-t/ au} (1 - \mathcal{A} \cos \Delta m_s t)$$

- Measure $\mathcal{P}(B^0_s o \overline{B^0_s})$
- One can then analyse A as a function of Δm_s : if oscillation is present, $A(\Delta m_s)=1$
- First measurement:

30

 $B_s^0 \overline{B}_s^0$ oscillation

- Later measured by LHCb with higher precision
 - Also with direct asymmetry measurement

 D_s^-

PV

 Lm_B

L

 B_s^0

decay time [ps]

$|V_{td} / V_{ts}|$

- Information on $|V_{td} / V_{ts}|$ combining B_s^0 and B_d^0
 - Many uncertainties cancel in the ratio
 - More effective in constraining CKM matrix than Δm_d alone

$$\left|\frac{V_{td}}{V_{ts}}\right| = 0.2053 \pm 0.0004(\exp) \pm 0.0029(\text{lattice}),$$

- Also measured at B-factories from $b \rightarrow d\gamma$ and $b \rightarrow s\gamma$ decays
 - less precise measurement, although in agreement with the one from mixing

$$rac{BR(\overline{B}
ightarrow (
ho, \omega) \gamma)}{BR(\overline{B}
ightarrow \overline{K^*} \gamma)} \implies rac{|V_{td}|}{|V_{ts}|} = 0.165 \pm 0.055$$

Belle, 2006

 $\frac{\Delta m_d}{\Delta m_s} \propto \frac{V_{td}}{V_{ts}}$

CP violation in mesons

CP violating phenomena in B (or K, or D) mesons

- CP (and T) violation in mixing (indirect)
 - probability of B^0 oscillating to \overline{B}^0 different from probability of \overline{B}^0 oscillating to B^0
- CP violation in decay (direct)
 - different decay rates between CPconjugate states
- CP violation in interference between decay with and without mixing

(direct + indirect)

 $\mathbf{B} \rightarrow \overline{\mathbf{B}} \neq \overline{\mathbf{B}} \rightarrow \mathbf{B}$

 $B \rightarrow f \neq \overline{B} \rightarrow \overline{f}$

where the final state $\overline{f} = CP(f)$

 $\begin{array}{c} B \rightarrow f + B \rightarrow \overline{B} \rightarrow f \\ \neq \\ \overline{B} \rightarrow f + \overline{B} \rightarrow B \rightarrow f \end{array}$

Discovery of CP violation: K⁰ mixing

- Cronin-Fitch experiment, 1964: evicence of a small fraction of $K_L(CP = -1) \rightarrow \pi^+\pi^-(CP = +1)$
- The mass eigenstates K_L and K_S are then not eigenstates of CP, but a mixing of the CP eigenstates K^0_+ , K^0_-
 - but the contribution from the 'other' CP eigenstate is very small

$$egin{array}{rcl} K^0_S &=& pK^0-q\overline{K}^0 = rac{K^0_+-arepsilon K^0_-}{\sqrt{1+ertarepsilonert^2}}pprox K^0_+ \ K^0_L &=& pK^0+q\overline{K}^0 = rac{K^0_++arepsilon K^0_+}{\sqrt{1+ertarepsilonert^2}}pprox K^0_-. \end{array}$$

With:

$$p|^2 + |q|^2 = 1$$
 and $p = \sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}} = \frac{1-\varepsilon}{1+\varepsilon}$
Tests of the Standard Model of Particle Physics II, SS 2020

Discovery of CP violation: K⁰ mixing (2)

$$\frac{p}{q} = \sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}/2}} = \frac{1 - \varepsilon}{1 + \varepsilon}$$

$$egin{array}{rcl} K^0_S &=& pK^0-q\overline{K}^0 = rac{K^0_+ -arepsilon K^0_-}{\sqrt{1+|arepsilon|^2}}pprox K^0_+ \ K^0_L &=& pK^0+q\overline{K}^0 = rac{K^0_- +arepsilon K^0_+}{\sqrt{1+|arepsilon|^2}}pprox K^0_-. \end{array}$$

○ $ε \neq 0$ implies $M_{12}^* \neq M_{12} \rightarrow CP$ violation in $K^0 \overline{K}^0$ mixing

