Testing the Standard Model of Elementary Particle Physics II

4th lecture

Dr. Dominik Duda

20th May 2021

4.3 The Higgs Boson (Searches and Measurements)

Table of content

- The Higgs Boson (Searches and Measurements)
 - Searches at LEP, Tevatron and the LHC
 - Measurements of Higgs boson properties
 - Cross section measurements
 - $H \rightarrow WW^* \rightarrow ev\mu v$
 - $\bullet \quad H \to ZZ^* \to \ell \ell \ell \ell$
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow bb$ & $H \rightarrow cc$
 - $H \rightarrow TT$
 - $\bullet \quad H \to \mu \mu$
 - Search for Di-Higgs production
 - Differential cross section measurements
 - Spin & CP
 - Mass measurements
 - Width measurements
 - Higgs boson prospects

The Higgs boson: Last puzzle piece of the SM

- Particles acquire mass via coupling to Higgs field (spontaneous symmetry breaking)
 - Postulated in 1964
 - Higgs boson (excitation of the Higgs field) was finally discovered in 2012

Gauge coupling:

Η

 $\propto m_f/v$

Self coupling:

• Higgs-potential:

Re(d)

 $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$

V (ø)

Vacuum expectation value

$$v = \frac{\mu}{\sqrt{\lambda}}$$

4

 $Im(\phi)$

Higgs boson production at LEP

- Higgs Strahlung was dominant production mode at LEP
 - Since CoM was smaller than $m_H + m_Z$ HZ production was only possible with off-shell Z boson Ο

Higgs boson production at the LHC

• All main production modes are probed at the LHC

Higgs boson production cross section

7

Di-Higgs boson production at the LHC

- Probing the Di-Higgs production modes will further our understanding of the SM
 - Parameter of interests:
 - **Self-coupling** κ_{λ}
 - **Quartic VVHH** coupling κ_{2V}
 - Probing the self-coupling of the Higgs boson allows us to verify the form of the Higgs potential
 - Sensitive to contribution from BSM physics

Di-Higgs boson production cross section

Taken from: https://arxiv.org/pdf/1910.00012.pdf

Higgs boson decay

Some channels with low BR have a clean signature in the detector
 o e.g. H → ZZ and H → yy

Higgs boson decays

sosser W/Z

• Strength of the coupling between the Higgs boson and other particles is proportional to the particle mass:

$$\mathcal{L}_{Hff} = -\frac{m_f}{v} h f \bar{f} \quad \text{and} \quad \mathcal{L}_{HVV} = \frac{1}{v} \left(2m_W^2 W_\mu^+ W^{-\mu} + 2m_Z^2 Z_\mu Z^\mu \right) h$$

- Thus decays to massless particles such as photon or gluons is only possible via top quark (or W boson) loops
- The masses of the particles running in these loops are large and thus such decay modes can compete with decays to fermions or W and Z bosons

4.3.1 Searches at LEP, Tevatron and the LHC

Higgs boson searches at the LEP and Tevatron

- Search for SM Higgs boson had to cover large range of masses
 - Properties of Higgs boson change significantly as a function of the mass

Higgs boson searches at the LEP and Tevatron

- Extensive searches for the Higgs boson have been performed at LEP
 - Found small excess of $h \rightarrow bb$ candidate events
 - Significance of signal events over background expectations reached two standard deviations
 - Integrated luminosity and CoM energy were not large enough for an observation

Integrated luminosities in pb^{-1}					
	ALEPH	DELPHI	L3	OPAL	LEP
$\sqrt{s} \ge 189 \text{ GeV}$	629	608	627	596	2461
$\sqrt{s} \ge 206 \text{ GeV}$	130	138	139	129	536

Higgs boson searches at the LEP and Tevatron

Discovery of the Higgs boson

With the state of the state of the

PHYSICS LET

- Discovery of a new particle compatible with the SM Higgs boson was published by the ATLAS and CMS collaborations in the Summer of 2012
 - Based on data from the 7 and 8 TeV runs of the LHC in the years 2010-2012

