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Neutrino (v) masses and oscillation

o In the Standard Model, neutrinos are massless

* v only left-handed (v only right handed)
right handed v do not participate in the weak interaction

o Neutrino oscillation:
* first observed in 1998
* imply that neutrino must have nonzero mass
* as well as violation of lepton flavour conservation, as for quarks

Mass m measurements Discovery
<2eV Mainz / Troitsk Cowan, Reines 1956 (inverse (3 decay)
< 190 keV PSI Zirich Ledermann, Schwartz, Steinberger 1962

< 18.2 MeV ALEPH (LEP) DONUT Experiment (FNAL) 2001
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Neutrino (v) masses and oscillation

o Since neutrinos are electrically neutral, they can be either Dirac spinors
or Majorana spinors
* Dirac neutrinos:

4 component Dirac spinors:
With:

(Vi 7RivE, VL)

vp = CPT(v?), v =CPT(vR)
* Majorana neutrinos:
(vi'svR)

2 component Majorana spinors: Y1, s VR
Majorana neutrinos are their own antiparticle:

o Which of the two occurs in nature is yet to be clarified experimentally

o The very low value of the neutrino mass is also yet to be theoretically
explained
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Mechanism of v oscillation

o The same argument discussed for quarks also holds for neutrino
* From interaction with Higgs field

O Vv mass eigenstates # v weak eigenstates

* Mass matrix is non-diagonal on the weak eigenstates basis

Same applies to charged leptons, known to have nonzero (and very
different) masses

o It follows that weak transitions exist between mass states in
different generations: v mixing

* Time oscillation between mixing states as for neutral mesons
First: Bruno Pontecorvo, Moscow 1958
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Mechanism of v oscillation

o As for quarks, both up-type (neutral) and down-type (charged)
lepton weak eigenstates are connected to the mass eigenstates
by a unitary transform

Ve 4| Uel UeQ UeS 4|
2 vs | Ursi Ur2 Usrs vs |,

* . —_ —— —_ .
Vi = § Uai Va 3 Vi = E Uqi Vo .
Q

(87
vi (i =1,..,3) Vo = ZUail/i; Da:ZU;iDi'
i )

Va (a — 67/1’77-)’
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Mechanism of v oscillation

o U, is the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix:

1 0 0 C13 0 8136_1.(S C12 S12 0
0 C23 S23 : 0 1 0 : — 812 C12 0
0 — 893 Ca23 —81361'(S 0 C13 0 0 1

et 0 0

0 €% 0

0 0 1

o Independent parameters:

* 3 mixing angles: = cosfy; > 0

97;] (27] Y] 737?’ >])' Sinelj > O,
* 1 CP-violating phase: .
625

* 2 Majorana phases:
¢1 , ¢2 (Z/M =M for Majorana neutrino)

»Majorana phases play no role in oscillation
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Mechanism of v oscillation

o Time evolution of weak eigenstate:
v;(t) = e *Fily;(0) |

* In the limit |p| » m; (v have very small masses)

<< | P 1m?2 |B|~E, 1m?2
E; = 1/p? 2 XM Bl 2= TR R, 4+ ——-

o We can then derive the time evolution of a weak eigenstate:

V(O) — |Va >= Zz Uaz'Vi(O) ,

— I/(t) = Z Uaie_iEitl/i(O) = Z Z UaiUEie_iEith :
i B

)
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Mechanism of v oscillation

o From v(t) time evolution, the transition probability from weak
state a to weak state [ can be derived:

Plva = vgt) = | <wvglv(t)>[*
_Z|UMU5 > 4+ 2Re Y  UnUpUsUgje 2
6,5 (3>1)

* Where (L = ct):

Aij = (Ei - Ej)t ~ oF t=: iAmijE'
o Nonzero oscillation means nonzero Amizj — ml-2 — mjz

* The v masses are not all identical and cannot be all=0

Otherwise the mass matrix would have been a multiple of I and there
wouldn’t have been any mixing

08/05/20 Tests of the Standard Model of Particle Physics I, SS 2020



Mechanism of v oscillation

o Simplest case: mixing between two generations
* 1 parameter: mixing angle 6

( Ve ) ( cosf sinf ) ( %] ) ( 1 >
Vy, —sinf cosé@ Vo Vo

o Transition probabilities:

Pe = ve) =

Pe > v,) =

_Am2
A= 2

Sl

With:

Pvy = vy) =PWe = Ue) =P(0, — 1y,)
1 — sin® 20 sin? %
Pvy — ve) = P(Ue = 1y) = Py — Ve)

A
sin” 26 sin? o= 1 —P(ve = ve),

. . . __ 4 FE
— Oscillation length: Lo = 5 -3.
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Mechanism of v oscillation

o Simple case of 2 families

Pwe =ve) = Ply—vy) =PWe = Ve) =Py — 1y)

Plve > v,) =

>
VIS
|~

o Transition probabilities depend on 2 parameters:
» oscillation amplitude: sin“260

- . 2
» oscillation frequency: 4™/,

o For 3 generations, complex mixing matrix U, parametrised as for
CKM
* CP violation becomes possible: Pve = vu) # P(Ve — V)
» But CPT requires that: P(v, - v,) =PV, — Ve)
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Sensitivity to v oscillation

Lo 2Lo 3o
L

1.0 T Y Y Y T .
- {a) B '
_ A e X e N e <F:{vs—;v¢)>*
: i-5sin’ 28
4 E

05 |

P{vy~ vy} {disappearance)

L

Transition probabitity

F— 5m2 a P{vg— vg}{appearance)
- <P(V¢“Vp,>'
-;--siﬂ2 28
o Sensitivity to a given m? | o
depends on L/E
* i.e. the energy of the
produced v and the distance ‘
between source and ' | - e

detector

. T In 5t 0rn 20m

o Optimal sensitivity when £
the oscillation frequency is 3
neither too large nor too 8
small: $
L 1 0 |
£ sm2 ol : S ——— » log(A)
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Note about charged leptons

o Oscillation is a pure quantum mechanical effect: coherent
superposition of v mass eigenstates

