Neutrino masses and oscillations

Tests of the Standard Model of Particle Physics II, SS 2020

Prof. Dr. H. Kroha

(updates by Dr. M. Spalla)

Neutrino (ν) masses and oscillation

- In the Standard Model, neutrinos are massless
 - ν only left-handed ($\overline{\nu}$ only right handed)
 - \succ right handed ν do not participate in the weak interaction
- Neutrino oscillation:
 - first observed in 1998
 - imply that neutrino must have nonzero mass
 - as well as violation of lepton flavour conservation, as for quarks

	Mass	m measurements	Discovery
ν_e	< 2 eV	Mainz / Troitsk	Cowan, Reines 1956 (inverse eta decay)
$ u_{\mu}$	< 190 keV	PSI Zürich	Ledermann, Schwartz, Steinberger 1962
$ u_{ au}$	< 18.2 MeV	ALEPH (LEP)	DONUT Experiment (FNAL) 2001

Neutrino (ν) masses and oscillation

- Since neutrinos are electrically neutral, they can be either *Dirac spinors* or *Majorana spinors*
 - Dirac neutrinos:

►4 component Dirac spinors: $(\nu_L^D, \overline{\nu}_R^D; \nu_R^D, \overline{\nu}_L^D)$

►With:

$$\overline{\nu}_R^D = \operatorname{CPT}(\nu_L^D) , \ \overline{\nu}_L^D = \operatorname{CPT}(\nu_R^D)$$

- Majorana neutrinos:
 - ▶2 component Majorana spinors: $(\nu_L^M; \nu_R^M)$
 - ► <u>Majorana neutrinos are their own antiparticle:</u>

$$\overline{\nu}_R^M = \operatorname{CPT}(\nu_L^M) \equiv \nu_R \ , \ \overline{\nu}_L^M = \operatorname{CPT}(\nu_R^M) \equiv \nu_L$$

- Which of the two occurs in nature is yet to be clarified experimentally
- The very low value of the neutrino mass is also yet to be theoretically explained

- The same argument discussed for quarks also holds for neutrino
 - From interaction with Higgs field

- $\circ \nu$ mass eigenstates $\neq \nu$ weak eigenstates
 - Mass matrix is non-diagonal on the weak eigenstates basis
 - Same applies to charged leptons, known to have nonzero (and very different) masses
- It follows that weak transitions exist between mass states in different generations: v mixing
 - Time oscillation between mixing states as for neutral mesons
 - First: Bruno Pontecorvo, Moscow 1958

 As for quarks, both up-type (neutral) and down-type (charged) lepton weak eigenstates are connected to the mass eigenstates by a unitary transform

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}_L = U_u \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}_L = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}_L$$

$$\begin{array}{rcl} & \underset{\nu_{i}}{\Rightarrow} \\ \nu_{i} & (i=1,...,3) \\ \nu_{\alpha} & (\alpha=e,\mu,\tau), \end{array} \end{array} \begin{array}{rcl} \nu_{i} & = & \sum_{\alpha} U_{\alpha i}^{*} \nu_{\alpha} \ ; & \bar{\nu}_{\alpha} = \sum_{\alpha} U_{\alpha i} \bar{\nu}_{i} \ ; & \bar{\nu}_{\alpha} = \sum_{i} U_{\alpha i}^{*} \bar{\nu}_{i} \ . \end{array}$$

 \circ U_u is the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \cdot \begin{pmatrix} e^{i\phi_1} & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Independent parameters:
 - 3 mixing angles:

$$heta_{ij} \; (i,j=1,2,3;i>j), \quad egin{array}{c} c_{ij} = \cos heta_{ij} > 0, \ s_{ij} = \sin heta_{ij} > 0, \end{array}$$

- **1** CP-violating phase: $e^{i\delta}$
- 2 Majorana phases: ϕ_1

,
$$\phi_2$$
 ($u^M \equiv \overline{\nu}^M$ for Majorana neutrino)

Λ.

0

► Majorana phases play no role in oscillation

• Time evolution of weak eigenstate:

$$\nu_i(t) = e^{-iE_i t} \nu_i(0) ,$$

• In the limit $|\vec{p}| \gg m_i$ (ν have very small masses)

$$\mathrm{E}_{\mathrm{i}} = \sqrt{\vec{\mathrm{p}}^2 + \mathrm{m}_{\mathrm{i}}^2} \overset{\mathrm{m}_{\mathrm{i}} \ll |\vec{\mathrm{p}}|}{\approx} |\vec{\mathrm{p}}| + \frac{1}{2} \frac{\mathrm{m}_{\mathrm{i}}^2}{|\vec{\mathrm{p}}|} \overset{|\vec{\mathrm{p}}| \approx \mathrm{E}_{\nu}}{\approx} \mathrm{E}_{\nu} + \frac{1}{2} \frac{\mathrm{m}_{\mathrm{i}}^2}{\mathrm{E}_{\nu}}.$$

• We can then derive the time evolution of a weak eigenstate:

$$\nu(0) = |\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} \nu_{i}(0) ,$$

$$\Rightarrow \quad \nu(t) = \sum_{i} U_{\alpha i} e^{-iE_{i}t} \nu_{i}(0) = \sum_{i} \sum_{\beta} U_{\alpha i} U_{\beta i}^{*} e^{-iE_{i}t} \nu_{\beta} .$$

• From v(t) time evolution, the transition probability from weak state α to weak state β can be derived:

$$\begin{array}{lll} \mathcal{P}(\nu_{\alpha} \rightarrow \nu_{\beta};t) & = & | < \nu_{\beta} |\nu(t) > |^2 \\ = \sum_{i} |U_{\alpha i} U^*_{\beta_i}|^2 & + & 2\mathcal{R}e \sum_{i,j(j>i)} U_{\alpha i} U^*_{\beta i} U^*_{\alpha j} U_{\beta j} e^{-i\Delta_{ij}}, \end{array}$$