Discovery of the Higgs boson

- Discovery of a new particle compatible with the SM Higgs boson was published by the ATLAS and CMS collaborations in the Summer of 2012
 - Based on data from the 7 and 8 TeV runs of the LHC in the years 2010-2012

4.3.2 Measurements of Higgs boson properties

Higgs boson properties

- So far all measurements of the Higgs boson properties are consistent with the SM
 - Spin and CP state of the Higgs-boson are determined probing angular distribution of decay products
 - ATLAS data hints very strongly to a Spin^{CP} state of 0⁺
 - Alternative models are rejected with a CL of more than 99.9%
- Higgs-boson mass measured by ATLAS and CMS:
 m_H = 125.09 ± 0.21(stat) ± 0.11(syst) GeV

Higgs boson properties

- So far all measurements of the Higgs boson properties are consistent with the SM
 - Spin and CP state of the Higgs-boson are determined probing angular distribution of decay products
 - ATLAS data hints very strongly to a Spin^{CP} state of 0⁺
 - Alternative models are rejected with a CL of more than 99.9%
- Higgs-boson mass measured by ATLAS and CMS: m_H = 125.09 ± 0.21(stat) ± 0.11(syst) GeV
- With the large statistics of the full Run-II data set, we can probe differential distributions with high precision
 - Makes the Higgs boson to a tool to search for new physics

Events / Ge

Data-Background

Higgs boson property measurements

• Analysis channels:

	$\begin{array}{l} H \rightarrow WW^* \rightarrow ev\mu v (ggF, VBF, VH, ttH) \\ H \rightarrow ZZ^* \rightarrow \ell \ell \ell \ell (ggF, VBF, VH, ttH) \\ H \rightarrow \gamma \gamma (ggF, VBF, VH, ttH) \\ H \rightarrow Z\gamma (ggF + VBF + VH + ttH) \end{array}$	Higgs boson coupling to bosons
0	$H \rightarrow bb (VH, VBF)$ $H \rightarrow cc (VH)$	Higgs boson coupling to quarks
0	H → ττ (ggF, VBF) H → μμ (ggF, VBF)	Higgs boson coupling to leptons

VBF H (\rightarrow WW* \rightarrow evµv) jj

$H \to WW^* \to ev\mu v$

- H→ WW* → evµv is one of the most frequent decay modes of the Higgs boson
 - $\circ \quad \text{Cleaner signature wrt } H \to b \delta$
 - $\circ \quad \mbox{Higher statistics than } H \to ZZ^* \ \mbox{or } H \to \gamma \gamma$
- Characteristics of $H \rightarrow WW^* \rightarrow ev\mu v$ decay:
 - \circ $\;$ Two oppositely charged leptons with small opening angle and invariant mass m_{11}
 - Presence of neutrinos prevents direct measurement of invariant mass m_{H} instead use transverse mass m_{T}

$$m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + p_{\mathrm{T}}^{\nu\nu}\right)^{2} - \left|\boldsymbol{p}_{\mathrm{T}}^{\ell\ell} + \boldsymbol{p}_{\mathrm{T}}^{\nu\nu}\right|^{2}}$$

with
$$E_{\rm T}^{\,\ell\ell} = \sqrt{(p_{\rm T}^{\,\ell\ell})^2 + (m_{\ell\ell})^2}$$

$H \to WW^* \to e \nu \mu \nu$

- ggF and VBF cross sections are obtained by maximum likelihood fit
 - ggF: transverse mass m_{T}
 - VBF: score of a boosted decision tree
 - Profile ggF production when fitting VBF cross section, and vice-versa
 - Measured cross sections are consistent to SM predictions

 $H \rightarrow ZZ^* \rightarrow eeee$

$H \to \ ZZ^* \to \text{effe}$

- - Good channel to measure properties of the Higgs boson precisely
 - Analyses are based on finding two pairs of isolated leptons with same flavor and opposite electric charges