- Small effect: $\varepsilon = (2.228 \pm 0.011) \times 10^{-3}$
- In the Standard Model, caused by complex phase factor of CKM matrix
 - Alternative idea: new super-weak interaction

Direct CP violation in K⁰ (1)

- In the decay of the CP eigenstate K_2^0 (CP=-1)
- Arises from interaction of the lowest order diagrams with higher order contributions leading to the same final state (Penguin diagram)

 $\,\circ\,$ Contribution of direct CP violation expressed through additional parameter ε'

Direct CP violation in K⁰ (2)

- Contribution of direct CP violation expressed through additional parameter ϵ'
- First evidence of $\varepsilon' \neq 0$ (1999):
 - CERN (NA48 Experiment)
 - FNAL (KTeV Experiment)
- $\varepsilon' \neq 0$ rules out the superweak interaction hypothesis
 - In Standard Model, both direct and indirect CP-violation caused by complex phase in V_{CKM}
- Direct CP violation even smaller effect than the one in mixing:

$$\left|rac{arepsilon'}{arepsilon}
ight|=(16.7\pm1.6)\cdot10^{-4}$$

Indirect CP violation in B mesons (1)

• Same mechanism as in *K*:

$$egin{aligned} B^0_H &= pB^0 - q\overline{B}^0 = rac{B^0_+ - arepsilon_B B^0_-}{\sqrt{1+arepsilon_B arepsilon^2}} pprox B^0_+ \ B^0_L &= pB^0 + q\overline{B}^0 = rac{B^0_- + arepsilon_B B^0_+}{\sqrt{1+arepsilon_B arepsilon^2}} pprox B^0_-. \end{aligned}$$

$$\Rightarrow rac{q}{p} \;=\; ig|rac{q}{p}ig|e^{-i\phi_{ ext{mix}}}$$
, $\phi_{ ext{mix}} \;\equiv\; arg(M_{12}/\Gamma_{12})$, (mixing phase)

• In the Standard Model: $|\frac{q}{p}| = |\frac{1-\epsilon_B}{1+\epsilon_B}| = 1 + \frac{1}{2} |\frac{\Gamma_{12}}{M_{12}}| \sin \phi_{\text{mix}} \neq 1$ • Meaning $\epsilon_B \neq 0$

Indirect CP violation in B mesons (2)

CP violation in *B* meson's mixing can be observed using \bigcirc semileptonic *B* decays to distinguish B^0 from \overline{B}^0

$$\begin{split} A_{sl} &= \begin{array}{l} \frac{\Gamma(\overline{B}^{0} \to B^{0}(t) \to \ell^{+}\nu X) - \Gamma(B^{0} \to \overline{B}^{0}(t) \to \ell^{-}\nu X)}{\Gamma(\overline{B}^{0} \to B^{0}(t) \to \ell^{+}\nu X) + \Gamma(B^{0} \to \overline{B}^{0}(t) \to \ell^{-}\nu X)} \\ \text{Note:} \\ \text{time-independent} &= \begin{array}{l} \frac{|p/q|^{2} - |q/p|^{2}}{|p/q|^{2} + |q/p|^{2}} \approx 4\mathcal{R}e\varepsilon_{B}. \\ \frac{|p/q|^{2} - |q/p|^{2}}{|p/q|^{2} + |q/p|^{2}} \approx 4\mathcal{R}e\varepsilon_{B}. \end{split}$$

- Studied by multiple experiments Ο
 - Definitive evidence still to be reached
 - Some tension between different measurements (D0 / LHCb)

Global fit results:

Note:

$$A_{sl}(B_d^0) = (-2.1 \pm 1.7) \times 10^{-3}$$
$$A_{sl}(B_s^0) = (-0.6 \pm 2.0) \times 10^{-3}$$

From: http://pdgs/blegov/2019/reviews/ppp2019-rev-b-bar-mixing.pdf

Direct CP violation in *B* mesons (1)

