Testing the Standard Model of Elementary Particle Physics II

5th lecture

Dr. Dominik Duda

10th June 2021

Table of content

• The Top quark

- Properties:
 - Mass
 - Production cross section
 - Top quark pairs
 - Single top quarks
 - Top quarks + Higgs
 - Top quarks + X
 - Decay
- Discovery at the Tevatron
- Precision measurements of top quark properties at the LHC
- Top quark prospects
- The top quark as a Window to New Physics

The top quark

- Predicted in 1973 by Kobayashi and Maskawa
- Weak-isospin partner of the b-quark.
- Charge: +2/3 e
- Spin: 1/2
- The by far heaviest elementary particle:
 - ____m, = 172.7 ± 0.5 GeV
- Coupling to the Higgs boson: y_t ≈ 1
- No bound states:

$$au_{
m top} \propto \left(\frac{M_W}{M_{
m top}}\right)^3$$

 $au_{
m top} \approx 4.7 \cdot 10^{-25} \, {
m s}$

- \rightarrow Top quark decays as a quasi free particle
- → Spin information and polarisation are accessible since spin decorrelation time ($^{10^{-21}}$ s) is much larger than the hadronisation time ($^{10^{-23}}$ s)

Fermilab 01-XXX

Top-quarks in loops

- Due to loop contributions, several observables and/or processes depend (strongly) on the top quark mass:
 - Higgs propagator
 - B-hadron mixing

→ Precise knowledge of top quark mass is crucial for theory/experiment

Η

Η

The running of the Higgs self-coupling

• The Higgs self-coupling λ is not a constant.

$$V(\phi) = \frac{1}{2}\mu^2 \phi^{\dagger} \phi + \frac{1}{4}\lambda \left(\phi^{\dagger} \phi\right)^2$$
$$\lambda = \lambda(q^2)$$

- Loop corrections \rightarrow dependence on momentum scale μ \circ Main contributions from top-quark
- Condition for absolute stability of the potential: $\lambda(q^2) > 0$

$$M_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}}\right)$$
$$-0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \text{ GeV}$$

Renormalization group running of the Higgs self-coupling λ , and its dependence on the top and Higgs masses, and the strong coupling constant α_s (m_z).

Top quark production

Single top-quark cross-section [pb]

10

√s [TeV]

Production of top quarks + Higgs

Q ~000000000000000000

$$\sigma_{ttH}$$
 = 0.5085 pb (+10.5% / -12.8%)

σ_{s-chan} = 0.002812 pb (+2.2% / -1.9%)

Production of top + X

Top quark decays

• CKM matrix elements describe transition from one quark flavour to another:

- I.e. V_{ii} measures the coupling of quark i to quark j:
- The CKM matrix is given via:

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{tc} & V_{tb} \end{pmatrix}$$

• Top quark decays almost exclusively via t → bW

• The magnitudes of the matrix elements are:

$ m '0.97446 \pm 0.00010$	0.22452 ± 0.00044	0.00365 ± 0.00012 $ angle$
0.22438 ± 0.00044	$0.97359\substack{+0.00010\\-0.00011}$	0.04214 ± 0.00076
$0.00896^{+0.00024}_{-0.00023}$	0.04133 ± 0.00074	0.999105 ± 0.000032

Latest measurements of CKM matrix elements taken from: <u>https://pdg.lbl.gov/2019/reviews/rpp2019-rev-ckm-matrix.pdf</u>

Top quark decays

- Decays via the weak interaction
- Involves left-handed chiral fermion fields

$$\psi_{\rm L} = \frac{1}{2} (1 - \gamma_5) \psi$$

• Since $|V_{tb}| \approx 1$ thus $\mathfrak{B}(t \to Wb) \approx 1$

$$< |\mathcal{M}|^2 > = \frac{g_w^2 c^2}{4 m_w^2} (m_t^2 - m_w^2) (m_t^2 + 2m_w^2)$$

 l^{τ}, q $v \overline{a}'$

h

 W^+

Top quark decays

• Top quark decays almost exclusively via t → bW

 $|v_{tb}| \approx 1$ $U^{+}_{v, \overline{q}'}$ $U^{+}_{v, \overline{q}'}$

• Top quark decays are characterised by high p_T leptons, jets and missing transverse momentum