]
Pure v, Pure v " Pure Vu

cos8

MRS

0 Time, ¢

o ltis visible only because momentum resolution doesn’t allow us to
resolve the mass eigenstates

* i.e. the oscillation length L, is long enough Lo = 4k
0= sm?2-
o In charged leptons and quarks, masses can be resolved and the effect is
disrupted
* To resolve the mass states, it must be: Ap < |pl- — pj|

* Hence L, is smaller than spatial resolution:
1 1 2F ¥
Ax > > ~ ~ Lj,
Ap = |pi—p;l  Imi—m
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What can we learn from v oscillation?

o v mass differences: ordering of
the v; mass states

* The absolute scale of v mass Normal hierarchy
cannot be measured from sz I s
oscillation: direct measurement
needed A

atm

o Mixing angles

V2
* Built a ‘unitarity triangle’ for i|| Am?,,

leptons 1

o CP violating phase: CP violation in
lepton mixing?
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Search for v oscillation

o Typical v experiment

* A source creates v of a specific flavour v, in a given energy range, at
t=0

* A detector then measures the flavour components of the v flux at time
t=L/c:
—iE;t
v(t) =2 ; g UaiUge™ "% v >
as well as the neutrino’s energy

* The distance L between source and detector tuned in order to be
sensitive to the dm? of interest

u e
(i=1..n) "
Example: wt Uei Vi vi Ue w*
+
p+p—>d+v, +e’ electron scattering

o Two classes of experiments: appearance and disappearance
experiments
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Disappearance experiments

o Detector sensitive to same flavour as produced in the source

o Measuring the v, flux (v rate / detector area) in the detector as a
function of v energy

o Survival probability: (Ve — va; L)
* equivalent to measuring the probability of oscillation into any other
flavour eigenstate

P(Vo > Vx #Va; L) =1 —P(vgq = Vo; L)

o Requires:
* precise knowledge of the source or
* measurements at multiple distances
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Appearance experiments

o Detection of a different flavour than that generated at the
source

o Measures the probability of appearance of a specific flavour

P(l/a — Vg, L)

o Requires
* low contamination of the source with v; or
* precise knowledge of source flavour composition

08/05/20 Tests of the Standard Model of Particle Physics II, SS 2020
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Sensitivity to v oscillation

o The fundamental parameter is the oscillation frequency
* For each oscillation component

w2 A 2| AmPL
S :=sin“ 5 = sin T
o Three ranges can be
considered: @ focly ey @ ke
e e e log (1)
-y Plvg—Yy}
L 4 z
1- /E << /Amz é Ll
— 4TE £
(orL L Ly = /AmZ) |
= S=0
itivi ; : ° oam e anen o 20m » log(A)
*  No sensitivity to oscillation :
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Sensitivity to v oscillation

2. L/E 2 4/Am2

. At sensitivity threshold: condition on minimum Am? the experiment is sensitive
to (given L and E)
_E[MeV] _,

€

Am?Z. =~
Large L and low E improve sensitivity to small Am? e L [m)]

But v flux decreases with distance (isotropic, divergent beam)

3. Eg>»>*/, 2 (orL K L)
. High frequency: many oscillations between source and detector
. L/ must be measured very precisely to resolve oscillations

. Otherwise it is only possible to observe average transition probability
i.e. measure 8 but not Am?

<Pla—=>B#a)> = §sin29

o L/. determines the mass range to which the experiment is sensitive

. i.e. basic parameter in order to decide what experiment should be built to test a
given Am? region
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Types of v sources

Experiment L (m) E (MeV) | |Am?| (eV?) | Produced flavour
Solar 1010 1 10~10 Ve
Atmospheric 10* — 10" | 10*-10° | 107t —10~* Vi, Uy, Vey Ve
Reactor SBL 102 — 103 1 1072 —-1073 T,

LBL 10*—10° 1074 — 1075
Accelerator | SBL 10 103-10* > 0.1 v, U,

LBL 10°—-10° | 10> —-10* | 1072 — 1073

SBL = short baseline, LBL = long baseline (see next)

» Neutrinos from supernovas have also been measured, but they are used as
messengers for astronomy research rather then for studying neutrino properties

08/05/20
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Neutrino beams

o Nuclear reactors: v from [ decays in the fission process
* Produces low energy v,

* Needs detailed knowledge of neutrino flux produced by the reactor
(many decay chains involved)

o Accelerators:
* proton beam on fixed
target

* interaction with nuclei in
target produces m,K

Beam Absorber

* v from m,K weak decays
* Produces v, v, , energy

can be tuned : Target
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Neutrino beams: detection

o Detection method: mostly inverse  decay

= T.+p—et+n

o Decay products then detected through
* electron-positron annihilation: ete™ — v 55 ey 8 MeV

/
° neutron capture: n+p—>d+-y n+Gd— Gd* — Gd +~

Often use Gadolidium (Gd) for high neutron capture efficiency
* Photons can the be detected

= Veuyr+ N — (e ,u,7 )+ Hadrons

o Then detect charged lepton (e.g. through Cherenkov light)
* Charged leptons retains v direction and energy (forward scattering)

Prompt photon

o For better precision, two detectors are often used (multi-detector):
* One near the source, to measure the produced flux
* One at distance, to detect oscillations
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Neutrino beams: measurements

o Reactors:

* Only disappearance measurements

Direct detection of v, , v, from oscillation is not possible due to low
energy: under threshold for producing a u/t

* Ve disappearance: address v,—v,/ v, oscillation (same as solar
neutrinos)

o Accelerators:

v, disappearance, v./v, appearance
U o/ Ve

* can verify v,—v_ oscillation observed in atmospheric neutrino (see
U T
next)

* and target v,—v, observation
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Neutrino beams: long baseline vs short baseline

o Two categories:

* Short baseline: distance between source and detector up to 100-
1000 m

* Long baseline: distance between source and detector > 100 Km

o Designed to address different ranges in Am?

