Testing the Standard Model of Elementary Particle Physics II

1st lecture

Dr. Dominik Duda

15th April 2021

Table of content

- This first lecture aims to give an overview of the various topics that we will discuss during this semester
 - So we will not go into too much detail on the various topics
 - Will be more detailed starting from next week

• Introduction to Testing the Standard Model of Elementary Particle Physics II

- (Precision) Measurements
 - Electroweak Interaction (LEP)
 - Higgs and top quark properties (LHC)
 - B-hadron properties
 - Neutrino masses
- Unsolved problems of the Standard Model
 - Examples of BSM theories
- Searches for new physics
- Machine learning in High Energy Physics

Standard Model of particle physics in a nutshell

- The Standard Model (SM) describes the elementary constituents of nature, and the fundamental forces with which those particles interact with each other
- Over time and through many experiments, the Standard Model has become one of the most extensively tested theories in physics
- After the discovery of the Higgs boson in 2012, the particle content of the SM is finally complete
- Principles of the Standard Model:
 - Unitarity (probabilities are limited to unity)
 - Renormalizability (ensures finite predictions)
 - Gauge principle (introduction of interactions)
 - **Symmetries**:
 - Lorentz (and Poincaré) symmetry
 - CPT symmetry
 - Three gauge symmetries: $SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y}$

However, the Standard Model leaves some questions unanswered

(Precision) measurements

(Precision) measurements

High precision measurements of W and Z boson properties at LEP

The Higgs boson: Last puzzle piece of the SM

- Particles acquire mass via coupling to Higgs field (spontaneous symmetry breaking)
 - Postulated in 1964
 - Higgs boson (excitation of the Higgs field) was finally discovered in 2012
 - **Spin: 0**

• Higgs-potential:

 $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$

Vacuum expectation value

$$v = \frac{\mu}{\sqrt{\lambda}}$$

(Precision) measurements of Higgs boson properties

- So far all measurements of the Higgs boson properties are consistent with the SM
 - Spin and CP state of the Higgs-boson are determined probing angular distribution of decay products
 - ATLAS data hints very strongly to a Spin^{CP} state of 0⁺
 - Alternative models are rejected with a CL of more than 99.9%
- Higgs-boson mass measured by ATLAS and CMS: m_H = 125.09 ± 0.21(stat) ± 0.11(syst)

(Precision) measurements of Higgs boson properties

- So far all measurements of the Higgs boson properties are consistent with the SM
 - Spin and CP state of the Higgs-boson are determined probing angular distribution of decay products
 - ATLAS data hints very strongly to a Spin^{CP} state of 0⁺
 - Alternative models are rejected with a CL of more than 99.9%
- Higgs-boson mass measured by ATLAS and CMS:
 m_H = 125.09 ± 0.21(stat) ± 0.11(syst)
- With the large statistics of the full Run-II data set, we can probe differential distributions with high precision
 - Makes the Higgs boson to a tool to search for new physics

$H \to ZZ^* \to \text{effe}$

- - Good channel to measure properties of the Higgs boson precisely
 - Analyses are based on finding two pairs of isolated leptons with same flavor and opposite electric charges

Higgs boson mass

Di-Higgs boson production at the LHC

- Probing the Di-Higgs production modes will further our understanding of the SM
 - Parameter of interests:
 - **Self-coupling** κ_{λ}
 - Quartic VVHH coupling κ_{2V}
 - Probing the self-coupling of the Higgs boson allows us to verify the form of the Higgs potential
 - Sensitive to contribution from BSM physics

The top quark

- Predicted in 1973 by Kobayashi and Maskawa
- Weak-isospin partner of the b-quark.
- Charge: +2/3 e
- Spin: 1/2
- The by far heaviest elementary particle:
 - m, = 172.7 ± 0.5 GeV
- Coupling to the Higgs boson: y_t ≈ 1
- No bound states:

$$au_{
m top} \propto \left(rac{M_W}{M_{
m top}}
ight)^3$$

 $au_{
m top} \approx 4.7 \cdot 10^{-25} \, {
m s}$

 \rightarrow Top quark decays as a quasi free particle

\rightarrow Spin information and polarisation are accessible

since spin decorrelation time (~ 10^{-21} s) is much larger than the hadronisation time (~ 10^{-23} s)

QUARK MASSES

Fermilab 01-XXX

Production cross section measurement (l+jets)

- Cross section is extracted via a simultaneous profile-likelihood fit of the sum of signal and background distributions to data in three regions.
 - Each region exploits a different fit variable.