- Given the decay of B^0 (\overline{B}^0) to the final state $f(\overline{f})$, with $\overline{f} = CP(f)$
 - consider the decay amplitudes: $A_f = A(B
 ightarrow f)$

$$\overline{A}_{\overline{f}} = A(\overline{B} o \overline{f})$$

• Direct CP violation occurs if $|\bar{A}_{\bar{f}}| \neq |A_f|$:

$$|\overline{A}_{\overline{f}}/A_{f}|^{2}=1-4\mathcal{R}earepsilon_{B}^{\prime}
eq1.$$

- Originates from interference between Penguin and Tree diagrams.
 - E.g. for $B_d^0 \rightarrow \pi^+\pi^-$ (penguin diagram CKM-suppressed) or $B_d^0 \rightarrow K^+\pi^-$ (tree-diagram CKMsuppressed)

Direct CP violation in *B* mesons (2)

- First observed by BaBar and Belle in 2004 in the $B_d^0 \rightarrow K^+ \pi^-$ channel
 - Later measured by CDF, LHCb $\Gamma(\overline{B}^0 \to K^- \pi^+) \Gamma(B^0 \to K^+ \pi^-)$

$$egin{aligned} \mathcal{A}_{\overline{B}{}^0
ightarrow K^- \pi^+} &= -0.084 \pm 0.004\,. \ \mathcal{A}_{\overline{B}{}^0_s
ightarrow K^+ \pi^-} &= +0.213 \pm 0.017\,. \end{aligned}$$

Observed also in other channels, e.g.:

27/04/20

$$\implies \mathcal{A}_{B^+ \to D_{K^- \pi^+} K^+} = -0.41 \pm 0.06 \,,$$

$$\implies \mathcal{A}_{B^+ \to D_+ K^+} = +0.129 \pm 0.012 \,,$$

$$A_{K\pi} = \frac{\Gamma(B \to K^-\pi^+) - \Gamma(B^- \to K^+\pi^-)}{\Gamma(\overline{B}^0 \to K^-\pi^+) + \Gamma(B^0 \to K^+\pi^-)}$$

$$= \frac{1}{\Gamma(\overline{B}^0 \to K^-\pi^+) + \Gamma(\overline{B}^0 \to K^-\pi^-)}$$

$$= \frac{1}{\Gamma(\overline{B}^0 \to K^-\pi^-) + \Gamma(\overline{$$

Combination of direct and indirect CP violation (1)

- Interference between CP-violating effects in decay and mixing
- Resulting asymmetry has periodic time dependence
 - CP-violating asymmetries in both decay and mixing are timeindependent when no interference occurs

$$egin{aligned} A_f(t) &= & rac{\Gamma(B^0 o \overline{B}^0(t) o f) - \Gamma(\overline{B}^0 o B^0(t) o f)}{\Gamma(B^0 o \overline{B}^0(t) o f) + \Gamma(\overline{B}^0 o B^0(t) o f)} \ &= & S_f \underline{\sin \Delta m_d t} - C_f \underline{\cos \Delta m_d t} \end{aligned}$$

$$S_f \neq 0 \Rightarrow \text{indirect CP violation}$$

 $C_f \neq 0 \Rightarrow \text{direct CP violation}$

Combination of direct and indirect CP violation (2)

• Special case: *f* is a CP eigenstate: $CP(f) = \eta_f \cdot f = \pm f \iff \overline{f} \equiv f$

Combination of direct and indirect CP violation (3)

- Can be further simplified if one decay diagram is dominant
 - Decay term:

 $egin{array}{lll} |\overline{A}_f/A_f| &= 1, \ \phi_f &\equiv -arg(A_f) &= arg(\overline{A}_f), \ arg(\overline{A}_f/A_f) &= -2\phi_f, \end{array}$