• Where (L = ct):

$$\Delta_{ij} = (E_i - E_j)t \approx \frac{m_i^2 - m_j^2}{2E}t =: \frac{1}{2} \Delta m_{ij}^2 \frac{L}{E}.$$

- Nonzero oscillation means nonzero $\Delta m_{ij}^2 = m_i^2 m_j^2$
 - The ν masses are not all identical and cannot be all = 0
 - Otherwise the mass matrix would have been a multiple of I and there wouldn't have been any mixing

- Simplest case: mixing between two generations
 - 1 parameter: mixing angle heta

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

• Transition probabilities:

$$\mathcal{P}(\nu_e \to \nu_e) = \mathcal{P}(\nu_\mu \to \nu_\mu) = \mathcal{P}(\bar{\nu}_e \to \bar{\nu}_e) = \mathcal{P}(\bar{\nu}_\mu \to \bar{\nu}_\mu)$$

$$= 1 - \sin^2 2\theta \sin^2 \frac{\Delta}{2}$$

$$\mathcal{P}(\nu_e \to \nu_\mu) = \mathcal{P}(\nu_\mu \to \nu_e) = \mathcal{P}(\bar{\nu}_e \to \bar{\nu}_\mu) = \mathcal{P}(\bar{\nu}_\mu \to \bar{\nu}_e)$$

$$= \sin^2 2\theta \sin^2 \frac{\Delta}{2} = 1 - \mathcal{P}(\nu_e \to \nu_e),$$

With:
$$\Delta = \frac{\Delta m^2}{2} \frac{L}{E} \implies Oscillation length: $L_0 = \frac{4\pi E}{\delta m^2}$.$$

• Simple case of 2 families

$$\mathcal{P}(\nu_e \to \nu_e) = \mathcal{P}(\nu_\mu \to \nu_\mu) = \mathcal{P}(\bar{\nu}_e \to \bar{\nu}_e) = \mathcal{P}(\bar{\nu}_\mu \to \bar{\nu}_\mu)$$
$$= 1 - \sin^2 2\theta \sin^2 \frac{\Delta}{2}$$
$$\mathcal{P}(\nu_e \to \nu_\mu) = \mathcal{P}(\nu_\mu \to \nu_e) = \mathcal{P}(\bar{\nu}_e \to \bar{\nu}_\mu) = \mathcal{P}(\bar{\nu}_\mu \to \bar{\nu}_e)$$
$$= \frac{\Delta m^2 L}{2 E} = \sin^2 2\theta \sin^2 \frac{\Delta}{2} = 1 - \mathcal{P}(\nu_e \to \nu_e),$$

- Transition probabilities depend on 2 parameters:
 - oscillation amplitude: $\sin^2 2\theta$
 - oscillation frequency: $\frac{\Delta m^2}{2E_v}$
- For 3 generations, complex mixing matrix U_u parametrised as for CKM
 - CP violation becomes possible: $\mathcal{P}(\nu_e \rightarrow \nu_\mu) \neq \mathcal{P}(\overline{\nu}_e \rightarrow \overline{\nu}_\mu)$
 - ▶ But CPT requires that: $\mathcal{P}(\nu_e \rightarrow \nu_\mu) \equiv \mathcal{P}(\overline{\nu}_\mu \rightarrow \overline{\nu}_e)$

Sensitivity to ν oscillation

$$L_0 = \frac{4\pi E}{\delta m^2}.$$

- Sensitivity to a given δm^2 depends on *L/E*
 - i.e. the energy of the produced v and the distance between source and detector
- $\Delta = \frac{\delta m^2}{2} \frac{L}{E}$ (a) $\frac{L}{E} = \frac{1}{\delta m^2}$ (b) $\frac{L}{E} \sim \frac{1}{\delta m^2}$ (c) $\frac{L}{E} \approx \frac{1}{\delta m^2}$ $\int P(v_{\alpha} v_{\alpha})$

π

Lo.

 $P(v_{\alpha} - v_{\alpha})$ (disappearance) $P(v_{\alpha} - v_{\beta})$ (appearance)

(a)

(b)

 0.1π

1.0

0.5

0

Transition probability

260

3L.a

 $\langle P(v_{\alpha} - v_{\alpha}) \rangle =$ $i - \frac{1}{2} \sin^2 2\Theta$

 $\langle P(v_{\alpha} - v_{\beta}) \rangle = \frac{1}{2} \sin^2 2\theta$

 Optimal sensitivity when the oscillation frequency is neither too large nor too small:

$$\frac{L}{E} \sim \frac{1}{\delta m^2}$$

0

3π 5π 10π 20π

 $\log(L)$

 $\rightarrow \log(\Delta)$

Note about charged leptons

 Oscillation is a pure quantum mechanical effect: coherent superposition of v mass eigenstates

- It is visible only because momentum resolution doesn't allow us to resolve the mass eigenstates
 - i.e. the oscillation length L₀ is long enough

$$L_0 = \frac{4\pi E}{\delta m^2}.$$

- In charged leptons and quarks, masses can be resolved and <u>the effect is</u> <u>disrupted</u>
 - To resolve the mass states, it must be: $\Delta p < |p_i p_j|$
 - Hence *L*₀ is smaller than spatial resolution:

$$\Delta x > \frac{1}{\Delta p} > \frac{1}{|p_i - p_j|} \approx \frac{2E}{|m_i^2 - m_j^2|} \approx L_0^{ij},$$

What can we learn from ν oscillation?

- ν mass differences: ordering of the ν_i mass states
 - The absolute scale of v mass cannot be measured from oscillation: direct measurement needed
- Mixing angles
 - Built a 'unitarity triangle' for leptons
- CP violating phase: CP violation in lepton mixing?

Search for ν oscillation

- Typical ν experiment
 - A source creates ν of a specific flavour ν_{α} in a given energy range, at t=0
 - A detector then measures the flavour components of the ν flux at time t=L/c:

$$\nu(t) = \sum_{i,\beta} U_{\alpha i} U^*_{\beta i} e^{-iE_i t} |\nu_\beta\rangle$$

►as well as the neutrino's energy

• The distance L between source and detector tuned in order to be sensitive to the δm^2 of interest .