= 4 jets and = 2 b-tags

 \geq 5 jets and = 2 b-tags

Taken from: Phys. Lett. B 810 (2020) 135797

 \geq 4 jets and = 1 b-tag

	Category	$rac{\Delta \sigma_{ ext{fid}}}{\sigma_{ ext{fid}}}$ [%]	$\frac{\Delta\sigma_{\mathrm{inc}}}{\sigma_{\mathrm{inc}}}$ [%]				
	Signal modelling						
Measurement:	$t\bar{t}$ shower/hadronisation $t\bar{t}$ scale variations	$\pm 2.8 \\ \pm 1.4 \\ 0.4$	±2.9 ±2.0				
$\sigma(t\bar{t}) = 830.4 \pm 0.4 \text{ (stat.)} ^{+38.2}_{-37.0} \text{ (syst.)}$	Top $p_{\rm T}$ NNLO reweighting $t\bar{t} h_{\rm damp}$ $t\bar{t}$ PDF	$\pm 0.4 \\ \pm 1.5 \\ \pm 1.4$	± 1.1 ± 1.4 ± 1.5				
	Background modelling						
Theory prediction:	MC background modelling Multijet background	±1.8 ±0.8	$\pm 2.0 \\ \pm 0.6$				
$\sigma(t\bar{t}) = 832^{+20}$ (scale) + 35 (PDF + $\alpha_{\rm c}$)	Detector modelling						
	Jet reconstruction Luminosity Flavour tagging	±2.5 ±1.7 ±1.2	±2.6 ±1.7 ±1.3				
Dominant uncertainties are due to the modelling of the top quark pair production process	$E_{\rm T}^{\rm miss}$ + pile-up Muon reconstruction Electron reconstruction Simulation stat. uncertainty Total systematic uncertainty Data statistical uncertainty	± 0.3 ± 0.6 ± 0.7 ± 0.6 ± 4.3 ± 0.05	± 0.3 ± 0.5 ± 0.6 ± 0.7 ± 4.6 ± 0.05				