Top quark pair decays

- Top quark pair decays are classified based on decay modes of the W bosons:
 - Dilepton (10.5%) 0
 - Lepton + jets (43.8%)Ο
 - All hadronic (45.7%) 0

Top Pair Decay Channels

cs	in+jets	+jets	jets	all-hadronic	
ūd	electro	muon	tau+		
'ų	еτ	μτ	5T	tau+j	jets
'n	eμ	de la	μτ	muon	+jets
ω	6	eμ	eτ	electron+jets	
Necat	e ⁺	µ⁺	τ^{+}	иd	cs

Top quark decay (dilepton)

U

b

W

Run: 267073 Event: 279124678 2015-06-05 02:24:03 CEST

t-channel single top-quark production in the muon plus jets channel

Top quark discovery

- The top quark was discovered in 1995 by the CDF and D0 experiments at the Tevatron.
 - Predicted in 1977 (directly after discovery of b-quark)
- Discovery was based on data from the 1992–93 (full Run Ia) and 1994–1995 (part of Run Ib) runs of the Tevatron collider
- The total integrated luminosities were 67pb⁻¹ for CDF and between 44 and 56pb⁻¹ (depending on the top decay mode) for D0
- Searches have been performed in dilepton and lepton + jets signatures

Top quark discovery

Top Quark Production Cross Section Measurements

Status: November 2018

23

Production cross section measurement (l+jets)

- Cross section is extracted via a simultaneous profile-likelihood fit of the sum of signal and background distributions to data in three regions.
 - Each region exploits a different fit variable.

Taken from: Phys. Lett. B 810 (2020) 135797

	Category	$rac{\Delta \sigma_{ ext{fid}}}{\sigma_{ ext{fid}}}$ [%]	$rac{\Delta\sigma_{ m inc}}{\sigma_{ m inc}}$ [%]	
	Signal modelling			
Measurement:	$t\bar{t}$ shower/hadronisation $t\bar{t}$ scale variations	$\pm 2.8 \\ \pm 1.4$	$\pm 2.9 \\ \pm 2.0$	
$\sigma(t\bar{t}) = 830.4 \pm 0.4 (\text{stat.})^{+38.2}_{-37.0} (\text{syst.}) \text{pb}$	Top <i>p</i> _T NNLO reweighting <i>tt h</i> _{damp} <i>tt</i> PDF	$\pm 0.4 \\ \pm 1.5 \\ \pm 1.4$	$\pm 1.1 \\ \pm 1.4 \\ \pm 1.5$	
	Background modelling			
Theory prediction:	MC background modelling Multijet background	$\pm 1.8 \\ \pm 0.8$	$\pm 2.0 \\ \pm 0.6$	
$-(+\overline{4})$ 020 $+20$ (model) $+25$ (DDE $+\infty$) wh	Detector modelling			
$\sigma(tt) = 832^{+20}_{-29} (\text{scale}) \pm 35 (\text{PDF} + \alpha_S) \text{ pb}$	Jet reconstruction	±2.5	±2.6	
	Luminosity	± 1	+1/	
Dominant uncertainties are due to the modelling of the top quark pair production process	Flavour tagging $E_{\rm T}^{\rm miss}$ + pile-up Muon reconstruction Electron reconstruction	± 1.7 ± 1.2 ± 0.3 ± 0.6 ± 0.7	± 1.3 ± 0.3 ± 0.5 ± 0.6	
Dominant uncertainties are due to the modelling of the top quark pair production process	Flavour tagging $E_{\rm T}^{\rm miss}$ + pile-up Muon reconstruction Electron reconstruction Simulation stat. uncertainty	± 1.2 ± 0.3 ± 0.6 ± 0.7 ± 0.6	± 1.3 ± 0.3 ± 0.5 ± 0.6 ± 0.7	
Dominant uncertainties are due to the modelling of the top quark pair production process	Flavour tagging $E_{\rm T}^{\rm miss}$ + pile-up Muon reconstruction Electron reconstruction Simulation stat. uncertainty Total systematic uncertainty Data statistical uncertainty	± 1.7 ± 1.2 ± 0.3 ± 0.6 ± 0.7 ± 0.6 ± 4.3 ± 0.05	$ \begin{array}{c} \pm 1.3 \\ \pm 0.3 \\ \pm 0.5 \\ \pm 0.6 \\ \pm 0.7 \\ \end{array} $ $ \begin{array}{c} \pm 4.6 \\ \pm 0.05 \\ \end{array} $	

Differential cross section measurements

MC generators.