Two classes of experiments: appearance and disappearance experiments

Disappearance experiments

- Detector sensitive to same flavour as produced in the source
- Measuring the v_{α} flux (v rate / detector area) in the detector as a function of v energy
- o Survival probability: $\mathcal{P}(
 u_{lpha}
 ightarrow
 u_{lpha};L)$
 - equivalent to measuring the probability of oscillation into any other flavour eigenstate

 $\mathcal{P}(\nu_{\alpha} \to \nu_X \neq \nu_{\alpha}; L) \equiv 1 - \mathcal{P}(\nu_{\alpha} \to \nu_{\alpha}; L)$

- Requires:
 - precise knowledge of the source or
 - measurements at multiple distances

Appearance experiments

- Detection of a different flavour than that generated at the source
- Measures the probability of appearance of a specific flavour

 $\mathcal{P}(\nu_{\alpha} \to \nu_{\beta}; L).$

- Requires
 - low contamination of the source with ν_{β} or
 - precise knowledge of source flavour composition

Sensitivity to ν oscillation

- The fundamental parameter is the oscillation frequency
 - For each oscillation component

$$S := \sin^2 \frac{\Delta}{2} = \sin^2 \left[\frac{\Delta m^2}{4} \frac{L}{E} \right]$$

Three ranges can be considered:

• No sensitivity to oscillation

Sensitivity to ν oscillation

- $2. \quad {}^{L}/_{E} \geq {}^{4}/_{\Delta m^{2}}$
 - At sensitivity threshold: *condition on* minimum Δm^2 the experiment is sensitive to (given *L* and *E*)
 - Large L and low E improve sensitivity to small Δm^2
- $\Delta m_{\min}^2 \approx \frac{E \,[\text{MeV}]}{L \,[\text{m}]} \,\text{eV}^2$
- > But ν flux decreases with distance (isotropic, divergent beam)
- 3. $L/E \gg 4/_{\Delta m^2}$ (or $L \ll L_0$)
 - High frequency: many oscillations between source and detector
 - $L/_E$ must be measured very precisely to resolve oscillations
 - Otherwise it is only possible to observe average transition probability
 - \blacktriangleright i.e. measure θ but not Δm^2

- $\langle \mathcal{P}(\alpha \to \beta \neq \alpha) \rangle = \frac{1}{2} \sin^2 \theta$
- $\circ \frac{L}{E}$ determines the mass range to which the experiment is sensitive
 - i.e. basic parameter in order to decide what experiment should be built to test a given Δm^2 region

Types of ν sources

Experiment		L (m)	E (MeV)	$ \Delta m^2 \; (\mathrm{eV}^2)$	Produced flavour
Solar		10^{10}	1	10^{-10}	ν_e
Atmospheric		$10^4 - 10^7$	$10^2 - 10^5$	$10^{-1} - 10^{-4}$	$ u_{\mu}, \overline{ u}_{\mu}, u_{e}, \overline{ u}_{e} $
Reactor	SBL	$10^2 - 10^3$	1	$10^{-2} - 10^{-3}$	$\overline{\nu}_e$
	LBL	$10^4 - 10^5$		$10^{-4} - 10^{-5}$	
Accelerator	SBL	10^{2}	10^{3} - 10^{4}	> 0.1	$\overline{ u_{\mu},\overline{ u}_{\mu}}$
	LBL	$10^5 - 10^6$	$10^3 - 10^4$	$10^{-2} - 10^{-3}$	

SBL = short baseline, LBL = long baseline (see next)

Neutrinos from supernovas have also been measured, but they are used as messengers for astronomy research rather then for studying neutrino properties

Neutrino beams

• Nuclear reactors: ν from β decays in the fission process

- Produces low energy $\bar{\nu}_e$
- Needs detailed knowledge of neutrino flux produced by the reactor (many decay chains involved)

• Accelerators:

- proton beam on fixed target
- interaction with nuclei in target produces π,K
- ν from π ,K weak decays
- Produces v_{μ} , \overline{v}_{μ} , energy can be tuned

Neutrino beams: detection

- Detection method: mostly inverse β decay Ο
- $\Rightarrow \overline{\nu_e} + p \rightarrow e^+ + n$ Decay products then detected through • electron-positron annihilation: $e^+e^- \rightarrow \gamma\gamma$ • neutron capture: $n + p \rightarrow d + \gamma$ Prompt photon 8 N 2.2 MeV $n + Gd \rightarrow Gd^* \rightarrow Gd + \gamma$
 - - > Often use Gadolidium (Gd) for high neutron capture efficiency
 - Photons can the be detected

$\Rightarrow \nu_{e,\mu,\tau} + N \rightarrow (e^-,\mu^-,\tau^-) + \text{Hadrons}$

- Then detect charged lepton (e.g. through Cherenkov light)
 - Charged leptons retains ν direction and energy (forward scattering)
- For better precision, two detectors are often used (multi-detector): Ο
 - One near the source, to measure the produced flux
 - One at distance, to detect oscillations

8 MeV

Neutrino beams: measurements

• <u>Reactors</u>:

- Only disappearance measurements
 - ► Direct detection of ν_{μ} , ν_{τ} from oscillation is not possible due to low energy: under threshold for producing a μ/τ
- $\bar{\nu}_e$ disappearance: address $\nu_e \rightarrow \nu_\tau / \nu_\mu$ oscillation (same as solar neutrinos)

• <u>Accelerators</u>:

- v_{μ} disappearance, v_{τ}/v_e appearance
- can verify $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation observed in atmospheric neutrino (see next)
- and target $\nu_{\mu} \rightarrow \nu_{e}$ observation