Top quark mass

$\sigma(t\bar{t})$ inclusive, NNLO+NNLL $m_{top} \pm tot (stat \pm syst \pm theo)$ Reference $\sigma(t\bar{t})$ inclusive, NNLO+NNLL 172.9 ± 2.6 [1] ATLAS, 7+8 TeV 173.8 ± 1.7 [2] CMS, 7+8 TeV 173.8 ± 1.7 [2] CMS, 13 TeV 169.9 ± 1.9 $(0.1 \pm 1.5 \pm 1.2)$ [3] ATLAS, 13 TeV 173.1 ± 2.0 [4] $\sigma(t\bar{t}+1j)$ differential, NLO 173.7 ± 2.3 $(1.5 \pm 1.4 \pm 0.5)$ [5] CMS, 8 TeV 169.9 ± 4.5 $(1.1 \pm 2.5 \pm 3.6)$ [6] ATLAS, 8 TeV 173.7 ± 2.3 $(1.1 \pm 2.5 \pm 3.6)$ [6] ATLAS, 8 TeV 171.1 ± 1.2 [0.4 \pm 0.9 \pm 0.7) [7] $\sigma(t\bar{t})$ p-differential, NLO 171.1 ± 1.2 [6]	f.
$\sigma(t\bar{t})$ inclusive, NNLO+NNLL 172.9 $\frac{+2.5}{-2.6}$ [1] ATLAS, 7+8 TeV 173.8 $\frac{+1.7}{-1.8}$ [2] CMS, 7+8 TeV 169.9 $\frac{+1.9}{-2.1}$ $(0.1 \pm 1.5 \frac{+1.2}{-1.5})$ [3] ATLAS, 13 TeV 173.1 $\frac{+2.0}{-2.1}$ [4] $\sigma(t\bar{t}+1j)$ differential, NLO 173.7 $\frac{+2.3}{-2.1}$ $(1.5 \pm 1.4 \frac{+1.0}{-0.5})$ [5] CMS, 8 TeV 169.9 $\frac{+4.5}{-3.7}$ $(1.1 \frac{+2.5 + 3.6}{-3.7})$ [6] ATLAS, 8 TeV 171.1 $\frac{+1.2}{-1.0}$ $(0.4 \pm 0.9 \frac{+0.7}{-0.3})$ [7] $\sigma(t\bar{t})$ p-differential NLO 171.1 $\frac{+1.2}{-1.0}$ [6]	
ATLAS, 7+8 TeV Image: triangle for the second	
CMS, 7+8 TeV 173.8 $\frac{+1.7}{-1.8}$ [2] CMS, 13 TeV 169.9 $\frac{+1.9}{-2.1}$ $(0.1 \pm 1.5 \frac{+1.2}{-1.5})$ [3] ATLAS, 13 TeV 173.1 $\frac{+2.0}{-2.1}$ [4] $\sigma(t\bar{t}+1j)$ differential, NLO 173.7 $\frac{+2.3}{-2.1}$ $(1.5 \pm 1.4 \frac{+1.0}{-0.5})$ [5] CMS, 8 TeV 169.9 $\frac{+4.5}{-3.7}$ $(1.1 \pm 1.5 \frac{+3.6}{-1.6})$ [6] ATLAS, 8 TeV 169.9 $\frac{+4.5}{-3.7}$ $(1.1 \frac{+2.5}{-3.1} \frac{+3.6}{-1.6})$ [6] ATLAS, 8 TeV 171.1 \frac{+1.2}{-1.0} $(0.4 \pm 0.9 \frac{+0.7}{-0.3})$ [7] $\sigma(t\bar{t})$ p-differential, NLO 171.1 \frac{+1.2}{-1.0} [6]	
CMS, 13 TeV Image: text of tex of text of text of tex of text of text of tex of text of text of	
ATLAS, 13 TeV Image: mail of the second	
$\sigma(t\bar{t}+1j)$ differential, NLO ATLAS, 7 TeV 173.7 $^{+2.3}_{-2.1}$ (1.5 ± 1.4 $^{+1.0}_{-0.5}$) [5] CMS, 8 TeV 169.9 $^{+4.5}_{-3.7}$ (1.1 $^{+2.5}_{-3.6}$) [6] ATLAS, 8 TeV 171.1 $^{+1.2}_{-1.0}$ (0.4 ± 0.9 $^{+0.7}_{-0.3}$) [7] $\sigma(t\bar{t})$ p-differential NLO	
ATLAS, 7 TeV $H = H$ 173.7 $\frac{+2.3}{-2.1}$ (1.5 ± 1.4 $\frac{+1.0}{-0.5}$) [5] CMS, 8 TeV $H = H$ 169.9 $\frac{+4.5}{-3.7}$ (1.1 $\frac{+2.5}{-3.1}$ $\frac{+3.6}{-1.6}$) [6] ATLAS, 8 TeV $H = H$ 171.1 $\frac{+1.2}{-1.0}$ (0.4 ± 0.9 $\frac{+0.7}{-0.3}$) [7] cr(tī) p-differential NLO $H = H$ 171.1 $\frac{+1.2}{-1.0}$ (0.4 ± 0.9 $\frac{+0.7}{-0.3}$) [7]	
CMS, 8 TeV $169.9 \frac{+4.5}{-3.7} (1.1 \frac{+2.5}{-3.6}) = 169.0 \frac{+4.5}{-3.7} (1.1 \frac{+2.5}{-3.1} \frac{+3.6}{-1.6}) = 169.0 \frac{+4.5}{-3.7} (1.1 \frac{+2.5}{-3.1} \frac{+3.6}{-1.6}) = 169.0 \frac{+0.7}{-3.7} = 169.0 \frac$	
ATLAS, 8 TeV $H = 1$ 171.1 $^{+1.2}_{-1.0}$ (0.4 \pm 0.9 $^{+0.7}_{-0.3}$) [7]	
ATLAS, n=1, 8 TeV H=++ 173.2 ± 1.6 (0.9 ± 0.8 ± 1.2) [8]	
CMS, n=3, 13 TeV ► 170.9 ± 0.8 [9]	
mtop from top quark decay [1] EPJC 74 (2014) 3109 [5] JHEP 10 (2015) 121 [9] arXiv:1904.05237 CMS, 7+8 TeV comb. [10] [2] JHEP 08 (2016) 029 [6] CMS-PAS-TOP-13-006 [10] PRD 93 (2016) 029 [3] EFJC 79 (2019) 388 [7] arXiv:1905.02302 (2019) [11] EFJC 79 (2019) 384 [7] arXiv:1905.02302 (2019) [4] ATLAS-CONF-2019-041 [8] EFJC 77 (2017) 804 [9] arXiv:1905.02302 (2019) [11] EFJC 79 (2019)	(2019) 72004 290
55 160 165 170 175 180 185 190	

B-Hadron decays and CP Violation

- For quarks, the weak SU(2) eigenstates are different from the mass eigenstates
 - Mixing is described by CKM matrix
 - 3 real parameters
 - 1 complex (CP violating phase)

$$\begin{split} V_{CKM} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \quad \checkmark$$