$H\to\gamma\gamma$

Summary of the event categories for cross section measurement

 $H \rightarrow \gamma \gamma$

- Analysis is sensitive to the cross sections of (almost all) Higgs boson production modes
- Final results are obtained by fit to all categories

Taken from: http://cdsweb.cern.ch/record/2725727/files/ATLAS-CONF-2020-026.pdf

$H \to \ Z\gamma$

- Low predicted branching ratio $B(H \rightarrow Z\gamma) = (1.54 \pm 0.09) \times 10^{-3}$
 - Can differ from the SM value if Higgs boson is:
 - a composite state
 - part of an extended scalar sector
- Categorize events:
 - VBF-like
 - \circ High p_T

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\ (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6}(1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}(1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7} \ (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\ (1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}(1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9} \ (1.0^{+0.9}_{-0.9})$	2.2 (1.2)

$VH \hspace{0.1in} H \rightarrow bb$

- ggF H \rightarrow bb has a large $\sigma \times$ BR, but can not be separated from huge dijet backgrounds and is difficult to trigger
 - Instead, probe H→ bb in Higgs-Strahlungs events (bb-pair is produced in addition to charged leptons)
- Observation of H → bb decays and VH production mode in 2018

VBF H (\rightarrow bb) jj

- Study VBF + photon
 - Relative low backgrounds
 - Use photon trigger
- Kinematic event properties are used in a boosted decision tree to classify signal and background events
- The measured Higgs boson signal strength is 1.3 ± 1.0
- The observed (expected) significance of the signal above the background-only hypothesis is 1.3σ (1.0σ)

VH $H \rightarrow cc$

- Study of Yukawa coupling of the Higgs boson to 2nd generation quarks is challenging at hadron colliders, due to small branching fractions and large backgrounds
- Charm tagging is crucial for eventual $H \rightarrow cc$ observation
- Upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow cc)$ at the 95% CL:
 - **Observed:** 2.7 pb (104 times the SM predictions)
 - **Expected:** 3.9 +2.1/-1.1 pb

Source	$\sigma/\sigma_{\rm tot}$
Statistical	49%
Floating Z + jets normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

Taken from https://arxiv.org/pdf/1802.04329.pdf

$\mathbf{VH} \ \mathbf{H} \to \mathbf{cc}$

Taken from https://inspirehep.net/files/8f40463278676edecdd49e0d89fb861e

$H \to \tau\tau$

- Here: H + 1 jet event
 - Di-tau decay
 - $\blacksquare \quad T \to e$
 - $\blacksquare \quad T \to \mu$
 - $\bullet \quad \tau \to hadrons$

Decay Mode	BR
$\tau^- \to e^- \nu_e \nu_\tau$	$(17.83 \pm 0.04)\%$
$\tau^- \to \mu^- \nu_\mu \nu_\tau$	$(17.41 \pm 0.04)\%$
$\tau^- \to \pi^- \pi^0 v_{\tau}$	$(25.52 \pm 0.09)\%$
$\tau^- \to \pi^- \nu_{\tau}$	$(10.83 \pm 0.06)\%$
$\tau^- \to \pi^- \pi^0 \pi^0 \nu_{\tau}$	$(9.30 \pm 0.11)\%$
$\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$	$(8.99 \pm 0.05)\%$
$\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$(2.74 \pm 0.07)\%$
$\tau^- \to \pi^- \pi^0 \pi^0 \pi^0 \nu_\tau$	$(1.04 \pm 0.07)\%$

$H \to \ \tau\tau$

- H → TT decay is the best channel to study coupling between the Higgs boson and fermions
 - Relies on efficient τ reconstruction and identification

$H \to \mu \mu$

CMS Experiment at the LHC, CERN Data recorded: 2018-Oct-03 01:19:17.320393 GMT Run / Event / LS: 323940 / 44997009 / 65

VBF H $\rightarrow \mu\mu$ candidate event (with $m_{_{jj}}$ = 2.19 TeV)