Neutrino beams: long baseline vs short baseline

- Two categories:
 - Short baseline: distance between source and detector up to 100-1000 m
 - Long baseline: distance between source and detector > 100 Km
- \circ Designed to address different ranges in Δm^2
 - For instance: $\Delta m^2 = O(10^{-3}) \text{ eV}$ (observed in atmospheric neutrinos)
 - First oscillation maximum at $L_{E} \sim 500 \text{ km}/\text{GeV}$

▶e.g. accelerator neutrinos produced at ~ GeV \rightarrow need $L \sim 10^3$ Km

Atmospheric neutrinos

- Cosmic radiation (~99% protons) interacts with atoms in the atmosphere
 - Produces particle showers: π, K
 produce ν by decaying weakly

- Oscillation observed for the first time in atmospheric v by Superkamiokande experiment
 - 1998

Superkamiokande experiment

- 5000 ton water tank, 1000 m underground in Kamioka mine, Japan
- Neutrinos detection:
 - interaction with electron or nucleus in the water (inverse β decay)
- Instrumented with photomultipliers
 - collects Cherenkov light from (from inverse β decay)
 - Direction of charged particles used to determine direction of incoming neutrino
 - Cherenkov rings allow to distinguish *e*, μ, τ:

► Can determine neutrino flavour

The generated charged particle emits the Cherenkov light.

Atmospheric ν oscillations

- Superkamiokande: deficit of v_{μ} (\bar{v}_{μ}) with respect to v_e (\bar{v}_e) coming from below
 - zenith angle proportional to travel length
- Explained by ν oscillation ($\nu_{\mu} \rightarrow \nu_{\tau}$ or $\nu_{\mu} \rightarrow \nu_{e}$) while passing through the globe ($L_{0} = 10^{4}$ km)
- Later also measured v_{τ} appearance (4.6 σ)
 - Very difficult due to:
 - high threshold for inverse β decay (large τ mass)
 - ► short τ lifetime

Confirmation from long baseline accelerators

- K2K
 - beam from KEK accelerator to Superkamiokande detector (L=250 km)
 - First confirmation of v_{μ} disappearance outside atmospheric neutrinos (2006)

- $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance confirmed by OPERA
 - Beam from CERN to Gran Sasso Laboratories (L=730 km)
 - Emulsion+lead target
- $\nu_{\mu} \rightarrow \nu_{e}$ appearance observed by MINOS, T2K, NOvA (see later)

Solar neutrinos

- $\circ v_e$ produced by thermonuclear fusions in the Sun nucleus
- Solar models predict about 98% of ν produced by the pp-cycle
 - It results in:

 $4p + 2e^- \rightarrow He^4 + 2\nu_e + 26.73 \text{ MeV}$ $\Rightarrow \langle E_\nu \rangle = 0.59 \text{ MeV}$

• Remaining 1.6% produced by CNO and Bethe-Weizsäcker cyles

Solar neutrinos

- \circ Two main experimental goals with solar ν
- 1. Test the Solar Model
 - Predicts the temperature distribution in the Sun, which determines the fusion reactions taking place, hence the flux and energy of neutrinos
 - Expected ν flux from the Sun: $1.87 \cdot 10^{38}$ s⁻¹
 - Expected ν flux density on Earth: $6.6 \cdot 10^{10}$ cm⁻² s⁻¹
 - $\succ v$ offer direct, almost instantaneous information about fusion process
 - photons take about 10⁶ years to get from the center to the surface, due to strong interaction with solar matter
 - Models in good agreement with measured oscillation excitations opf the Sun (heliosismology)
- 2. Search for ν oscillations
 - Good search conditions:
 - > very low ν energy (~ eV)
 - very long travel length (10⁵ km in Sun matter + 10⁸ in vacuum)

$$\implies \Delta m_{\min}^2 \approx \frac{E_{\nu}[\text{MeV}]}{L[\text{m}]} \text{ eV}^2 \approx 10^{-12} \text{ eV}^2.$$

Solar ν detection

- Two detection methods:
 - 1) Radiochemical measurements
 - 2) Real-time measurements

	Name	Target material	Energy threshold (MeV)	Mass (ton)	Years
1) -	Homestake	$ m C_2 m Cl_4$	0.814	615	1970 - 1994
	SAGE	${ m Ga}$	0.233	50	1989 -
	GALLEX	GaCl_3	0.233	100 [30.3 for Ga]	1991 - 1997
	GNO	$GaCl_3$	0.233	$100 \; [30.3 \; \text{for Ga}]$	1998 - 2003
(2) -	Kamiokande	H_2O	6.5	3,000	1987 - 1995
	Super-Kamiokande (*	**) H ₂ O	3.5	$50,\!000$	1996 -
	SNO	D_2O	3.5	1,000	1999 - 2006
	KamLAND	Liquid scintillator	0.5/5.5	1,000	2001 - 2007
	Borexino	Liquid scintillator	0.19	300	2007 -

Table 14.2: List of solar neutrino experiments

From: http://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrino-mixing.pdf

(**) Same detector often works with multiple ν sources

Solar ν detection: radiochemical measurements

 $\circ \nu$ captured via inverse β decay of target nuclei

 $\nu_e + B(Z) \rightarrow C(Z+1) + e^ (\nu_e + n \rightarrow p + e^-)$

- Detected through decay of the new nuclei *C* by electron capture
 - Photons or Auger electrons are emitted, which can be detected with a proportional chamber.