• Mixing term:

$$\phi_{\rm mix} = 2\beta \Rightarrow \frac{q}{p} \simeq 2\beta$$

• Combining the two:

$$\begin{split} B^{\circ}_{d} & \longrightarrow \overline{b}^{\circ}_{td} \xrightarrow{\overline{b}} \overline{t} \xrightarrow{V_{td}} \overline{t} \xrightarrow{V_{td}} \overline{d} \\ B^{\circ}_{d} & \longrightarrow \overline{B}^{\circ}_{d} \xrightarrow{V_{td}} \overline{b} \xrightarrow{V_{td}} \overline{B}^{\circ}_{d} \\ V_{td} & t \xrightarrow{V^{*}_{tb}} \overline{b} \xrightarrow{V_{td}} \overline{B}^{\circ}_{d} \\ V_{td} & = |V_{td}|e^{-i\beta} \\ B^{0}_{H} & = pB^{0} - q\overline{B}^{0} \approx \frac{1}{\sqrt{2}}[B^{0} + e^{-2i\beta}\overline{B}^{0}] \\ B^{0}_{L} & = pB^{0} + q\overline{B}^{0} \approx \frac{1}{\sqrt{2}}[B^{0} - e^{-2i\beta}\overline{B}^{0}], \end{split}$$

Combination of direct and indirect CP violation (4)

• Can be further simplified if one decay diagram is dominant

$$\Rightarrow A_f(t) = \frac{\Gamma(B^0 \to \overline{B}^0(t) \to f) - \Gamma(\overline{B}^0 \to B^0(t) \to f)}{\Gamma(B^0 \to \overline{B}^0(t) \to f) + \Gamma(\overline{B}^0 \to B^0(t) \to f)} \\ = \eta_f \cdot \sin 2(\beta + \phi_f) \underline{\sin \Delta m_d t}$$

- We still have time dependence
- Provides direct measurement of the angles of unitarity triangle

B^0 decays to CP eigenstates: measuring β

- Most measurements in $b \rightarrow c \bar{c} s$ channel
 - Example:

ß (0,0)1.0) o $ightarrow J/\psi K^0_s: \ \phi_f=0$, $\eta_f=0$ B_d^0 -1b V_{cb} С /ψ W+ B^a √_{cs} \overline{S} d d $a_{CP}(t) = -\sin 2\beta \sin \Delta m t$

(p,ŋ)

X

Vtd

λVcb

Vub

λVcb

Measurements of direct + indirect CP violation

• First observation by B factories (2001) in $B_d^0 \rightarrow J/\Psi K^0$

- > To be able to measure B decay length, a boosted Υ (4s) meson is needed
- Asymmetric beam energies allowed for this at B factories

Tests of the Standard Model of Particle Physics II, SS 2020

 β in $b \rightarrow c\bar{c}s$ channel: summary

 $B
ightarrow J/\psi K^0_S$, $\psi(2S)K^0_S$, $\chi_{c1}K^0_S$, $\eta_c K^0_S$

27/04/20

TESTS OF THE STATUATA MOULEFOF FALLICIE FILYSICS II, SS 2020

 C_f in $b \rightarrow c \bar{c} s$: summary $B
ightarrow J/\psi K^0_S$, $\psi(2S)K^0_S$, $\chi_{c1}K^0_S$, $\eta_c K^0_S$

Predicted to be 0 in the Standard Model

 $S_f \propto \sin(2\beta)$ and C_f in $b \rightarrow q\bar{q}s$: summary

- Considering decays in
 - $b \rightarrow c \bar{c} s$ (tree)
 - $b \rightarrow q \overline{q} s$ (penguin)
- $b \rightarrow q \overline{q} s$ measurements all from BaBar and Belle