* For instance: Am? = ()(107?) eV (observed in atmospheric
neutrinos)

First oscillation maximum at “/; ~500 km/GeV

e.g. accelerator neutrinos produced at ~ GeV = need L~10° Km

08/05/20 Tests of the Standard Model of Particle Physics I, SS 2020
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Atmospheric neutrinos

T R
pm -t
o Cosmic radiation (~99% protons)
interacts with atoms in the : wt ety
atmosphere :
* Produces particle showers: i, K
produce v by decaying weakly

o Oscillation observed for the first
time in atmospheric v by

Superkamiokande experiment
* 1998

08/05/20 Tests of the Standard Model of Particle Physics I, SS 2020
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Superkamiokande experiment

o 5000 ton water tank, 1000 m 8%\ "
underground in Kamioka mine, . A y
Japan e o chrges pric et e Crreon e,

o Neutrinos detection:

* interaction with electron or nucleus
in the water (inverse § decay)

o Instrumented with
photomultipliers
* collects Cherenkov light from (from
inverse [ decay)

» Direction of charged particles used
to determine direction of incoming
neutrino

* Cherenkov rings allow to
distinguish e, u, :

» Can determine neutrino flavour
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Atmospheric v oscillations

o Superkamiokande: deficit of v, (v,)
with respect to v, (V) coming from
below

* zenith angle proportional to travel
length

o Explained by v oscillation (v, — v;
or v, — V,) while passing through
the globe (L, = 10* km)

o Later also measured v, appearance
(4.60)
* Very difficult due to:

high threshold for inverse § decay
(large T mass)

short 7 lifetime

Number of Events

1000

400

200F

Zenith
Isotropic flux of ;
cosmic rays ;
0

e-like events:  y-like events:
no oscillation  oscillation observed

2000F T

Super-Kamiokande I-IV
328 kty

- T o

I gy S 1000 :.—'_’:'_’-r""’—'-j

vV, =V,

Sub-GeV e-like Sub-GeV p-like
10294|Events 108541Events

-1 0 1 -1 0 1

71 1000

1

500 |-

Multi-GeV e-like Multi-GeV p-like + PC

2847 IEvents 5932 lEvents

-1 0 1 -1 0 1

cos zenith



Confirmation from long baseline accelerators

o K2K Super Ke IITE
* beam from KEK accelerator to "L v e 1700 <
ﬁum%erkamlokande detector (L=250 i ok full data
10 LA B R L B T
: : : Yy B
* First confirmation of v N
i ide | 2006
disappearance outside <
atmospheric neutrinos (2006) 0
1073} .
.............. 68%
o v,—YV, appearance confirmed by - 90%
OPERA . 9%, .
0 0.25 0.5 0.75 1

* Beam from CERN to Gran Sasso
Laboratories (L=730 km) —

* Emulsion+lead target

o Vv,—YV, appearance observed by
MINOS T2K, NOVA (see later)

¢
L.
>
1]
o
0
2
=
7]
>
)

I|IIII|IIII|IIII|IIII|IIII|I

I
0
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Solar neutrinos

o vV, produced by thermonuclear fusions in the Sun nucleus

o Solar models predict about 98% of v produced by the pp-cycle
* It results in:

4p + 2~ — He* + 2v, + 26.73 MeV
= (F,) = 0.59 MeV

* Remaining 1.6% produced by CNO and Bethe-Weizsacker cyles

1013 T T T T T T
1012 SFII-GS98 + eeCNO

Solar Neutrino Spectra (*£10)

pp[+0.6%]
7Be[J|_r7%]

pep[+1.2%]

-
-
-

Joooo] veN[x14%]
N IeO+eF[i15%] SB[i14%]

Flux [cm®s™ (100 kev')]
5
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Solar neutrinos

o Two main experimental goals with solar v

1. Test the Solar Model
* Predicts the temperature distribution in the Sun, which determines the
fusion reactions taking place, hence the flux and energy of neutrinos

Expected v flux from the Sun: 1.87 - 1038 s1
Expected v flux density on Earth: 6.6 - 10° cm-2 s

v offer direct, almost instantaneous information about fusion process

photons take about 10° years to get from the center to the surface, due to strong
interaction with solar matter

* Models in good agreement with measured oscillation excitations opf the
Sun (heliosismology)
2. Search for v oscillations

. Good search conditions:

very low v energy (~ eV)
very long travel length (10> km in Sun matter + 108 in vacuum)

E,[MeV _- ‘
— Am2. ~ Ey[MeV] eV? ~ 10712 eV2,

min L[m]

08/05/20 Tests of the Standard Model of Particle Physics Il, SS 2020
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Solar v detection

o Two detection methods:
1) Radiochemical measurements
2) Real-time measurements

Table 14.2: List of solar neutrino experiments

) Name Target material Energy threshold (MeV)  Mass (ton) Years
Homestake CyCly 0.814 615 1970-1994
(1) SAGE Ga 0.233 50 1989
GALLEX GaCls 0.233 100 [30.3 for Ga] 1991-1997
GNO GaCls 0.233 100 [30.3 for Ga] 1998-2003
Kamiokande H20 6.5 3,000 1987-1995
Super-Kamiokande H->0O 3.5 50,000 1996—
(2) 4 SNO D,0O 3.5 1,000 1999-2006
KamLAND Liquid scintillator 0.5/5.5 1,000 2001-2007
Borexino Liquid scintillator 0.19 300 2007

From: http://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrino-mixing.pdf

Same detector often works with multiple v sources
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Solar v detection: radiochemical measurements

o Vv captured via inverse f decay of target nuclei
ve+ B(Z) — C(Z+1)+e”
(Ve+n — p+e)

o Detected through decay of the new nuclei C by electron capture

* Photons or Auger electrons are emitted, which can be detected with
a proportional chamber.