 $C(Z+1) + e^- \to B(Z) + \nu_e$

- Detector then consists of a huge tank filled with *B*
 - Targets of choice: Cl³⁷ and Ga⁷¹
 - ► Half life of *C* must be neither too short nor too long
 - They have different thresholds for v capture, hence sensitive to different parts of the solar v spectrum

Solar ν detection: real-time measurements

- Use the reactions
 - a) Elastic scattering: $\nu_{\alpha}e^- \rightarrow \nu_{\alpha}e^-$
 - The scattered electron indicates the energy and direction of the incident v (forward scattering)
 - ► Used by e.g. (Super-) Kamiokande, SNO, Borexino
 - b) ν capture by deuteron (reaction rate 10 times larger than elastic scattering)
 - ► Two processes:

(1) $\nu_e + d \rightarrow e^- + 2 p \rightarrow \nu$ capture, $E_{\nu} > 1.442$ MeV

(2) $\nu_{\alpha} + d \rightarrow \nu_{\alpha} + p + n \rightarrow d$ spallation, $E_{\nu} > 2.226$ MeV

> By comparing measurements, information on neutrino flux ratio ν_{α}/ν_{e} > SNO (Sudbury Neutrino Observatory), Canada: 1000 ton D₂O

The solar ν deficit in summary

- Homestake experiment (1970-1994, see next)
 - Using the reaction: $u_e + Cl^{37} \rightarrow Ar^{37} + e^{-}$
 - Found only ~50% of v_e expected from Solar Model
- Confirmed by SAGE and Gallex
 - Using: $\nu_e + Ga^{71} \rightarrow Ge^{71} + e^-$
 - ► Different E_{ν} threshold → Different region of the spectrum
- And by (Super-) Kamiokande

With:
$$\nu_{\alpha}e^{-} \rightarrow \nu_{\alpha}e^{-}$$

> $\sigma(\nu_{\mu,\tau}e^{-}) \approx \frac{1}{6} \cdot \sigma(\nu_{e}e^{-})$

- Explanation: neutrino oscillation in matter (Sun) are different than in vacuum
 - Resonant amplification through the Mikheyev-Smirnov-Wolfenstein (MSW) effect: different scattering of v_e and v_{μ} in solar matter with decreasing density
 - >2002 Nobel prize to R. Davis (Homestake) und M. Koshiba (Kamiokande).

Solar ν deficit: Homestake

- Homestake experiment (R. Davis, Jr. and collaborators)
- About 615 ton of C_2Cl_4
 - In a gold mine in South Dakota
- Method:
 - Exposed for 60-70 days until equilibrium between ν capture and decay (half life: 34.8 days) is reached
 - Chemically extract Ar³⁷ (together with known amount of stable Ar³⁶) and introduce it into low-background proportional chamber
 - Reaction rate determined by counting Auger electrons from Ar³⁷ decay

 $\nu_e + Cl^{37} \rightarrow Ar^{37} + e^-$

Solar ν deficit: data

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Oscillation hypothesis confirmed by SNO

- SNO (Sudbury Neutrino Observatory), Canada:
 - 1000 ton D₂O in spherical vessel, surrounded by H₂O shield
 - Instrumented with photomultipliers (PMTs) to detect Cherenkov light in both D_2O and H_2O

Oscillation hypothesis confirmed by SNO

- 3 simultaneous measurements
 - ν capture: $\nu_e + d \rightarrow e^- + p + p$. >only v_e are detected (charged current) deficit is observed
 - *d* spallation: $\nu_{\alpha} + d \rightarrow \nu_{\alpha} + p + n$
 - all flavours interact with the same cross section
 - NO deficit is observed (not sensitive to oscillation) $\nu_{\alpha}e^- \rightarrow \nu_{\alpha}e^-$
 - - >all flavour interact, but with different cross section $(\sigma_{\nu_e} \sim \frac{1}{6} \sigma_{\nu_{\mu} + \nu_{\tau}})$
- Provides model independent test
- $\circ v_e$ oscillations confirmed in 2002 by longbaseline reactor experiments (KamLAND, see later)

 $\Phi_{CC} = \Phi_e$ $\Phi_{ES} = \Phi_e + \frac{1}{6} \Phi_{\mu\tau}$ $\Phi_{NC} = \Phi_e + \Phi_{\mu\tau}$

37

Confirmation from reactor neutrino

- KamLAND experiment
 - 1000 ton of ultra-pure liquid scintillator in spherical baloon
 - $\bar{
 u}_e$ flux from multiple reactors in Japan and Korea
 - Average distance: 180 km
- In 2002 showed evidence of $\bar{\nu}_e$ disappearance
 - Deficit in agreement with solar model
 - Also in agreement with observations from reactor experiments at shorter distance

Chimney

Xe-LS 13 ton

LS 1 kton

Photomultiplier Tubes

Buffer Oil

Fiducial Volume

(12 m diameter)

Outer Balloon

(13 m diameter) Inner Balloon

(3.08 m diameter)

Deficit explanation: neutrino oscillation in matter

- Oscillation in matter has different frequency and amplitude than in vacuum
 - First examined by Wolfenstein in 1978
 - Mikheyev and Smirnov, 1985
- Today, the preferred explanation for solar v deficit
- At low energies, matter is almost transparent to neutrinos
 - Only elastic forward scattering occurs
- Can define an effective refraction index for ν in matter
 - Analog to elastic scattering of light in glass
- Weak interaction with electrons has different cross sections for v_e and v_{μ}/v_{τ}
 - Implies different effective refraction indexes: n_µ ≠ n_e

- u oscillation in matter: example with two families
- Assuming constant *E* (constant phase factor in wave function), the free neutrino Hamiltonian is approximately:

$$H = E + \frac{M^2}{2E} \longrightarrow H = \frac{M^2}{2E}.$$

- Taking mixing into account, one can write H as mass operator in vacuum.
 - In the mass eigenstate basis:

$$H^{(i)} = rac{1}{2E} \left(egin{array}{cc} m_1^2 & 0 \ 0 & m_2^2 \end{array}
ight)$$

And in flavour eigenstate basis:

$$H^{(\alpha)} = \frac{1}{2E} \begin{pmatrix} m_e^2 & m_{e\mu}^2 \\ m_{e\mu}^2 & m_{\mu}^2 \end{pmatrix} = U H^{(i)} U^{\dagger}$$

 $\left(\begin{array}{c}\nu_e\\\nu_\mu\end{array}\right) = \underbrace{\left(\begin{array}{cc}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{array}\right)}\cdot\left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right)$