Searches for CP violation in e.g. kaon and B-meson mixing

 $B^0_d \overline{B}^0_d$ oscillation

B-Hadron decays and CP Violation

Neutrino masses and oszillation

• In the Standard Model, neutrinos are massless

- Only left-handed neutrinos (and right handed anti-neutrinos)
- Right-handed neutrinos do not participate in the weak interaction

• Neutrino oscillation:

- First observed in 1998
- Implies that neutrino must have nonzero mass
- As well as violation of lepton flavour conservation, as for quarks

	Mass	m measurements	Discovery
v_e	< 2 eV	Mainz / Troitsk	Cowan, Reines 1956 (inverse eta decay)
v_{μ}	< 190 keV	PSI Zürich	Ledermann, Schwartz, Steinberger 1962
v_{τ}	< 18.2 MeV	ALEPH (LEP)	DONUT Experiment (FNAL) 2001

Unsolved problems of the Standard Model

Unsolved problems of the Standard Model

- 1. The naturalness problem
- 2. The origin of EW and QCD energy scales
- 3. Why are there only 3 generation of quarks and leptons ?
- 4. Quantization of electric charge
 - $Q_e = -Q_p$ measured with a precision of 10^{-21}
 - Why is $Q_d = \frac{1}{3} Q_e$ and $Q_v + Q_e + 3Q_u + 3Q_d = 0$?
 - \rightarrow Unification of gauge couplings: GUTs
- 5. Why are the neutrino masses so small ? \rightarrow Unification of gauge couplings: GUTs

Unsolved problems of the Standard Model

- 6. Source of CP violation (responsible for the excess of matter over anti-matter in the universe)
 - absence of strong CP violation in the QCD sector ?
- 7. Is the Higgs boson an elementary particle ?
 - Mechanism to dynamically break the electroweak gauge symmetry
 - Introduce substructure of the Higgs boson and a new strong interaction (analogous to cooper pairs, "Higgs field", in superconductor)
- 8. Why is the measured value of the muon's anomalous magnetic dipole moment ("muon g-2") significantly different from the theoretically predicted value ?
- 9. Recently emerging indications of lepton flavour universality violations
- 10. Origin of dark matter and dark energy
- **11. Common quantum field theory including gravity**
 - \rightarrow String theories

Lepton Flavour Universality tests

- In the SM couplings of gauge bosons to leptons are independent of lepton flavour
 - Branching fractions differ only by phase space and helicity-suppressed contributions
- LHCb is performing LFU tests in B hadron decays:

$$R_{\mathcal{K}^{(*)}} = rac{\mathcal{B}\left(B
ightarrow \mathcal{K}^{(*)} \mu^+ \mu^-
ight)}{\mathcal{B}\left(B
ightarrow \mathcal{K}^{(*)} e^+ e^-
ight)} \stackrel{ ext{sm}}{\cong} 1$$

\rightarrow Any significant deviation would be a smoking gun for New Physics.

Lepton Flavour Universality tests

Measurement is based on study of invariant K⁺ll distribution and relies on excellent knowledge of electron/muon reconstruction efficiencies

Taken from: https://indico.cern.ch/event/976688/attachments/2213706/3748404/RK_CernSeminar_Tue23rdMar2021.pdf

Lepton Flavour Universality tests

 \rightarrow Evidence of LFU violation at 3.1 σ

g - 2 experiment

g - 2 experiment

First results from g-2 experiment 17.5

The combined results from Fermilab and Brookhaven show a difference with the theory predictions at a significance of 4.2σ

Direct Searches for new physics at the LHC

• Broad range of searches for BSM physics at ATLAS/CMS

- Supersymmetry
- Excited leptons [1]
- Leptoquarks [2]
- Dark matter (e.g. invisible Higgs) [3]
- Vector-like quarks [4]
- Highly ionizing particles (i.e. monopoles) [5]
- Heavy neutrinos [6]
- Lepton-flavour violation [7]
- Extended Higgs sector
 - The Two Higgs Doublet Model (2HDM) [8]
 - Singlet extensions [9], [10]
 - Scalar triplet Models [11], [12]
 - Composite Higgs
- Technicolour (dynamically breaking of EW symmetry) [13]

Searches for new physics

Supersymmetry (SUSY)