$S_f \propto \sin(2\beta)$ and C_f in $b \rightarrow c \bar{c} d$: summary

	$\sin(2\beta^{\text{eff}}) \equiv \sin(2\beta^{\text{eff}})$	$n(2\phi_1^{eff}) \stackrel{HFLAV}{\underset{ODELUMINADY}{\leftarrow}}$
b⇔ccs	World Average HELAV (Summer 2018)	0.70 ± 0.02
	BaBar PRL 101 (2008) 021801	$> \stackrel{.}{\overset{.}{\overset{.}{\overset{.}{\overset{.}{\overset{.}}{\overset{.}{\overset{.}$
/ψ π ⁰	Belle PR D98 (2018) 112008(R)	0.59 ± 0.19 ± 0.03
	Average HFLAV correlated average	<u>エ </u>
Ъ	LHCb PLB 742 (2015) 38	0.66 +0.12 +0.03
∿/r	Average HFLAV correlated average	.≥0.66 ± 0.14
	BaBar PRD 79, 032002 (2009)	$0.63 \pm 0.36 \pm 0.05$
<u>_</u>	Belle PRD 85 (2012) 091106	
_ 	LHCb PRL 117 (2016) 261801	0.54 ^{+0.17} ± 0.05
	Average HFLAV correlated average	0.84 ± 0.12
	BaBar PRD 79, 032002 (2009)	0.70 ± 0.16 ± 0.03
D*	BaBar part. rec. PRD 86 (2012) 112006	0.49 ± 0.18 ± 0.07 ± 0.04
D*	Belle PRD 86 (2012) 071103(R)	0.79 ± 0.13 ± 0.03
	Average HFLAV correlated average	0.71 ± 0.09
b→ccd	Naive average HFLAV	0.73±0.06
-1 -0.8	-0.6 -0.4 -0.2 0 0.2 0.4 0.6	0.8 1 1.2 1.4 1.6 1.8

	$C_f = -A_f$	Ĺ	CKM 20 PRELIMIN	AV D18 NARY
	BaBar PRL 101 (2008) 021801	-0.20	± 0.19 ±	0.03
J/ψ π	Belle PR D98 (2018) 112008(R)	0.1	5 ± 0.14	4 -0.04
	Average HFLAV correlated average		0.04 ±	0.12
ъ°	LHCb PLB 742 (2015) 38	-0.0	06 ± 0.06	5 +0.02 -0.01
J/ψ	Average HFLAV correlated average		-0.06 ±	0.06
D ⁺ D	BaBar PRD 79, 032002 (2009)	-0.07	± 0.23 ±	0.03
	Belle PRD 85 (2012) 091106 1	-0.43	± 0.16 ±	0.05
	LHCb PRL 117 (2016) 261801	0.2	26 +0.18 -0.17 ±	0.02
	Average HFLAV correlated average		-0.13 ±	0.10
	BaBar PRD 79, 032002 (2009)	0.05	± 0.09 ±	0.02
D*+ D*-	BaBar part. rec.	0.15	± 0.09 ±	0.04
	Belle PRD 86 (2012) 071103(R)	-0.15	± 0.08 ±	0.02
	Average		-0.01 ±	0.05
b→ccd	Naïve average		-0.03 ±	0.03
-1.2 -	.1 -0.8 -0.6 -0.4 -0.2 0 0	.2 0.4	0.6	0.8

 B^0 decays to CP eigenstates: measuring α

Example:

B^0 decays to CP eigenstates: measuring α

- Measuring α from $B_d^0 \rightarrow \pi \pi$ is much more difficult then measuring β
 - Smaller Branching Ratio ($b \rightarrow u$)

► First observed by CLEO and LEP in 1994

 $egin{array}{rll} BR(B^0_d o \pi^+\pi^-) &=& (5.16 \pm 0.22) \cdot 10^{-6} \ BR(B^0_d o \pi^0 \ \pi^0 \) &=& (1.55 \pm 0.19) \cdot 10^{-6} \ BR(B^+ o \pi^+\pi^0) &=& (5.59 \pm 0.41) \cdot 10^{-6} \end{array}$

• Must be distinguished from much more common $B_d^0 \rightarrow K\pi$

 $BR(B_d^0 \to K^+ \pi^-) = (18.2 \pm 0.8) \cdot 10^{-6}$

- Need good *K*- π separation. Done through:
 - Measuring the particle's Time Of Flight (ToF)
 - Measuring the energy loss by ionisation in track chambers or Cherenkov detectors

B^0 decays to CP eigenstates: measuring α

- In addition, here S_f and C_f are not directly proportional to α as those in $b \rightarrow c \overline{c} s$ channel are to β
 - Because $B_d^0 \rightarrow \pi\pi$ is not dominated by a single diagram
 - Competing Penguin process is not negligible with respect to CKMsuppressed tree process

• Correction can be derived by measuring decay rates and CPasymmetries from $B_d^0 \to \pi^0 \pi^0$ and $B^+ \to \pi^+ \pi^0$ together