• Expanding $H^{(\alpha)}$:

$$\begin{split} H^{(\alpha)} &= \frac{1}{2E} \begin{pmatrix} m_1^2 \cos^2 \theta + m_2^2 \sin^2 \theta & (m_2^2 - m_1^2) \sin \theta \cos \theta \\ (m_2^2 - m_1^2) \sin \theta \cos \theta & m_1^2 \sin^2 \theta + m_2^2 \cos^2 \theta \end{pmatrix} \\ &\equiv \frac{1}{4E} (m_1^2 + m_2^2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &+ \frac{1}{4E} \underbrace{(m_2^2 - m_1^2)}_{=\Delta m^2 =:D} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} \end{split}$$

• The mass eigenvalues are then:

$$m_{1,2} = \frac{1}{2} \left[(m_e + m_\mu) \mp \sqrt{(m_\mu - m_e)^2 + 4m_{e\mu}^2} \right]$$

• With:

$$\tan 2\theta = \frac{2m_{e\mu}}{m_{\mu} - m_e}.$$

- In matter, weak interaction of v with e adds effective potential to the Hamiltonian
 - Diagonal in flavour states:

$$H \longrightarrow H_m = H + V = \frac{M^2}{2E} + V \qquad \Longleftrightarrow \qquad V_{\alpha\beta}^{(\alpha)} = \langle \nu_{\alpha} e^- | H_{WW} | \nu_{\alpha} e^- > \delta_{\alpha\beta},$$
$$V^{(\alpha)} = \begin{pmatrix} V_e & 0\\ 0 & V_{\mu} \end{pmatrix}$$

• With global phase transform on the flavour states:

- u oscillation in matter: example with two families
- The difference between v_e and v_μ interaction is due to contribution from charged interaction

$$V_e - V_\mu = <\nu_\alpha e^- |H_{WW}^{CC}|\nu_\alpha e^- > \equiv \frac{A}{2E} = \sqrt{2}G_F N_e$$

• With:

$$A = 2\sqrt{2}G_F E N_e = 2\sqrt{2}G_F E \frac{Y_e \rho}{m_N}$$
$$= 1.52 \cdot 10^{-7} \cdot E[\text{MeV}] \cdot Y_e \rho[\text{g/cm}^3] \text{ eV}^2$$

$$G_F =$$
 Fermi constant for weak $WW = 1.1664 \cdot 10^{-5} \text{ GeV}^{-2}$
 $N_e = \frac{Y_e \rho}{m_N} =$ electron density in matter

 $Y_e =$ number of electrons/nucleons

 $\rho = matter mass density$

$$m_N =$$
nucleon mass $\approx m_p = 938 \text{ MeV}$

> On average (expecially for sun matter)

$$N_e pprox N_p pprox N_n \Rightarrow Y_e pprox rac{1}{2}$$

- The hamiltonian in matter then becomes
 - For the flavour eigenstates:

$$\begin{aligned} H_m^{(\alpha)} &= H^{(\alpha)} + \frac{1}{2E} \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \\ &= \frac{1}{2E} \begin{pmatrix} m_e^2 + A & m_{e\mu}^2 \\ m_{e\mu}^2 & m_{\mu}^2 \end{pmatrix} \\ &= \frac{1}{4E} (m_1^2 + m_2^2 + A) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &+ \frac{1}{4E} \begin{pmatrix} A - D\cos 2\theta & D\sin 2\theta \\ D\sin 2\theta & -A + D\cos 2\theta \end{pmatrix} \end{aligned}$$

The Hamiltonian in vacuum mass eigenstates can then be derived:

$$egin{aligned} H_m^{(i)} &= U^\dagger H_m^{(lpha)} U = H^{(i)} + rac{1}{2E} U^\dagger egin{pmatrix} A & 0 \ 0 & 0 \end{pmatrix} U \ &= rac{1}{2E} egin{pmatrix} m_1^2 + A\cos^2 heta & A\sin heta\cos heta \ A\sin heta\cos heta & m_2^2 + A\sin^2 heta \end{pmatrix}, \end{aligned}$$

- Not any more diagonal in (v_1, v_2)
 - we now have $v_1 \leftrightarrow v_2$ transitions due to weak interactions with the matter
 - mass eigenstates in matter: $(v_{1m}, v_{2m}) \neq (v_1, v_2)$

• Mass eigenstates in matter: (ν_{1m} , ν_{2m}) obtained by diagonalizing the Hamiltonian operator in the flavour representation

$$U_m^{\dagger} H_m^{(lpha)} U_m = H_m^{(i)} = rac{1}{2E} M_m^{(i)2} := rac{1}{2E} \left(egin{array}{cc} m_{1m}^2 & 0 \ 0 & m_{2m}^2 \end{array}
ight)$$

• Where U_m is the mixing matrix in matter:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \underbrace{ \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix}}_{=U_m} \cdot \begin{pmatrix} \nu_{1m} \\ \nu_{2m} \end{pmatrix},$$

• One can then compute the mass eigenvalues in matter, as well as the mixing angle θ_m :

$$m_{1,2m}^2 = \frac{1}{2} \left[(m_1^2 + m_2^2 + A) \mp \sqrt{(A - D\cos 2\theta)^2 + D^2 \sin^2 2\theta} \right]$$

 $\tan 2\theta_m(A/D) = \frac{2D\sin 2\theta}{-A + D\cos 2\theta - A + D\cos 2\theta} = \frac{\sin 2\theta}{\cos 2\theta - \frac{A}{D}}$

- From the expressions for $m_{1,2m}$ and θ_m one can derive the oscillation parameters in matter
 - As a function of those in vacuum
- Mass slitting:

$$D_m \equiv m_{2m}^2 - m_{1m}^2 = D \sqrt{(\frac{A}{D} - \cos 2\theta)^2 + \sin^2 2\theta} > 0$$