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	Si	ignatur	e ∫.	L dt [fb	-1]		Mass limit					Reference
s	$\tilde{q}\tilde{q},\tilde{q}\! ightarrow\!q\tilde{\chi}_{1}^{0}$	0 e, μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	 <i>q</i> [10× De <i>q</i> [1×, 8× 	egen.] Degen.]	0.43	0.71	1	1.9	m(𝔅˜1)<400 GeV m(𝔅̄)-m(𝔅˜1)=5 GeV	ATLAS-CONF-2019-040 1711.03301
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ğ ğ			Forbidden		2.35 1.15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
ve Sea	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0}$	1 e,μ ee,μμ	2-6 jets 2 jets	E_T^{miss}	139 36.1	ğ ğ				1.2	2.2	m(𝔅¯1)<600 GeV m(𝔅)-m(𝔅¯0)=50 GeV	ATLAS-CONF-2020-047 1805.11381
Iclusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	$E_T^{\rm miss}$	139 139	ğ ğ				1.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
4	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	řto řto				1.25	2.25	m($ ilde{\chi}_1^0$)<200 GeV m($ ilde{g}$)-m($ ilde{\chi}_1^0$)=300 GeV	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$		Multiple Multiple		36.1 139	${ar b_1\ ar b_1}$	Forbio	dden Forbidden	0.9 0.74		$m(\tilde{\chi}_{1}^{0})=20$	$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ 00 GeV, $m(\tilde{\chi}_{1}^{+})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{+})=1$	1708.09266, 1711.03301 1909.08457
ks on	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}^0_2 {\rightarrow} b h \tilde{\chi}^0_1$	0 e, μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	139 139	$egin{array}{c} eta_1\ eta_1\ eta_1 \end{array}$	Forbidden		0.13-0.85	0.23-1.35	Δι	$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 ATLAS-CONF-2020-031
ucti	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	$E_T^{\rm miss}$	139	\tilde{l}_1				1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
rod	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	E_T^{miss}	139	ĩ ₁		0.44-0	.59			m($\tilde{\chi}_{1}^{0}$)=400 GeV	ATLAS-CONF-2019-017
gen ct p	$t_1 t_1, t_1 \rightarrow \overline{\tau}_1 b \nu, \overline{\tau}_1 \rightarrow \tau G$	$1\tau + 1e,\mu,\tau$	2 jets/1 b	Emiss	36.1	<i>t</i> ₁			0.95	1.16		$m(\tau_1)=800 \text{ GeV}$	1803.10178
3rd g	$t_1 t_1, t_1 \rightarrow c x_1 / c c, c \rightarrow c x_1$	0 e, μ	mono-jet	E_T E_T^{miss}	36.1	\tilde{t}_1 \tilde{t}_1		0.46 0.43	0.65			$m(\tilde{t}_1)=0 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1805.01649 1711.03301
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 <i>e</i> , <i>µ</i>	1-4 b	$E_T^{\rm miss}$	139	ĩ ₁			0.067	-1.18		$m(\tilde{\chi}_2^0)$ =500 GeV	SUSY-2018-09
_	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ	1 <i>b</i>	E_T^{miss}	139	\tilde{t}_2		Forbidden	0.86		m($\tilde{\chi}_{1}^{0}$)=360 GeV, m(\tilde{t}_{1})-m($\tilde{\chi}_{1}^{0}$)= 40 GeV	SUSY-2018-09
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	3 e, μ ee, μμ	≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$\begin{array}{c} \tilde{\chi}_1^\pm/\tilde{\chi}_2^0\\ \tilde{\chi}_1^\pm/\tilde{\chi}_2^0 \end{array}$	0.205		0.64			$m(\tilde{\chi}_1^{\pm})=0$ $m(\tilde{\chi}_1^{\pm})\cdot m(\tilde{\chi}_1^{0})=5 \text{ GeV}$	ATLAS-CONF-2020-015 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e, µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$		0.42				$m(\tilde{\chi}_{1}^{0})=0$	1908.08215
- ti	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	$0-1 \ e, \mu$	2 b/2 γ	$E_T^{\rm miss}$	139	$\chi_1^{\pm}/\chi_2^{\circ}$ Fo	orbidden		0.74			m(x ₁)=70 GeV	2004.10894, 1909.09226
EW	$\chi_1 \chi_1$ via $\ell_L / \tilde{\nu}$	2 e, µ		Emiss	139	χ_1^- $\tilde{\tau} = [\tilde{\tau}_L, \tilde{\tau}_D]$	1 0.16	0 12 0 20	1.0			$m(\ell, \tilde{\nu})=0.5(m(\chi_1^-)+m(\chi_1^-))$	1908.08215
- 0	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 e, μ ee, μμ	0 jets ≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	Ĩ Ĩ	0.256	0.12-0.39	0.7			$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=10$ GeV	1908.08215 1911.12606
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 139	ΪΙ Ĥ	0.13-0.23	0.5	0.29-0.88			$BR(\tilde{\chi}^0_1 \to h\tilde{G})=1$ $BR(\tilde{\chi}^0_1 \to Z\tilde{G})=1$	1806.04030 ATLAS-CONF-2020-040
-lived cles	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1			0.46				Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
arti	Stable g R-hadron		Multiple		36.1	ğ					2.0		1902.01636,1808.04095
P	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 0]$	10 ns, 0.2 ns]				2.05 2.4	m(X ⁰ ₁)=100 GeV	1710.04901,1808.04095
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ			139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [Bf	$R(Z\tau)=1$, $BR(Ze)=1$] (1.0	5		Pure Wino	ATLAS-CONF-2020-009
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu, e\tau, \mu\tau$			3.2	ν _τ					1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\hat{\chi}_1^+ \hat{\chi}_1^+ / \hat{\chi}_2^{\prime\prime} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0 jets	$E_T^{\rm mass}$	36.1	$\chi_1^+/\chi_2^\circ = [\lambda_i]$	$\lambda_{33} \neq 0, \lambda_{12k} \neq 0$		0.82	1.33	1.0	m(X''_1)=100 GeV	1804.03602
P<	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1^{\circ}, \chi_1^{\circ} \rightarrow qqq$	4-	Multiple	IS	36.1 36.1	$ \begin{array}{c} \tilde{g} & [m(\mathcal{X}_1) = \\ \tilde{g} & [\mathcal{X}_{112}'' = 20 \end{array} \end{array} $	200 GeV, 1100 GeV e-4, 2e-5]	V]	1.0	1.3	1.9 2.0	$m(\tilde{\chi}_1^0)=200$ GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
CC	$t\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	$t [\lambda_{323}^{\prime\prime} = 26]$	H4, 18-2j	0.5	5 1.0	5		m(X1)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$tt, t \rightarrow bX_{1}, X_{1} \rightarrow bbs$		$\geq 4b$ 2 jote + 2 h		139	l T lan hel		Forbiaden	0.95			m(X ₁)=500 GeV	ATLAS-CONF-2020-016
	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow q\ell$	2 e, μ 1 μ	2 b DV		36.1 136	$\tilde{t}_1 = [qq, bs]$ $\tilde{t}_1 = [1e-10+10+10]$	< ,/ <1e-8, 3e-10	0.42 0< 1/ <3e-9]		0.4-1.4	15 1.6	$BR(\tilde{i}_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{i}_1 \rightarrow q\mu) = 100\%, \cos\theta. = 1$	1710.05544 2003.11956
*Only	a selection of the available mas	s limits on r	new states	s or	1	0-1				1		Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Direct Search for heavy Resonances