C(Z+1)4+e — B(Z)+ve

o Detector then consists of a huge tank filled with B
* Targets of choice: CI*/ and Ga’*
Half life of C must be neither too short nor too long

* They have different thresholds for v capture, hence sensitive to
different parts of the solar v spectrum

08/05/20 Tests of the Standard Model of Particle Physics II, SS 2020
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Solar v detection: real-time measurements

o Use the reactions
a) Elastic scattering: v,e — v,

The scattered electron indicates the energy and direction of the incident
v (forward scattering)

Used by e.g. (Super-) Kamiokande, SNO, Borexino

b) v capture by deuteron (reaction rate 10 times larger than elastic
scattering)

Two processes:

(1) ve+d — e 4+2p - vcapture, E,> 1.442 MeV

(2) va+d — va+Dp+mn-dspallation, E, > 2.226 MeV

By comparing measurements, information on neutrino flux ratio v,/ v,
SNO (Sudbury Neutrino Observatory), Canada: 1000 ton D,0O
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The solar v deficit in summary

o Homestake experiment (1970-1994, see next)
 Using the reaction: v, + CI®" — Ar37 4 e~
* Found only ~50% of v, expected from Solar Model

o Confirmed by SAGE and Gallex
* Using: Ve + Ga™ — Ge™ + e~
Different E, threshold - Different region of the spectrum
o And by (Super-) Kamiokande
* With: Vo€ — Vo€
o(Vyre7) = g o(vee)

o Explanation: neutrino oscillation in matter (Sun) are different than in
vacuum
* Resonant amplification through the Mikheyev-Smirnov-Wolfenstein

(MSW) effect: different scattering of v, and v, in solar matter with
decreasing density

2002 Nobel prize to R. Davis (Homestake) und M. Koshiba (Kamiokande).
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Solar v deficit: Homestake

o Homestake experiment (R. Davis, Jr.
and collaborators)

o About 615 ton of C,Cl,
* In a gold mine in South Dakota

o Method:

* Exposed for 60-70 days until
equilibrium between v capture and
decay (half life: 34.8 days) is reached

* Chemically extract Ar3’ (together with
known amount of stable Ar3®) and
introduce it into low-background
proportional chamber

* Reaction rate determined by counting |
Auger electrons from Ar37 decay |

08/05/20 Tests of the Standard Model of Particle Physics II, SS 2020
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Solar v deficit: data

Total Rates: Standard Model vs. Experiment
Bahcall-Pinsonneault 2000

7

+0.20
1 'U-C.'.B

R A

\
N
.\\.'\S\\}\\\\. SO

Ve g 4m
473

e 0.540.08

GALLEX + GNO

Kamioka SAGE

Cl Hzo (_;a

SuperkK

Theory ™ ‘Be mm P™P. PeP Experiments mm
"B W CNO
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Oscillation hypothesis confirmed by SNO

o SNO (Sudbury Neutrino Observatory), Canada:
* 1000 ton D,0 in spherical vessel, surrounded by H,O shield

* Instrumented with photomultipliers (PMTs) to detect Cherenkov light
in both D,0 and H,0

| ,. 3 ‘Water (H,0)
PMT support £ g
rok ,._*" ,,m'*. 3

structure, T
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Oscillation hypothesis confirmed by SNO

3 simultaneous measurements

* vV capture: Ve+d— e~ +p+p.
»only v, are detected (charged current)
»deficit is observed boc = O,
* d spallation: Vo+d — vo+p+n Ops = Pe+ 5 Ppur
»all flavours interact with the same cross Oye =P+ P
section
»NO deficit is observed (not sensitive to
oscillation) . 505

. . = — a 6 .. TN - gy 68% C.L.
* elastic scattering: Vo€ —» Vgt

»all flavour interact, but with different cross

. 1
section (oy,~ -0y, 4v.)

Provides model independent test

..

—— 4\ 68%,95%,99% C L.

~..

o (x 10°cm2s™
W

ut
N

..
e
..
S~

..

..

B s L
B s L

I o265 CL
Ops 68% C.L.
l | I T I 1
05 1

Vv, oscillations confirmed in 2002 by long-
baseline reactor experiments (KamLAND, .

see later)

IIII|IIII|IIII|IIII|II

1 I 1 1 |

O [ I | L1 | L1 1
0 . 15 2 25 63 35
¢, (x 10° cm?2 s}
Superkamiokande
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Confirmation from reactor neutrino

o KamLAND experiment

* 1000 ton of ultra-pure liquid scintillator in spherical
baloon

* vV, flux from multiple reactors in Japan and Korea
* Average distance: 180 km

o In 2002 showed evidence of v, disappearance

Chimney

[Xe-LS 13 ton

|~ Photomultiplier Tubes

.~ Buffer Oil

| Fiducial Volume

(12 m diameter)

~ Outer Balloon
(13 m diameter)

™\\ Inner Balloon
(3.08 m diameter)

38

* Deficit in agreement with solar model LS 1 kton
* Also in agreement with observations from reactor [
experiments at shorter distance e
https://arxiv.org/pdf/hep-ex/0212021.pdf (2002) https://arxiv.org/pdf/1303.4667.pdf (2013)
1.4F
1_
1.2 % i
1.0 _..#.@';_ %“"'@h‘ —— — — — — 2z 0.8:—
o 5 i
08 & '%s 0.6 -4
< A ILL FR N & ply
S 06 x SavannahRiver +" = LI 2 e S
Z O Bugey 2 04
04+ f ?}g‘gsloen L E ' L
' N Krasr%oyarsk A i +
02F = Choor 021 o i
o KamLAND | — 3-v best-fit oscillation —o— Data - BG-Geo V,
00| | ! ! ! ol bbb b b b i 1
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ird Mot
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Deficit explanation: neutrino oscillation in matter

o Oscillation in matter has different frequency and amplitude than in
vacuum

* First examined by Wolfenstein in 1978
* Mikheyev and Smirnov, 1985

o Today, the preferred explanation for solar v deficit

VH > - Vp \—’p e L GIJ
o At low energies, matter is almost 2 @ 2 @
transparent to neutrinos I — v - ;
. - Bo- e
* Only elastic forward scattering occurs ©
o Can define an effective refraction index for ve — —Ve Ve——r——— 6"
. |
V In matter | | o 2 @+ fw @
* Analog to elastic scattering of light in glass - e - [ . .
o Weak interaction with electrons has (d)
different cross sections for v, and v, /v, Ve —» — e Ve Ve