$H \to \mu \mu$

- The $H \rightarrow \mu\mu$ decay offers the best opportunity to measure the Higgs interactions with a 2nd generation fermion
- Events are divided into 20 mutually-exclusive categories (to increase the sensitivity)
 - Use properties of additional jets or leptons

- A first hint of the Higgs boson decaying to a muon pair
 - $\circ \quad \text{Observed significance over the} \\ \text{background-only hypothesis is } 2.0\sigma$

Taken from: https://arxiv.org/pdf/2007.07830.pdf

$H \to \mu \mu$

First evidence for a Higgs boson

- Dominant uncertainties on Δµ:
 - Total uncertainties: +0.44/-0.42
 - Statistical uncertainties: +0.41/-0.40
 - Experimental uncertainties: +0.12/-0.11
 - Theoretical uncertainties: +0.10/-0.11

Combinations

Di-Higgs and Higgs self-coupling

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 27.5 - 36.1 \text{ fb}^{-1}$

 σ_{qqF}^{SM} (pp \rightarrow HH) = 33.5 fb

- So far, we can only set limits on the self-coupling strength and the Di-Higgs production cross section
- Will need the full dataset from HL-LHC phase until we can measure these observables

Observed

Expected

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

Di-Higgs and Higgs self-coupling

Search for resonant di-Higgs production

46

Effective field theories

- So far no hints for new physics in direct searches
- What if scale of new physics is outside the reach of the LHC?
 - Search for smooth enhancements in the tails of our observables
 - E.g. from resonances with masses beyond our reach
 - Probing for shape modifications of our observables
 - E.g. from anomalous couplings
- Effective field theories (EFT) allow for model independent approaches to search for such new physics effects

• In EFTs, Lagrangian of the Standard Model of particle physics is supplemented with additional BSM terms:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} rac{c_i}{\Lambda} \mathcal{O}_i$$

- \mathcal{O}_i are higher dimension operators
- c_i are the so-called Wilson coefficients
 - Specify the strength of a new CP-even (or CP-odd) interaction (i.e. they describe deviation from SM)
- A is mass scale for new particle

Differential measurements

- Re-interpretation of differential cross section measurements are used to constrain EFT parameters
- Measurement of **differential** cross sections
 - Measure number of Higgs signal events N^{signal} in i-th p_T^H bin (or of any other observable)
 - 2. Background subtraction
 - 3. Unfolding: Derive correction factor from MC information:

$$c_i = \frac{N^{
m reco}}{N^{
m part}}$$

4. Calculate differential cross section:

$$\left(\frac{d\sigma}{dx}\right)_i = \frac{N^{\text{signal}}}{c_i \Delta p_{i,\text{T}}^H \mathcal{L}_{\text{int}}}$$

- Analysis strategy:
 - 1) Measure differential cross sections
 - 2) Perform likelihood fit to measured distributions
 - Constrain Wilson coefficients
- Exclude large range of EFT parameter space
- So far: No significant deviations from the SM expectations found
 - However, not yet sensitive to range really relevant for EFTs

Coefficient	Observed 95% CL limit	Expected 95% CL limit
\overline{c}_{g}	$[-0.26, 0.26] \times 10^{-4}$	$[-0.25, 0.25] \cup [-4.7, -4.3] \times 10^{-4}$
\tilde{c}_g	$[-1.3, 1.1] \times 10^{-4}$	$[-1.1, 1.1] \times 10^{-4}$
\overline{c}_{HW}	$[-2.5, 2.2] \times 10^{-2}$	$[-3.0, 3.0] imes 10^{-2}$
\tilde{c}_{HW}	$[-6.5, 6.3] \times 10^{-2}$	$[-7.0, 7.0] \times 10^{-2}$
\overline{c}_{γ}	$[-1.1, 1.1] \times 10^{-4}$	$[-1.0, 1.2] \times 10^{-4}$
\tilde{c}_{γ}	$[-2.8, 4.3] \times 10^{-4}$	$[-2.9, 3.8] \times 10^{-4}$

Higgs CP/Spin

- Spin and CP state of Higgs-boson are determined probing angular distribution of decay products
 - Data hints very strongly to a Spin CP state of 0+
 - Alternative models are rejected with a CL of more than 99 .9 %
- Spin-1 hypothesis was theoretically excluded by observation of H->yy decay mode (**Yang's theorem**):
 - A massive spin-1 particle cannot decay into a pair of identical massless spin-1 particles.