Some discrepancies for higher $m_{_{eu}}$ and $|y^{e\mu}|$

Production cross section measurement (tW)

- Overlap between Wt and top-quark pair production at NLO (i.e. WbWb final state)
 - Overlap is removed with either of two commonly used approaches (<u>https://arxiv.org/abs/0805.3067</u>):
 - Diagram removal (DR)
 - Diagram subtraction (DS)
- Multivariate techniques are used to suppress the large backgrounds
 - top-quark pairs, V + jets, diboson
- Differential cross-sections have been measured as a function of characteristic observables
 - Measurements are compared to theory predictions

DR approach: NLO diagrams that overlap with top quark pair production are removed from the calculation of the tW amplitude

DS approach: A subtraction term is built into the amplitude to cancel out the top-quark pair contribution

ttH

Events

100

80

60

40

20

20

10

Had 4

Had 3

Had 2

Had 1

Lep 3

Lep 2

Lep 1

Data - Bkg.

- Direct measurements of the top-quark Yukawa coupling in ttH events:
 - Observations of ttH (with H \rightarrow bb, H \rightarrow $\gamma\gamma$ and H \rightarrow multi-leptons)
- Probe set of complex final states (have to deal with difficult background composition)
 - Use MVAs to reduce background contributions

ttH

Taken from: https://arxiv.org/pdf/1806.00425.pdf

Production of top + X

- First observations of particularly rare top quark processes during Run II data taking
- First cross section measurements
- Use sophisticated MVAs to separate signals and bkgs.

Top-quark mass measurements

- Measurement of the top quark mass in the lepton+jets channel:
 - Exploiting a three-dimensional template technique
 - Fitting m_{top}, m_W, R_{ba} (heavy to light-flavour momentum ratio)
 - Use likelihood approach to reconstruct events
 - Reject combinatorial background using a BDT

• Fit yields:

Top-quark mass measurements

- Systematic uncertainties in m_{top} given together with the statistical and systematic uncertainties in GeV
 - For the standard and BDT selections.
 - For comparison, results corresponding to \sqrt{s} =7 TeV are also listed.
- Dominant uncertainties:
 - Jet energy scale
 - b-tagging

\rightarrow top-quark mass can be measured with high precision

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	
Event selection	Standard	Standard	BDT
$m_{\rm top}$ result [GeV]	172.33	171.90	172.08
Statistics	0.75	0.38	0.39
- Stat. comp. (m_{top})	0.23	0.12	0.11
- Stat. comp. (JSF)	0.25	0.11	0.11
– Stat. comp. (bJSF)	0.67	0.34	0.35
Method	0.11 ± 0.10	0.04 ± 0.11	0.13 ± 0.11
Signal Monte Carlo generator	0.22 ± 0.21	0.50 ± 0.17	0.16 ± 0.17
Hadronization	0.18 ± 0.12	0.05 ± 0.10	0.15 ± 0.10
Initial- and final-state QCD radiation	0.32 ± 0.06	0.28 ± 0.11	0.08 ± 0.11
Underlying event	0.15 ± 0.07	0.08 ± 0.15	0.08 ± 0.15
Colour reconnection	0.11 ± 0.07	0.37 ± 0.15	0.19 ± 0.15
Parton distribution function	0.25 ± 0.00	0.08 ± 0.00	0.09 ± 0.00
Background normalization	0.10 ± 0.00	0.04 ± 0.00	0.08 ± 0.00
W+jets shape	0.29 ± 0.00	0.05 ± 0.00	0.11 ± 0.00
Fake leptons shape	0.05 ± 0.00	0	0
Jet energy scale	0.58 ± 0.11	0.63 ± 0.02	0.54 ± 0.02
Relative <i>b</i> -to-light-jet energy scale	0.06 ± 0.03	0.05 ± 0.01	0.03 ± 0.01
Jet energy resolution	0.22 ± 0.11	0.23 ± 0.03	0.20 ± 0.04
Jet reconstruction efficiency	0.12 ± 0.00	0.04 ± 0.01	0.02 ± 0.01
Jet vertex fraction	0.01 ± 0.00	0.13 ± 0.01	0.09 ± 0.01
b-tagging	0.50 ± 0.00	0.37 ± 0.00	0.38 ± 0.00
Leptons	0.04 ± 0.00	0.16 ± 0.01	0.16 ± 0.01
Missing transverse momentum	0.15 ± 0.04	0.08 ± 0.01	0.05 ± 0.01
Pile-up	0.02 ± 0.01	0.14 ± 0.01	0.15 ± 0.01
Total systematic uncertainty	1.04 ± 0.08	1.07 ± 0.10	0.82 ± 0.06
Total	1.28 ± 0.08	1.13 ± 0.10	0.91 ± 0.06