* Implies different effective refraction i @ v ®
indexes: n, # n, ) _ _ -
(] e € (-
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v oscillation in matter: example with two families

o Assuming constant E (constant phase factor in wave function),
the free neutrino Hamiltonian is approximately:

o Taking mixing into account, one can write H as mass operator in
vacuum.
* In the mass eigenstate basis:

; 1 m? 0
(i) — _— 1
H 2F ( 0 m3 )

Ve \ cosf sinf [
* And in flavour eigenstate basis: v, )]\ —sinf cosé vy

=U

2 2
H() 1 Me me# — UHOyT
m

Ep— 2
2E \ mg, "
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v oscillation in matter: example with two families

o Expanding H@:

H(

L( m?cos? 0 + m2sin®d (m2 —m?)sinfcosd )

2E \ (m2 —m?)sinfcosd m?sin’6 + m2cos?d
1

, 1 0
E(m1+m2)(0 1 )

N 1 (m2—m?) [ ~ cos 20 sin 26
AE N 1) sin20 cos 26
—Am2— :D

o The mass eigenvalues are then:

1
mi2 = 5 [(me + m,u) + \/(m,u o me)2 + 477?%“]
* With:
tan 20 = 2Mey

mﬂ—me
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v oscillation in matter: example with two families

o In matter, weak interaction of v with e adds effective potential to
the Hamiltonian

* Diagonal in flavour states: (@)
VS5 =< voe” [Hwwlvoe™ > bap,

M2
H—H,—H+V=— 1V <&

2F
V<a) _ Ve O
0 V,
o With global phase transform on the flavour states:

| V.-V, 0 A0
Vo >— eVt > = V@( 0 0>: 1( )
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v oscillation in matter: example with two families

o The difference between v, and v, interaction is due to
contribution from charged interaction
A
Ve =V, =< z/ae_]Hggvlz/ae_ = 5% = V2GFrN.,

* With:

Vi Vi Vi u
Ye
A = 2V2GpEN, =2V2GrE- Ezo & Ezo @
my - - - -
(©)

= 1.52-1077- E[MeV] - Y.plg/cm®] eV?

5 9 Ve Ve Ve -—.—T——.— e
G r = Fermi constant for weak WIW = 1.1664 - 107° GeV I
o] +
Yep L Z @ + * W @
e = = electron density in matter

|
my e e” e —s— 1 Ve

Y. = number of electrons/nucleons

(d)
p = matter mass density Ve Ve Ve Ve

my = nucleon mass ~ m, = 938 MeV : W~
» p r @ > @
» On average (expecially for sun matter) - P -

1
Ne~ N, = N, =Y.~ -
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v oscillation in matter: example with two families

o The hamiltonian in matter then becomes
* For the flavour eigenstates:

1 A O
H@ — gla) =
m T 2E ( 0 0 )

1 m;+A mZ,
- 9F m?2 m2

ep p

1 1 0
= 4E(m§+m§+A)(O 1)

1 A — D cos 26 D sin 26
4F D sin 260 —A + D cos 260
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v oscillation in matter: example with two families

o The Hamiltonian in vacuum mass eigenstates can then be
derived:

HO — pigey—go, g4 9 )y

1 [ mi+Acos’d Asinfcosf
2k Asinfcosf m3+ Asin?f |’

o Not any more diagonal in (v, , v,)

* we now have v; © v, transitions due to weak interactions with the
matter

° mass eigenstates in matter: (v, , Vo) % (V{, V5)
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v oscillation in matter: example with two families

o Mass eigenstates in matter: (v,,,, v,,) Obtained by diagonalizing
the Hamiltonian operator in the flavour representation

: 1 : 1 m? 0
Ul HOU = g® = —_p@2.— _— 1m

* Where U,, is the mixing matrix in matter:

Ve \ cos@,, sinb,, Ulm
Yy ~\ —sin 0,, cosb,, Vo, |

A . >4
-~
=U. m

o One can then compute the mass eigenvalues in matter, as well as
the mixing angle 6,

M3 gm = ; [(m%+m§+A)$\/(A — D cos 26)2 + D?sin? 26 ]

2D sin 20 sin 26

—A+ Dcos20 — A+ D cos 26 - cos 20 — %
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v oscillation in matter: example with two families

o From the expressions for m, ,,, and 8, one can derive the oscillation
parameters in matter

* As a function of those in vacuum

o Mass slitting:

A
Dy, =ms5, —mi, = D\/(B —c0s20)2 +sin?20 >0

o Oscillation amplitude is a resonance curve as a function of A/D:

tan? 26 e WA e
. 92 m 2 & .
29m A D — — sin© 20,
S11 ( / ) 1 _|_ tanQ zgm 0.8 7/ X.\ -
0.8F / \S
B sin 20 g L )
(4 — c0s20)2 + sin® 26’ i \\:
8=30°
(g)R = Cos26 22 ) \8-10 i I

0.0 05 1.0 1.5 2.0 25 3.0
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v oscillation in matter: example with two families

o Survival and transition probabilities then are:
A
2

Pv, > v,) = 1—sin?20,,sin> == — DmL
(Ve = Ve) sin s;n > A, = S
P(ve = v,) = sin®260,,sin’ Tm

o Maximal amplitude for 6,,=45°
* Can be reached for any 8, when the A/D ratio is:

1.0
é B 2\/§GFEIN6 sin220m' -7-/
=

D Am?

o Forv:A - —A

* Solar neutrinos must be v and not v 00 05 10 15 20 25 3.0
~ A/D
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Mikheyev-Smirnov-Wolfenstein Effect

1.0 T T i
sin?20, | -
o Resonance in oscillation amplitude, as a 0.8/\/<\ ]
function of A/D o 1
v.2 =l
. . L f i1 4§ 4
* Depends on density N, , neutrino energy and a1 \ ]
vacuum oscillation parameters R \\\E”\
0.2k . i
* Resonance at: L }L‘*”. Sl
A= Agr = D cos 20, 0.0 0.5 1.0 1.5 20 25 3.0
A/D
. (%)R= Cos26
o In the sun, matter density changes along v path e S