- The effective field theory approach is also used to directly constrain the CP properties of the Higgs boson
 - Probe either angles between decay products or angles between jets produced in association with the Higgs boson

• The effective Lagrangian that describes the Higgs-gluon interaction is expressed as:

$$\mathcal{L}_0^{\text{loop}} = -\frac{1}{4} \left(\kappa_{Hgg} g_{Hgg} G^a_{\mu\nu} G^{a,\mu\nu} + \kappa_{Agg} g_{Hgg} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) H$$

Scale factors for the CP-even and CP-odd interactions

- Complex background composition:
 - Largest contribution from top-quark pairs and diboson WW processes
- Use boosted decision trees to reduce background contributions

- Apply a maximum likelihood procedure individually to each coupling parameter hypothesis
 - Background prediction is only affected by changes to nuisance parameters

- A negative log-likelihood (NLL) curve is constructed as a function of the coupling parameters.
- The best estimate for the parameter of interest is obtained at the point where the NLL curve reaches its minimum

a

- Probe HVV vertex present in VBF Higgs events to constrain CP odd contributions
 2 0.25
 - From:

$$egin{split} \mathcal{L}_{ ext{eff}} &= \mathcal{L}_{ ext{SM}} + ilde{g}_{HAA} H ilde{A}_{\mu
u} A^{\mu
u} + ilde{g}_{HAZ} H ilde{A}_{\mu
u} Z^{\mu
u} + ilde{g}_{HWW} H ilde{W}^+_{\mu
u} W^{-\ \mu
u} \end{split}$$

width

$$ilde{g}_{HZZ} = rac{1}{2} ilde{g}_{HWW} = rac{g}{2m_W} ilde{d}$$

where $d^{\tilde{c}}$ governs the strength of CP violation.

• Exploit optimal observable which is constructed from the 2 VBF jets:

$$\mathcal{OO} = rac{2 \cdot \textit{Re}\left(\mathcal{M}^*_{\textit{SM}}\mathcal{M}_{\textit{CP-odd}}
ight)}{|\mathcal{M}_{\textit{SM}}|^2}$$

Higgs boson mass measurement

- Higgs boson mass is measured in $H \rightarrow \ell \ell \ell \ell$ and $H \rightarrow \gamma \gamma$ events
 - Apply a maximum likelihood method simultaneously to both analyses channels
- Run 1 + 2 combination yields: $m_{\mu} = 124.97 \pm 0.24 \text{ GeV}$

Taken from: https://arxiv.org/pdf/1806.00242.pdf

Uncertainties on Higgs boson mass measurement

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \to \gamma \gamma$ background modelling	20
$H \to \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

Higgs boson mass measurement

Measurement of Higgs boson width

 A measurement of the relative off-shell and on-shell event yields provides direct information about Γ_μ:

 $\frac{\mu_{\rm off-shell}}{\mu_{\rm on-shell}}$

- Off-shell contribution is heavily impacted by interference between H→ZZ* and ZZ continuum
- Results:
 - $\circ~$ The observed (expected) limit on $\Gamma_{\!_{\rm H}}\,/\Gamma^{\rm SM}_{_{\!_{\rm H}}}$ is 3.5 (3.7) at the 95% CL
 - The observed (expected) 95% CL limit on the Higgs boson total width of 14.4 (15.2) MeV

Taken from: https://arxiv.org/pdf/1808.01191.pdf

ΙH

-SM