Top-quark mass measurement

Running of the top quark mass

- SImilar to the strong coupling constant α_s, the quark masses are subject to renormalisation
- The running is extracted from a measurement of the differential top quark-antiquark cross section as a function of the invariant mass of the tt system

 The running mass m_t(µ), is extracted at one-loop precision as a function of m_{tt} by comparing fixed-order theoretical predictions at next-to-leading order to the measurements

Spin correlation measurements

The lifetime of the top quark is shorter than the timescale for hadronisation ($\sim 10^{-23}$ s) and is much shorter than the spin decorrelation time ($\sim 10^{-21}$ s)

Supersymmetric top

squarks

- The spin information of the top quark is transferred directly to its decay products. 0
 - Probe $\Delta \phi$ between electron and muon
- Spins of the top and anti-top guarks should be correlated Ο
- **Contributions from BSM physics can decrease** the expected SM spin correlation

Parton level $\Delta \phi(l^+, \bar{l}) / \pi$ [rad/ π]

Spin correlation measurements

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

Spin correlation measurements

Charge asymmetry in top quark pair production

Top-quarks are produced slightly more forward than top-antiquarks.

 \rightarrow central-forward asymmetry

• Asymmetry can be quantified via:

$$A_C = \frac{N\left(\Delta|y| > 0\right) - N\left(\Delta|y| < 0\right)}{N\left(\Delta|y| > 0\right) + N\left(\Delta|y| < 0\right)}$$
with: $\Delta|y| = |y| = |y|$

with: $\Delta |y| = |y_t| - |y_{\overline{t}}|$

- SM effect is quite small (~1%)
 - New physics contributions could significantly enhance the asymmetry
- Tevatron observed large forward-backward asymmetries (*pp* initial state), but tensions have eased in the meanwhile.

Charge asymmetry in top quark pair production

- Probe asymmetry in different invariant mass intervals
 - \rightarrow More sensitive to new physics

Charge asymmetry in top quark pair production

 Comparison of LHC and Tevatron measurements with SM and various BSM theories

• Tested for:

- $\circ \quad \text{W' boson}$
- Heavy axi-gluon G_{μ}
- \circ Scalar isodoublet $ar{\phi}$
- \circ Colour triplet scalar ω^4
- \circ Colour sextet scalar Ω^4

Top-quark pairs as standard candles

- Top-quark pair events (in particular dilepton decays) lead to a clear signatures in the detector

 Purities of > 90% can easily be reached
- Use top-quark pair events to calibrate e.g. b-tagging or top/W tagging algorithms

Top-Antitop Resonances

- Searches for:
 - (Pseudo) scalars (2HDM)
 - Z' (technicolour model)
 - G_{KK} (warped extra dimensions)
- Performed in semileptonic or fully hadronic final states

Top-Antitop Resonances

- Searches for:
 - (Pseudo) scalars (2HDM)
 - Z' (technicolour model)
 - G_{KK} (warped extra dimensions)
- Performed in semileptonic or fully hadronic final states

Search for Supersymmetric particles

Search for stop quark pair production

• Search for multi-jet final state incl. large amount of missing E_T

Probe phase space regions sensitive to contributions from SUSY signal

Search for Supersymmetric particles

Search for stop quark pair production

Searches for vector-like top quarks

• Search for pair production of vector-like top quark partners (T)

- T quarks have spin $\frac{1}{2}$
- Left-handed and right-handed states have the same electroweak coupling = no need to consider chiral states
- Avoids exclusion of a simple sequential 4th generation as obtained from Higgs production cross sections at the LHC.
- Contributions by T quarks dampen large quadratic corrections to the Higgs boson mass (propagator).
 - $\rightarrow\,$ Solution to the naturalness problem
- Occur in Little Higgs or Composite Higgs models.