* mass eigenstates split as a function of A~ N,, for given v energy

o Atthesuncentre: p=150g/cm® V. =07 N = pY./mny.
* Density then decreases as a function of radius

N.(R) = Noe~105R/Fo_ Ro=T-10°
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Mikheyev-Smirnov-Wolfenstein Effect

o 3 regimes

A
1. Sunnucleus, large N,: —>1 = A> Ap

2
. 9 sin“ 26
20, ~ ~
—> sin (A/D)? 0

— 0, =90°
— D,~A

*  Oscillation suppressed

° Neutrino states at the source:

|I/1m >R
|I/2m >R

—|v, > m32, ~m

Ve > m2 =~ A

(W) v}

With:

m1,om ~ 5[mi +m3+ AF (A— D)

D =m3—m? >0 A>0
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Mikheyev-Smirnov-Wolfenstein Effect

o 3 regimes

3.

—

Resonance transition during transit through sun

Continuous density change between 1. and 2.

At resonance:

»  Amplitude is maximal

»  Mass splitting is maximal

‘Flavour flip’

Neutrino states at resonance:

|I/1m >=

|V2m >=

NN

(lve > +|vu >)
(lve > =|vy >)

08/05/20

im%m (vom curve)

\em=e/i)'

Vit

t—m%m(ulm curve)

Resonance transition

2 i } —
mj : A Ne
AR
Sun edge (3) Sun centre
Ve Vom ¢
Vim\ 4
N 0.~ 45°

Vo e, UL



Deficit explanation: neutrino oscillation in matter

Red: Borexino measurements

. . . e Black: SNO+Superkamiokande

Observed deficit in solar v, consistent with o5 Blue: MSW prediction
oscillation in solar matter. 0.8F- -
* No evidence of further oscillation in 3 iy - -
vacuum. to.sE } i w3
o.é } U _;
Confirmation with measurements at 0.3F }‘ E
multiple v energies by Borexino 0-2F- E
experiment (Gran Sasso Laboratories, Italy) °F | o

Cl

¢ M: 10 Neutrin%: Energy [MeV] 10
»300 ton of liquid scintillator ST Hemiew ]
wE olar Neutrino Spectra (+10) 3
10" +0.6% L
»0.19 MeV energy R e N S L
> q0° - ‘Be[+7%] | 1
e oF 1 1 ep[+1.2%] 3
thf'EShOld, 5% energy Borexino Detector g 10 F o1 N ,'p i 1
. ainless Steel Sphere = 107!-.--'_":f-::": _____ i T }
resolution at 1 MeV  Bxemalwatertank —, e o] I Y R VSO ]
Nylon Inner Vessel 5 10°F - 1 i : Yo} COHEFIRI5%] fpriigy 1
< H \ Fiducial volume  x  1q* [ "F[+19%] | ! : ! 1
» Allows t(? distinguish e ’ 3 10// i
v from different PMTs gt ’0 oy | ¥
: / r | [ [ L
. E 1 iy 1] L1 L3
pOIntS Of the SOIar v 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

for extra

Neutrino Energy in MeV
Spectru m shielding . o
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State of the art:
what do we know about neutrinos?

Table 14.6: Experiments contributing to the present determination of
the oscillation parameters.

Experiment Dominant Important

Solar Experiments 01 Amg1 , 013

Reactor LBL (KamLAND) Am%l 912 , 013

Reactor MBL (Daya-Bay, Reno, D-Chooz) 013, |Am3, 3|

Atmospheric Experiments (SK, IC-DC) 023,| Am3; 3], 013,6cp
Accel LBL v,,v,, Disapp (K2K, MINOS, T2K, NOvA) | |Am3; 35|, 623

Accel LBL ve,ve App (MINOS, T2K, NOvA) dcp 013 , 023

http://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrino-mixing.pdf
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v, oscillation

o Atmospheric neutrino:
* Disappearing v,
* Appearing v,

o Long baseline accelerator:
* Disappearing v,
* Appearing v,
* Appearing v,

08/05/20 Tests of the Standard Model of Particle Physics II, SS 2020
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Latest long baseline accelerator neutrino experiments

T2K (started operations in

5 300 cillated Predicti 5 90 Unoscillated Prediction
20 10) gzsoE_ 0 u ed w hR or C 290;_ — gﬂlmdwnh Reactor Constraint
5 T2K Run 1-9d Prellminary £7F T2K Run 1-9d Preliminary
P H _' H § 200:— § 605—
New high intensity beam, on b o B
Superkamiokande detector %, Vn Sar vy,
. . E 20F-
* Tuned on the first maximum > X 10F. ,
of oscillation probability
_ L : +
(Am? =2.5-1073 eV) . RS
0 1 4 5 6 7 0 4 5 6 7
Reconstructed Neutrino Energy (GeV) Reconstructed Neutrino Energy (GeV)

MINOS/MINOS+

* beam from Fermilab to Soudan mine (L=735 km)  ————
. . . . . | —$— MINOS+ Far Detector Data

* lron+scintillator tracking calorimeter in magnetic

- —— MINOS+ Only Fit

T++ +

(L=810 km)

field é 15 }—2014 MINOS Fit
NOVA (started in 2014) E +H’ :
1 .l
* beam from Fermilab to Ash River, Minnesota % t-H
:

0.5F

1 Il Il 1 | 1 Il 1 1

. . . . 2.99 x10%° POT Vo -mode MINOS+
* tracking calorimeter: planes of polyvinyl chloride MINOS* Preliminary
cells filled with liquid scintillator N SR NI
0 5 104520 30 50

Reconstructed v, Energy (GeV)
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Other atmospheric v measurements

Atmospheric v,, oscillations confirmed by

* MIACRO (Gran Sasso, Italy),

* Soudan2 (Soudan Underground Mine, Minnesota)
* ANTARES (Marseille, France) / IceCube (South Pole)

ANTARES / IceCube

IceCube Lab

* Cherenkov detector: strings of } \,,_,_. 5
. . . . m [/ -—“_-__—_.:_— ............ 24 optical sensors
photomultipliers inside natural body of -
water i
» ANTARES: in deep Mediterranean sea, D el carare, o
near Marseille, France
»|ceCube (currently in operation): in polar sm | Deepore
. . i strlngs-spacujg optimize
ice-cap, close to geographical South Pole oloversnrge
* Primarily dedicated to neutrino * sz
astronomy o
2450 m
» neutrinos from supernovas Bzl

* Also sensitive to atmospheric neutrinos
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Measuring Am.4

arXiv:1901.05366 [hep-ex] (2019)

Ax?