• Oscillation amplitude is a resonance curve as a function of *A/D*:

• Survival and transition probabilities then are:

$$\mathcal{P}(\nu_e \to \nu_e) = 1 - \sin^2 2\theta_m \sin^2 \frac{\Delta_m}{2}$$
$$\mathcal{P}(\nu_e \to \nu_\mu) = \sin^2 2\theta_m \sin^2 \frac{\Delta_m}{2}$$

• Maximal amplitude for
$$\theta_m$$
=45°

• Can be reached for any θ , when the A/D ratio is:

$$\frac{A}{D} = \frac{2\sqrt{2}G_F E N_e}{\Delta m^2}$$

• For $\overline{\nu}: A \to -A$

• Solar neutrinos must be u and not $\overline{\nu}$

 $\Delta_m := -$

 $\frac{D_m L}{2 E}$

Mikheyev-Smirnov-Wolfenstein Effect

- Resonance in oscillation amplitude, as a function of A/D
 - Depends on density N_e, neutrino energy and vacuum oscillation parameters
 - Resonance at:

$$A = A_R = D\cos 2\theta$$
,

- \circ In the sun, matter density changes along ν path
 - mass eigenstates split as a function of $A \sim N_e$, for given ν energy
- At the sun centre: $ho=150~{
 m g/cm^3}, Y_e=0.7,$ $N_{e0}=
 ho Y_e/m_N.$
 - Density then decreases as a function of radius

$$N_e(R) = N_{e0}e^{-10.5R/R_{\odot}}$$
. $R_{\odot} = 7 \cdot 10^8$

 $\left(\frac{A}{D}\right)_{R} = \cos 2\Theta$

 $\Gamma_R = 2D \sin 2\theta$

Mikheyev-Smirnov-Wolfenstein Effect

- 3 regimes
- 1. Sun nucleus, large N_e:

$$\frac{A}{D} \gg 1 \implies A > A_R$$
$$\implies \sin^2 2\theta_m \approx \frac{\sin^2 2\theta}{(A/D)^2} \approx 0$$
$$\implies \theta_m = 90^\circ$$
$$\implies D_m \approx A$$

- Oscillation suppressed
- Neutrino states at the source:

$$\begin{vmatrix} \nu_{1m} > \approx - |\nu_{\mu} > \\ |\nu_{2m} > \approx \quad |\nu_{e} > \end{vmatrix} \qquad \begin{bmatrix} m_{1m}^2 \approx m_2^2 \\ m_{2m}^2 \approx A \end{bmatrix}$$

With:

$$m_{1,2m} \approx \frac{1}{2} [m_1^2 + m_2^2 + A \mp (A - D)]$$

$$D = m_2^2 - m_1^2 > 0 \qquad A > 0$$

Mikheyev-Smirnov-Wolfenstein Effect

- 3 regimes
- 3. Resonance transition during transit through sun
 - Continuous density change between 1. and 2.
 - At resonance:
 - Amplitude is maximal
 - Mass splitting is maximal
 - 'Flavour flip'
 - Neutrino states at resonance:

$$\begin{aligned} |\nu_{1m}\rangle &= \frac{1}{\sqrt{2}}(|\nu_e\rangle + |\nu_{\mu}\rangle) \\ |\nu_{2m}\rangle &= \frac{1}{\sqrt{2}}(|\nu_e\rangle - |\nu_{\mu}\rangle) \end{aligned}$$

 $\begin{array}{l} m_{1m}^2 \approx m_{2m}^2 \\ m_1^2 \approx m_2^2 \end{array} \end{array}$

Deficit explanation: neutrino oscillation in matter

- Observed deficit in solar v_e consistent with oscillation in solar matter.
 - No evidence of further oscillation in vacuum.
- Confirmation with measurements at multiple v energies by Borexino experiment (Gran Sasso Laboratories, Italy)
 - <u>Borexino</u>:
 - ► 300 ton of liquid scintillator
 - 0.19 MeV energy threshold, 5% energy resolution at 1 MeV
 - Allows to distinguish v from different points of the solar v spectrum

State of the art: what do we know about neutrinos?

Table 14.6: Experiments contributing to the present determination ofthe oscillation parameters.

Experiment	Dominant	Important
Solar Experiments	θ_{12}	$\Delta m^2_{21} \;, heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12} \ , heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$ heta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)		$ heta_{23},\! \Delta m^2_{31,32} , heta_{13},\!\delta_{ m CP} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , heta_{23} $,
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13} \ , heta_{23}$

http://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrino-mixing.pdf

u_{μ} oscillation

- Atmospheric neutrino:
 - Disappearing ν_{μ}
 - Appearing ν_{τ}
- Long baseline accelerator:
 - Disappearing ν_{μ}
 - Appearing v_{τ}
 - Appearing $\nu_{\rm e}$

Latest long baseline accelerator neutrino experiments

- T2K (started operations in 2010)
 - New high-intensity beam, on Superkamiokande detector
 - Tuned on the first maximum of oscillation probability $(\Delta m^2 = 2.5 \cdot 10^{-3} \text{ eV})$

o MINOS/MINOS+

- beam from Fermilab to Soudan mine (L=735 km)
- Iron+scintillator tracking calorimeter in magnetic field
- NOvA (started in 2014)
 - beam from Fermilab to Ash River, Minnesota (L=810 km)
 - tracking calorimeter: planes of polyvinyl chloride cells filled with liquid scintillator

Other atmospheric ν measurements

- Atmospheric v_{μ} oscillations confirmed by
 - MACRO (Gran Sasso, Italy),
 - Soudan2 (Soudan Underground Mine, Minnesota)
 - ANTARES (Marseille, France) / IceCube (South Pole)

O ANTARES / IceCube

- Cherenkov detector: strings of photomultipliers inside natural body of water
 - ANTARES: in deep Mediterranean sea, near Marseille, France
 - IceCube (currently in operation): in polar ice-cap, close to geographical South Pole
- Primarily dedicated to neutrino astronomy
 - neutrinos from supernovas
- Also sensitive to atmospheric neutrinos