- Most searches for resonances in ATLAS and CMS follow the same principle:
 - Perform (quasi) model-independent search for a bump in a smoothly falling mass spectrum
- Events Signal Background Interpretations in generic frameworks: Two Higgs Doublet Model (2HDM) Ο Higgs Triplet models Ο Heavy Vector Triplet (HVT) models Ο **RS** Extra-dimensional models Ο m [GeV]

Heavy vector triplet (HVT) models

- Heavy vector triplet (HVT) as an example for a simplified model:
 - Simply introduces an additional SU(2) field to the SM
 - Results in a Z['] and W[']
 - Coupling to SM particles governed by model parameters g_V, g_F, g_H
 - Representative for:
 - Minimal Walking Technicolour
 - Little Higgs models
 - Composite Higgs models
 - Models with extra dimension

• Model A:

• Prefer coupling to fermions

• Model B:

• Prefer coupling to bosons

• Model C:

• Fermiophobic

Search for semileptonic VV resonances:

- Study of $X \rightarrow VV$ resonances in vvqq, ℓ vqq and $\ell\ell$ qq final states
 - Probe a variety of different production modes and spin hypotheses
 - **g** gg \rightarrow X (spin-0, spin-2)
 - $\ \ \ \ \ qq \rightarrow X \ (spin-1)$
 - VBF X (spin-0, spin-1, spin-2)
 - Classify events into resolved and merged event categories
- Use Recurrent Neural Network (RNN) to split signal regions into gg/qq-like and VBF-like

Search for semileptonic VV resonances:

- Use m_{τ} (in vvqq) and m_{vv} (in ℓv qq and $\ell \ell$ qq) distributions as input to likelihood (LLH) fit
- Exclude:
 - DY Z' with masses up to 3.5TeV (3.9TeV) for HVT Model A (Model B)
 - qq' W' with masses up to 3.9TeV (4.3TeV) for HVT Model A (Model B)
 - VBF RS Graviton with masses up to 0.8TeV
- Dominant uncertainties:
 - Data statistics (for $m_x \sim 1$ TeV)
 - Large-R jets (mass)
 - Background modelling

36

Search for pseudo scalars in $\textbf{A} \rightarrow \textbf{Zh}$ decays:

- Probe resolved and merged vvbb and $\ell\ell$ bb ($\ell = \mu$,e) final states
- Analysis strategy:
 - Search for bumps in m_T or $m_{\ell\ell bb}$ spectra

$$m_{\rm T,Vh} = \sqrt{\left(E_{h,\rm T} + E_{\rm T}^{\rm miss}\right)^2 - \left(\vec{p}_{h,\rm T} + \vec{E}_{\rm T}^{\rm miss}\right)^2}$$

- Dominant uncertainties:
 - Modelling of backgrounds (top bkg. ME +PS)
 - Large-R jets (mass resolution)

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

ATLAS Preliminary $\sqrt{5} = 8, 13$ TeV

	Reference
n di	$\sqrt{s} = 8$, 13 lev

Model	ℓ, γ Jet	s† E _T	ິ∫Ldt[ft	⁻¹] Limit	Reference
ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD OBH ADD BH high $\sum p_T$ ADD BH high $\sum p_T$ ADD BH multijet RSI $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 j Yes 2 j - 3 j - 3 j - J 2 1J/2j Yes ≥ 3 j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
$\begin{array}{c} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Deptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{OSM}\; W' \to \ell\nu \\ \mathrm{OSM}\; W' \to \ell\nu \\ \mathrm{SSM}\; W' \to \tau\nu \\ \mathrm{HVT}\; V' \to WZ \to qaqq \ \mathrm{model}\; \mathrm{I} \\ \mathrm{HVT}\; V' \to WH/ZH \ \mathrm{model}\; \mathrm{B} \\ \mathrm{LRSM}\; W_R \to tb \\ \mathrm{LRSM}\; W_R \to th \\ \mathrm{LRSM}\; W_R \to th \\ \end{array}$	$\begin{array}{cccc} 2\ e,\mu & -\\ 2\ \tau & -\\ - & 2\\ 1\ e,\mu & \geq 1\ b, \\ 1\ e,\mu & -\\ 1\ \tau & -\\ 8\ 0\ e,\mu & 2\\ multi-channel\\ multi-channel\\ 2\ \mu & 1 \end{array}$	- – b – ≥ 1J/2j Yes - Yes J – J –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV W' mass 3.6 TeV V' mass 3.6 TeV W mass 3.6 TeV W mass 3.6 TeV W mass 3.25 TeV We mass 5.0 TeV	1903.06248 1709.07242 1805.08299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI qqqq CI ℓℓqq CI tttt	– 2 2 e,μ – ≥1 e,μ ≥1 b,	j – – – ≥1j Yes	37.0 36.1 36.1	Λ 21.8 TeV η _{i,L} Λ 40.0 TeV η _{i,L} Λ 2.57 TeV IC _{tt} = 4π η _i L	1703.09127 1707.02424 1811.02305
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} 0 \ e, \mu & 1 - \\ 0 \ e, \mu & 1 - \\ 0 \ e, \mu & 1 \ J, \\ 0 \ e, \mu & 1 \ J, \end{array}$	4j Yes 4j Yes ≤1j Yes)-1J Yes	36.1 36.1 3.2 36.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1711.03301 1711.03301 1608.02372 1812.09743
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	$\begin{array}{rrrr} 1,2 \ e & \geq \\ 1,2 \ \mu & \geq \\ 2 \ \tau & 2 \\ 0 \mbox{-}1 \ e, \mu & 2 \end{array}$	2j Yes 2j Yes b – b Yes	36.1 36.1 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1902.00377 1902.00377 1902.08103 1902.08103
$\begin{array}{c} \text{VLQ }TT \rightarrow Ht/Zt/Wb + X\\ \text{VLQ }BB \rightarrow Wt/Zb + X\\ \text{VLQ }F_{33}T_{53}T_{53} \rightarrow Wt + X\\ \text{VLQ }T_{33}T_{53}T_{53} \rightarrow Wt + X\\ \text{VLQ }B \rightarrow Hb + X\\ \text{VLQ }Q \rightarrow WgWq \end{array}$	$\begin{array}{ll} \mbox{multi-channel} \\ \mbox{multi-channel} \\ 2(SS)/\geq 3 \ e,\mu \ge 1 \ b, \\ 1 \ e,\mu \ge 1 \ b \\ 0 \ e,\mu, 2 \ \gamma \ge 1 \ b \\ 1 \ e,\mu \ge 1 \ e,\mu \ge 1 \ b, \end{array}$	≥1 j Yes ,≥1j Yes ,≥1j Yes 4 j Yes	36.1 36.1 36.1 36.1 79.8 20.3	$\begin{tabular}{ c c c c c c } \hline T \mbox{mass} & 1.37 \mbox{TeV} & SU(2) \mbox{doublet} \\ \hline B \mbox{mass} & 1.24 \mbox{TeV} & SU(2) \mbox{doublet} \\ \hline T \mbox{symmatrix} & 1.24 \mbox{TeV} & SU(2) \mbox{doublet} \\ \hline Y \mbox{mass} & 1.65 \mbox{TeV} & S(T_{5,3} \mbox{-} W) = 1, \mbox{c}(T_{5,3} \mbox{W}) = 1 \\ \hline Y \mbox{mass} & 1.85 \mbox{TeV} & S(Y \mbox{-} Wb) = 1, \mbox{c}(Wb) = 1 \\ \hline B \mbox{mass} & 1.21 \mbox{TeV} & S(T_{5,3} \mbox{-} Wb) = 1, \mbox{c}(Wb) = 1 \\ \hline Q \mbox{mass} & 690 \mbox{GeV} & S(T_{5,3} \mbox{-} Wb) = 1 \\ \hline S \mbox{mass} & S(T_{5,3} \mbox{-} Wb) = 1, \mbox{c}(Wb) = 1 \\ \hline S \mbox{mass} & S(T_{5,3} \mbox{-} Wb) = 1, \mbox{c}(Wb) = 1 \\ \hline S \mbox{mass} & S(T_{5,3} \mbox{-} Wb) = 1 \\ \hline S \mbox{mass} & $	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton v^*	$ \begin{array}{cccc} - & 2 \\ 1 \gamma & 1 \\ - & 1 b, \\ 3 e, \mu & - \\ 3 e, \mu, \tau & - \\ \end{array} $	j – j – 1j –	139 36.7 36.1 20.3 20.3	g* mass 6.7 TeV only u* and d*. A = m(q*) g* mass 5.3 TeV only u* and d*. A = m(q*) b* mass 2.6 TeV only u* and d*. A = m(q*) t* mass 2.6 TeV t v* mass 3.0 TeV A = 3.0 TeV v* mass 1.6 TeV A = 1.6 TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \tau \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$\begin{array}{c c} 1 \ e, \mu & \geq \\ 2 \ \mu & 2 \\ 2,3,4 \ e, \mu (SS) & - \\ 3 \ e, \mu, \tau & - \\ - & - $	2 j Yes j – – – = 13 TeV JII data	79.8 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-barged particle mass 1.22 TeV multi-barged particle mass 2.37 TeV 10 ⁻¹ 1 10 Mass scale [TeV]	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown. *†Small-radius (large-radius) jets are denoted by the letter j (J).*