B o= N W s o

Il
T

-=  T2K 2017 <=+ NOvA 2017
3.2} ==+ MINOS 2016 — |C 2017 -
------ SK 2017 —— IceCube, Analysis A

N
0o
T

A m3, (1073 eV?)

o
o
T

0.3 0.4 0.5 0.6 0.7
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» ‘v, Normalization’ = 1 means
standard neutrino oscillation

Ap pearing Ve / Ve s vercc|

Analysis B, NC+CC
Best-Fit 68%, 90% Icecu be

'K\
; Q t + + -
Vl/lj VT > (960 Analysis A, CC data
J

N\ .(, 1 e e — 1

Best-Fit 68%, 90%

\.® Analysis 3, CC
v-beam V Best-Fit 68%, 90%
LowPID = HighPID ’ ’ ’
f SuperK 2017, CC 68% N —
30 | + FD data @ _ Best-fit ] Qo Q arXiv:1711.09436 . |
. WS bkg. 7 OQ Q>\Q OPERA 2018, CC 68%' . '
| Josyst Iy v 5 arXiv:1804.04912
Beambkg. = range 1@ %) ’ ’ ’
20 Y sls 0.0 05 w0 15 2.0
bClggmlc ole v Normalization
S o arXiv:1901.05366 [hep-ex] (2019)
10+ 1
o | M 4 . )
S0 Aﬁq}aﬁ f o V l’l' V e
|_|>J ;

V-beam :
10 } ] 2

A

1234 123 4
Reconstructed v, / V, energy (GeV) NoVA[R2019a ki 1906:04907 ), 5s 2020 58

" OFirst indication by T2K in 2011
* 70in 2014

oFrom 2016 also confirmed by NoVA
N _/

é Core
Peripheral




First evidence of CP violations

T2K Run 1-9
’.L‘0.034i” K | | B
7/ —— T2K + React .
O TZK (\i,.; 0.032 T2K0nl§;ac - —
g - AN Reactor j
. «©  0.03 =
o 20 evidence of non-zero §p : ]
0.028 - =
* CP-violating phase 0.026 F+ =
0.024 |-\ =
O WeareStartlngtoprObeCP ,-\z.giz_{:::{::::{::::{::::}::::{::::}—:
: . Xl = 6827%CL -
® = —
violation in leptons e e o
= 0.6 2
O e
s 0.55
1 0 0 C13 0 S13€ C12 S12 0
0 C23 S23 . 0 1 0 . —S12 C12 0
( 0 —s23 cCa3 > < —813 0 C13 ) ( 0 0 1 ) - .
i1 0 0 045
: 0 €% 0
o 0 1 0.4 EEEES e
NO
10

-3 -2 -1 0 1 2 3
08/05/20 Tests of the Standard Model of Partl%t%lwglciyaﬁs)gﬂ;(brg/pdf/lg1003887pdf (2019) 59 8CP



v, oscillation

o Solar neutrino (discussed before) — A p
- miz, V12

o Long baseline reactors (KamLAND, discussed before)

o Medium baseline reactors (Daya-Bay, Reno, D-Chooz: see later)

N\

013
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Measuring Am.4

20

0.1 02030405060.70809 1 5 101520

08/05/20

https://arxiv.org/pdf/1303.4667.pdf

- K S AR 40

= X 3.
NN e 20

:_I_I_I_I_t-T_I_I-I_ T_I_I:l:l o L-.]-J_-_l‘_r-l-'l:;_l_l_l_i-_I-I_I_I_I-_I_I_I_l_ _I_I(_SI_I_

— KamLAND+Solar KamLAND F o W o
- (a) Wos%cL. e 95% C.L. Faa Qa o)
- [ 1 1 I

- 99% CL.  ===:99% C.L. o !
— Wl oom3%CL. —9973%CL. [ |
o H best-fit @ best-fit i :

C Solar :: !
- 95% C.L. g
- 99% C.L. o !

- 99.73% C.L. EE 5
- QO bestfit C |

- 0,; free [

1111
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T

L

llillllillllllilll
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(9]]
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sz

61



O

O

Measuring 03: reactor experiments

L ~ 1 km: can measure sin%(26,;) from
V,, disappearance

First searches in the 90’s (CHOOZ, Palo
Verde)

Measurements at Double CHOOZ,

Daya-Bay, RENO
All started in 2011, first results in 2012

Double detector (near-far) to go below
limits set by previous experiments

* Double CHOOZ (France): liquid
scintillator

* Daya-Bay (China), RENO (Korea):
Cherenkov detector

Some ~10 tension between the
measurements

08/05/20 Tests of the Standard Model of Particle F

6000

4000

\Illlllll

Events / 0.2 MeV

2000

[} Far Data

Prediction (best fit)

-------- Prediction (no oscillation)
Il

RENO, 2018

J\llllll

g 1f ]
% 1__ ................................................. D B
24 - - 441 f
I SRR s
< . , . . . ‘
g 0.81 5 3 3 % 3
E, (MeV)
Y T
Total Uncertainty
Double Chooz IV Statistical Uncerthinty

TnC MD (n-H@n-C@n—Gd) sinz(2613)=0.105ﬂ)‘014 i—l—.—|—i

Daya Bay

PRL 121,241805(2018) n-Gd isin’(20,,)=0.0861:0.003
PRD 93,072011 (2016)  n-H '5in’(20,)=0.071£0.011