Searches for vector-like top quarks

• Basic event selection:

- MET > 300 GeV
- exactly 1 charged lepton
- $\circ \geq 4$ jets with
- Probe MET spectrum

JHEP 08 (2017) 052

• T quarks with $m_T < 1.16$ TeV are excluded if BR(T \rightarrow Zt) = 100% is assumed.

Searches for third-generation scalar leptoquarks

- Leptoquarks (LQs) are predicted by many extensions of the SM and provide a connection between the quark and lepton sectors
- LQs are bosons carrying colour and fractional electrical charge
- Leptoquarks can be scalar or vector bosons and can be produced singly or in pairs in proton–proton collisions

• Decays via flavour-changing neutral currents (FCNC):

- Do not exist at tree (Born) level in the SM
- Very strongly suppressed at next-to-leading order (loop level): GIM mechanism = CKM unitarity
- Suppression is lifted by non-degenerate quark masses.
- Branching ratios are extremely small.

	$Br(t \to q\gamma)$	$Br(t \rightarrow qZ)$	$Br(t \rightarrow qg)$
q = u $q = c$	3.7×10^{-16}	8×10^{-17}	3.7×10^{-14}
	4.6×10^{-14}	1×10^{-14}	4.6×10^{-12}

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \rightarrow Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \rightarrow Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \rightarrow g u$	4×10^{-14}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \rightarrow gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t ightarrow \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_
$t ightarrow \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\le 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \rightarrow hu$	2×10^{-17}	$6 imes 10^{-6}$	-	$\leq 10^{-5}$	$\leq 10^{-9}$	-
$t \rightarrow hc$	3×10^{-15}	$2 imes 10^{-3}$	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Predicted Branching ratios of top-quark decays in SM and BSM theories:

From: https://arxiv.org/pdf/1311.2028.pdf (Snowmass Workshop 2013)

Strong enhancement!

Any FCNC signal would be evidence for BSM physics!

Latest limits on FCNC top quark decays from ATLAS and CMS

 Search for flavour-changing neutral current top quark decays t → Hq

> Events / 0.1 ATLAS ATLAS Simulation tī→WbWb Data tī→WbHc $5000 \downarrow \sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ √s=13 TeV tī→WbHc tt+liaht-jets tqH(bb) search tqH(bb) search tt+≥1c ••••• tī→WbHu ≥6j, 3b ≥6j, 3b tī+≥1b 4000 Non-tī Post-Fit Total Pred unc. 3000 ******** 0.15 2000 erred **5** 0.1 1000 Sec. 1 0.05 Data / Pred 1.25 n۱ 0.6 0.7 0.8 0.9 0.5 0.1 0.2 0.3 0.4 0.75 LH discriminant 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 LH discriminant

Combine kinematic variables within a likelihood ratio:

$$L(ec{x}) = rac{
ho_{
m sig}(ec{x})}{
ho_{
m sig}(ec{x}) +
ho_{
m bkg}(ec{x})}$$

JHEP 05 (2019) 123

$$\mathcal{B}(t \rightarrow uH) < 1.2 \cdot 10^{-3}$$
$$\mathcal{B}(t \rightarrow cH) < 1.1 \cdot 10^{-3}$$

Search for FCNC in single top events

- Flavour-changing neutral currents (FCNCs) are forbidden at tree level in the SM
 - Strongly suppressed at higher orders.
- Several extensions to the SM predict processes involving FCNCs (e.g. top-quark decays via FCNC)
 - Examples:
 - R-parity-violating supersymmetric models
 - Two Higgs doublet Models

Limits:	Vertex	Coupling	Obs:	Exp:
$\sigma(pp \rightarrow t\gamma)$ [fb]	tuγ	LH	36	52^{+2}_{-1}
$\sigma(pp \to t\gamma)$ [fb]	tuγ	RH	78	75^{+3}_{-2}
$\sigma(pp \rightarrow t\gamma)$ [fb]	tcγ	LH	40	49_{-1}^{+2}
$\sigma(pp \to t\gamma)$ [fb]	tcγ	RH	33	52^{+2}_{-1}

Phys. Lett. B 800 (2020) 135082

Left-handed (LH) and right-handed (RH) couplings result in different kinematic properties of the top-quark decay products,