Overview of CMS EXO results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

2HDM

Exclusion limits are not only set on particle masses, but also on model parameters

HVT

tan β

Effective field theories

- So far no hints for new physics in direct searches
- What if scale of new physics is outside the reach of the LHC?
 - Search for smooth enhancements in the tails of our observables
 - E.g. from resonances with masses beyond our reach
 - Probing for shape modifications of our observables
 - E.g. from anomalous couplings
- Effective field theories (EFT) allow for model independent approaches to search for such new physics effects

Effective field theory (EFT)

• In EFTs, Lagrangian of the Standard Model of particle physics is supplemented with additional BSM terms:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} rac{c_{i}}{\Lambda} \mathcal{O}_{i}$$

- \mathcal{O}_i are higher dimension operators
- c_i are the so-called Wilson coefficients
 - Specify the strength of a new CP-even (or CP-odd) interaction (i.e. they describe deviation from SM)
- A is mass scale for new particle

Effective field theory (EFT)

Machine learning in HEP

Machine learning in HEP

MVAs are widely used in the ATLAS/CMS object reconstruction/identification

Simulation Preliminary

Multijet

AS $\sqrt{s} = 13 \text{ TeV}$

 $p_{T}^{J} > 250 \text{ GeV}$

 $|\eta_{\rm I}| < 2.0$

Machine learning in HEP

MVAs are also applied at the event level to separate between signal and background processes