RENO b _
PRL 121,201801(2018) n-Gd F—— sfinz(zen)=oio9oio.oo7
T2K ST I
PRD 96, 092006 (2017) Marginalisation (B cpby;)
Am§2 >0 } — i
Am§2 <0 | ; i
i
0.05 0.1 0.15

sin’(26, ;)



Interpreting the results

o To fully determine which is the ordering
of the 3 mass eigenstates, we need 6

Normal hierarchy Inverted hierarchy
parameters
*24Am m®| p—— vs vo I (M
* 3 mixing angles Amiy
* 1 CP phase | "‘ —
Amf‘:,m
. l’e 0
. . . A"’!(‘nm
o Experiments in general are in mv,
agreement with one another m v,
ﬁ - Va
A"’Em’ 4
: . . v vs [N
o Two scenarios compatible with the data '

we have
* Normal hierarchy vs Inverted hierarchy

o We are missing (or not known with
enough precision): 6,3, 0¢p

08/05/20 Tests of the Standard Model of Particle Physics I, SS 2020 63



Interpreting the results: leptonic unitarity triangle

o Results available can be used to build a ‘leptonic unitarity
triangle’, in the same way as for the quarks
* Hints at nonzero area: CP violation occurs
* But still compatible with CP conservation within 1-2 o

http://pdg.lbl.gov/2019/reviews/rpp2019-rev-neutrino-mixing.pdf (2019)
IS S N L L L L B O

-0.5 0 0.5 1
08/05/20 Re(z) 64
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Anomalies: short distance v, — Ve

o LSND experiment: v from 780 MeV p-LINAC at Los
Alamos (L=30 m)

* Search for v,—v, (v, = V) oscillation
* Observed excess compatible with v, — v,
appearance
o KARMEN experiment: v from 800 MeV proton
accelerator at RAL, London (L=28 m)
* No Vv, excess observed, excludes parameter area
favoured by LSND
o MiniBooNE: v from Fermilab Booster beamline
* Same parameter region as LSND
* Observes both v, and v, excess at 4.7¢0

2rmo

o To be further investigated with multi-detector
experiments (in preparation)

» LSND and MiniBooNE were single-detector
experiments

° e.g.
» SBN program, Fermilab
» JSNS? experiment, JPARK (Japan)

08/05/20 MiniBo?NtE ?trgasltys(js, 2018P R
https://arxiv.org/pdt/1805. 13028 pdf

Note:

» T2K: L/E ~ 500 m/MeV
» Here: L/E ~ 1 m/MeV
Not the same effect!

MiniBgoNE

L

=] T |

= 3 | —68% CL
=35 —90% CL
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—99% CL
—30CL

—40 CL
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T 1T T 1717
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o Neutrino oscillation still a quite open field

o Vast variety of new experiment planned for upcoming years



Neutrino mass direct measurements

O

Neutrino oscillation can only tell the difference between neutrino
masses

For the absolute scale, a direct measurement is needed

V, : measure end point of e energy spectrum from tritium [ decay (see
later)

.- muon pulse measurement in weak 7 decay (PSI, Zirich) 7" — p'v,

* masses of u and m known very well from energy levels of pionic atoms
and muon magnetic moment

1%

sum?;mz-]U,“;\2 < 190 keV,

v;: end point of hadron invariant mass in hadronic T decays:
my, = My — MaX(mHadronen)

« m, known precisely from e*e™ storage rings (BES, Beijing)
* Best results from ALEPH, at LEP

2 < 18.2 MeV.

sum;m;|U,;
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Ve, Mass measurement

o Measure end point of e energy spectrum from tritium [ decay

H3 — He* + e + 7,

100 T T T T T
Full spectrum
1,0F ' '
80 Q &
=
= S 05 !
Q O
g 0,0 ' . -
3 —-18.6 -12.4 -6.2 0
O En— Eoin keV
2-10
=3.0 =2.0 =2.0 -1.5 -1.0 -0.5 0.0
En— Eoinev

08/05/20 Tests of the Standard Model of Particle Physics I, SS 2020
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http://www.katrin.kit.edu/

Ve, Mass measurement

o Magnet spectrometers:

* First experiments: Mainz, Troitsk 1 i 'y
* Best limit from KATRIN experiment T B et

p. (without E field)

(Karlsruhe) 1, ,;,%4/7/
e . -

* Magnetic field selects only electrons with
high enough energy

» By varying the magnetic field range allows to
measure the  decay spectrum in an
integrating mode

sum;m;|Ug;|* < 1.1eV

urce
e

08/05/20 Tests of the Standard €l of Particle Physics II, SS 2020



Majorana neutrinos?

o If neutrinos are (massive) Majorana particles (v = v)
* Neutrinoless double f decay must occur
* Half life proportional to v mass squared

o Signature: sum of electron energies equal to Q-value from nuclear
transition

* Ultra-low background experiments, large source mass needed

u - u
0 2 -
T775 ~ | < Mee > | N g S D
W v e
< Mee > = m; U2, W™~ e
zi: d—>— u
n d > d p
u - u
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Majorana neutrinos?
o Multiple techiniques used

o Ultra-pure Germanium detector (ionization detector)
* Enriched in 7°Ge
 GERDA, Majorana demonstrator

o Liquid scintillator detector: use existing detector, by adding 8
source
* KamLAND-Zen: add balloon with Xenon enriched in 136Xe
* Currently gets the strongest bound: TOI/ > 1.07 26
.07 x 10
* SNO+: similar idea 1/2

o Other experiments (some, in preparation) use time projection
chambers, or bolometric detectors

08/05/20 Tests of the Standard Model of Particle Physics II, SS 2020
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V, Mass: results summary

08/05/20

107

10° 107
My heese (€V)

107!

50 100 150
A

Tests of the Standard Model of Particle Physics I, SS 2020

IH: inverted hierarchy
NH: normal hierarchy
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