S_f and C_f in $B^0 \rightarrow \pi^+\pi^-$: summary

S_f and C_f in $B^0 \rightarrow \rho^{\pm} \rho^{\mp}$: summary

α world average: from combination of previous measurements

$$\alpha = (91.6^{+1.7}_{-1.1})^{\circ}$$

Measuring γ

• From CP asymmetries and decay rates in $B^{\pm} \rightarrow DK^{\pm}$ with interference between:

•
$$D = D^0 \rightarrow K^- \pi^+ (b \rightarrow c, V_{cb})$$

•
$$D = \overline{D}^0 \rightarrow K^- \pi^+ (b \rightarrow u, V_{ub} = |V_{ub}|e^{-i\gamma})$$

Belle:
$$\gamma = (68^{+15}_{-14})^{\circ}$$

BaBar: $\gamma = (69^{+17}_{-16})^{\circ}$
LHCb (2018): $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$

Fit: $\gamma = (71.1^{+4.6}_{-5.3})^{\circ}$

Unitarity triangle: summary

- By constraining the unitarity triangle we test the Standard Model consistency
- Physics beyond the Standard Model might create discrepancies
- e.g. $\alpha + \beta + \gamma \neq 180^{\circ}$
 - unitarity violation: new generation of weak fermions?
- difference between direct angle measurements and those derived from the sides' measurements
 - new phase angle by exchanging new particles in loop process?

Unitarity triangle: summary

- Vast variety of measurements providing inputs (more than those discussed here)
 - From B, K and D mesons (charm sector)
- All measurements appear consistent with one another

Unitarity triangle: summary

More from B physics: rare decays

- Measurements of very rare *B* decays
 - Test for excess over Standard Model
 - Can be useful to improve precision of unitarity triangle fit
 - Other Standard Model constraints (e.g. lepton flavour universality)
- Some examples:

► $B_d^0 \rightarrow \mu^+ \mu^-, B_s^0 \rightarrow \mu^+ \mu^-$ (LHCb + CMS, 2013) ► $B \rightarrow K \ell^+ \ell^-$ (LHCb)

$$B_d^0 \rightarrow \mu^+ \mu^-, B_s^0 \rightarrow \mu^+ \mu^-$$

- 2nd order loop process, FCNC and 0 helicity suppressed
- First measurement by LHCb + CMS ^b Ο in 2013
- Results show good compatibility Ο with Standard Model
 - Not much room for new physics

$${\rm BR}(B^0 \to \mu^+ \mu^-) = {\rm 1.07} \pm {\rm 0.10} \times {\rm 10}^{-10}$$

$B^0 \to K^{0*}\ell^+\ell^-$

- Second order process (penguin+box diagram)
 - Potentially sensitive to new physics contributions
- Test of lepton flavour universality: $\ell = e \operatorname{vs} \ell = \mu$
 - double ratio of decay rates, systematic uncertainties cancel

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))},$$

- LHCb (2017) ome tension with Standard Model (2-2.5 σ)
 - Similar analysis in $B^+ \rightarrow K^+ \ell^+ \ell^-$ also shows a ~2 σ tension (LHCb, 2019)

More from B physics: pentaquarks

- Baryonic states made of 5 quarks
 - Allowed by SU(3), have been searched for for ~50 years
- 3 pentaquarks structures observed by LHCb in $\Lambda_b^0 \rightarrow J/\Psi p K^-$ channel
 - in 2015 and later in 2019
 - Complex amplitude analysis to confirm interpretation as pentaquarks
- Currently no observation by other experiments or in other channels

State	$M \;[{ m MeV}\;]$	$\Gamma \;[\mathrm{MeV}\;]$
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+}_{-}~^{3.7}_{4.5}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$

Coming soon: super B-factories

- Similar concept to (asymmetric) B-factories, with higher luminosity
 - Belle 2 started operations in 2019
- (Some) physics questions in agenda
 - New physics search at 'intensity frontier'
 - Search for deviations from Standard Model through very precise measurements of known processes
 - ►e.g. $B \rightarrow \tau \nu / B \rightarrow D^{(*)} \tau \nu$ sensitive to charged Higgs models
 - Test for additional CP-violating phases in the quark sector
 - Search for Lepton Flavor Violation