Measuring Δm_{23}

arXiv:1901.05366 [hep-ex] (2019)

Reconstructed v_e / \overline{v}_e energy (GeV) NotVA; th2019a(arXiv: 1906:04907), SS 2020

 \succ ' ν_{τ} Normalization' = 1 means

First evidence of CP violations

• T2K:

- \circ 2 σ evidence of non-zero $\delta_{ ext{CP}}$
 - CP-violating phase
- We are starting to probe CP violation in leptons

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\phi_1} & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

v_e oscillation

- Solar neutrino (discussed before)
- Long baseline reactors (KamLAND, discussed before)

• Medium baseline reactors (Daya-Bay, Reno, D-Chooz: see later) θ_{13}

 $\Delta m_{12}, \theta_{12}$

Measuring Δm_{23}

Measuring θ_{13} : reactor experiments

- $L \sim 1 \text{ km}$: can measure sin²(2 θ_{13}) from $\bar{\nu}_e$ disappearance
- First searches in the 90's (CHOOZ, Palo Verde)
- Measurements at Double CHOOZ,

Daya-Bay, RENO

All started in 2011, first results in 2012

- Double detector (near-far) to go below limits set by previous experiments
 - Double CHOOZ (France): liquid scintillator
 - Daya-Bay (China), RENO (Korea): Cherenkov detector
- Some $\sim 1\sigma$ tension between the measurements

Interpreting the results

- To fully determine which is the ordering of the 3 mass eigenstates, we need 6 parameters
 - 2 ∆m
 - 3 mixing angles
 - 1 CP phase
- Experiments in general are in agreement with one another
- Two scenarios compatible with the data we have
 - Normal hierarchy vs Inverted hierarchy
- We are missing (or not known with enough precision): θ_{23} , δ_{CP}

Interpreting the results: leptonic unitarity triangle

- Results available can be used to build a 'leptonic unitarity triangle', in the same way as for the quarks
 - Hints at nonzero area: CP violation occurs
 - But still compatible with CP conservation within 1-2 σ

Anomalies: short distance $u_{\mu} ightarrow u_{e}$

- LSND experiment: v from 780 MeV p-LINAC at Los Alamos (L=30 m)
 - Search for $\nu_{\mu} \rightarrow \nu_{e} (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ oscillation
 - Observed excess compatible with $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance
- KARMEN experiment: ν from 800 MeV proton accelerator at RAL, London (*L=28* m)
 - No $\bar{\nu}_e$ excess observed, excludes parameter area favoured by LSND
- MiniBooNE: ν from Fermilab Booster beamline
 - Same parameter region as LSND
 - Observes both v_e and \bar{v}_e excess at 4.7 σ
- To be further investigated with multi-detector experiments (in preparation)
 - LSND and MiniBooNE were single-detector experiments
 - e.g.
 - ► SBN program, Fermilab
 - JSNS² experiment, JPARK (Japan)

- Neutrino oscillation still a quite open field
- Vast variety of new experiment planned for upcoming years

Neutrino mass direct measurements

- Neutrino oscillation can only tell the difference between neutrino masses
- For the absolute scale, a direct measurement is needed
- v_e : measure end point of e energy spectrum from tritium β decay (see later)
- $\circ ~
 u_{\mu}$: muon pulse measurement in weak π decay (PSI, Zürich) $\pi^+ o \mu^+
 u_{\mu}$
 - masses of μ and π known very well from energy levels of pionic atoms and muon magnetic moment

$$\operatorname{sum}_i m_i |U_{\mu i}|^2 < 190 \ keV,$$

• v_{τ} : end point of hadron invariant mass in hadronic τ decays:

 $m_{
u_{ au}} = m_{ au} - \operatorname{Max}(m_{\operatorname{Hadronen}})$

- m_{τ} known precisely from e^+e^- storage rings (BES, Beijing)
- Best results from ALEPH, at LEP

$$sum_i m_i |U_{\tau i}|^2 < 18.2 \ MeV.$$

 ν_e mass measurement

• Measure end point of *e* energy spectrum from tritium β decay

$$H^3 \rightarrow He^3 + e^- + \overline{\nu}_e$$

detector

electrodes

 $\Delta \Omega = 2\pi$

T₂ source

 ΔE

prespectromete

70 meters

Cryogenii

Pumping syster

Magnetic field compensation coils

Differential pumping system p. (without E field)

 B_{min}

Main spectromete:

ν_e mass measurement

- Magnet spectrometers: Ο
 - First experiments: Mainz, Troitsk
 - Best limit from KATRIN experiment (Karlsruhe)
 - Magnetic field selects only electrons with high enough energy
 - > By varying the magnetic field range allows to measure the β decay spectrum in an integrating mode

Rear

 $\operatorname{sum}_i m_i |U_{ei}|^2 < 1.1 eV$

ANEREST

Tritium source

Majorana neutrinos?

- If neutrinos are (massive) Majorana particles ($\bar{\nu} = \nu$)
 - Neutrinoless double β decay must occur
 - Half life proportional to ν mass squared
- Signature: sum of electron energies equal to *Q-value* from nuclear transition
 - Ultra-low background experiments, large source mass needed

<u>()</u>

45

Majorana neutrinos?

- Multiple techiniques used
- Ultra-pure Germanium detector (ionization detector)
 - Enriched in ⁷⁶Ge
 - GERDA, Majorana demonstrator
- Liquid scintillator detector: use existing detector, by adding β source
 - KamLAND-Zen: add balloon with Xenon enriched in ¹³⁶Xe
 - Currently gets the strongest bound: 7
 - SNO+: similar idea

- $T_{1/2}^{0\nu} > 1.07 \times 10^{26}$
- Other experiments (some, in preparation) use time projection chambers, or bolometric detectors

v_e mass: results summary

IH: inverted hierarchy NH: normal hierarchy