Testing the Standard Model of Elementary Particle Physics II

8th lecture

Dr. Dominik Duda

15th Juli 2021

Table of content

• Unsolved Problems of the Standard Model of Particles Physics

Recent Anomalies

- Lepton flavour universality violations
- g-2 experiment

• Direct Searches for new Physics

- Searches for Leptoquarks
- Searches for an extended Scalar Sector
- Other Searches

- Newest results on searches and measurements can be found:
 - For ATLAS: <u>here</u>
 - For CMS: <u>here</u>

5.1 Unsolved Problems of the Standard Model

Unsolved Problems of the Standard Model

- 1. The naturalness problem
- 2. The origin of EW and QCD energy scales
- 3. Why are there only 3 generation of quarks and leptons ?
- 4. Quantization of electric charge
 - $Q_e = -Q_p$ measured with a precision of 10^{-21}
 - Why is $Q_d = \frac{1}{3} Q_e$ and $Q_v + Q_e + 3Q_u + 3Q_d = 0$?
 - \rightarrow Unification of gauge couplings: GUTs
- 5. Why are the neutrino masses so small ? \rightarrow Unification of gauge couplings: GUTs

Unsolved Problems of the Standard Model

- 6. Source of CP violation (responsible for the excess of matter over anti-matter in the universe)
 - absence of strong CP violation in the QCD sector ?
- 7. Is the Higgs boson an elementary particle ?
 - Mechanism to dynamically break the electroweak gauge symmetry
 - Introduce substructure of the Higgs boson and a new strong interaction (analogous to cooper pairs, "Higgs field", in superconductor)
- 8. Why is the measured value of the muon's anomalous magnetic dipole moment ("muon g-2") significantly different from the theoretically predicted value ?
- 9. Recently emerging indications of lepton flavour universality violations
- 10. Origin of dark matter and dark energy
- **11. Common quantum field theory including gravity**
 - \rightarrow String theories

Content of the universe

Ω = energy density / critical density

• Isotropy of cosmic microwave background

- Measured by COBE, WMAP, satellites) \Rightarrow inflation of early universe (phase of exponential expansion) $\Rightarrow \Omega_{total} = 1$
 - flat universe

Content of the universe

- Matter density Ω_M ≈ 30% (measured via: Rotation curves of galaxies, gravitational lens)
 - Baryonic matter (atoms): $\Omega_{\rm B} \approx 4\%$ (nucleosynthesis).
 - Visible matter (stars): $\Omega_{lum} \approx 0.6\%$.
 - Dark matter: $\Omega_{DM} \approx 24\%$ (massive neutrinos, Axions or SUSY particles ?)

• Dark Energy: $\Omega_{\Lambda} \approx 71\%$

 Corresponds to a positive cosmological constant ("antigravity"), used in general relativity to explain the (observed) accelerated expansion of the universe (i.e. redshift of supernovae).

Content of the universe

Grand unification

- Unification of the three gauge interactions of the Standard Model (following the successful electroweak unification predicted in the 1960s)
 - Embedding the single gauge groups of the SM in a simple larger gauge group G with a single couplings constant (Grand Unified Theories = GUTs)

$$G \supset SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y}$$

• The Standard Model could be understood as an effective Theory at low energies (as the grand unified gauge symmetry is broken)

$$G \xrightarrow{M_{evr}} SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y} \xrightarrow{M_{evr}} SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Q}$$

- Interactions become equally strong at the Grand unification scale M_{GUT} ≈ 10¹⁵ GeV
 - Compared to the scale of the electroweak symmetry breaking $M_{ew} \approx v/\sqrt{2} \approx M_{w}$

The SU(5) Model

- The smallest (simple) Lie group that contains all gauge groups of the Standard Model is a SU(5)
 - with n² − 1 = 24 generators T^a and 24 gauge fields V_µ^a(x) (a = 1,...,24)
 Only 12 out of these 24 gauge fields are already contained in the SM
 - - (8 Gluonen, W^+ , W^- , Z^0 , v):

$$\mathcal{L}_{SU(5)} = -\frac{1}{4}F^{a}_{\mu
u}F^{\mu
u a} + \overline{\psi}i\gamma^{\mu}D_{\mu}\psi_{f}$$

$$D_{\mu} = \partial_{\mu} - ig_5 T^a V^a_{\mu}$$

- Fundamental representation has the dimension n=5
 - Leptons and guarks are unified within common multi-pletts Ο

Supersymmetry (SUSY)

• SUSY in a Nutshell:

- Symmetry between fermions and bosons
 - Each SM particle has a (heavy) SUSY partner particle
- Lightest SUSY particle (if neutral and stable) is Dark Matter candidate
- Extension of scalar sector:
 - 3 neutral and 2 charged Higgs-Bosons within the minimal supersymmetric extension of the SM (MSSM)
- Predicts unification of gauge couplings
- Local SUSY describes Gravitation
- Introduces R-parity:

$$P_R = (-1)^{3B+L+2s}$$

conserved in many SUSY scenarios

Supersymmetry (SUSY)

5.2 Recent anomalies

Lepton Flavour Universality tests

- In the SM couplings of gauge bosons to leptons are independent of lepton flavour
 - Branching fractions differ only by phase space and helicity-suppressed contributions
- LHCb is performing LFU tests in B hadron decays:

$$R_{\mathcal{K}^{(*)}} = rac{\mathcal{B}\left(B
ightarrow \mathcal{K}^{(*)} \mu^+ \mu^-
ight)}{\mathcal{B}\left(B
ightarrow \mathcal{K}^{(*)} e^+ e^-
ight)} \stackrel{ ext{sm}}{\cong} 1$$

\rightarrow Any significant deviation would be a smoking gun for New Physics.

Lepton Flavour Universality tests

 \rightarrow Evidence of LFU violation at 3.1 σ

g - 2 experiment

g - 2 experiment

First results from g-2 experiment 17.5

The combined results from Fermilab and Brookhaven show a difference with the theory predictions at a significance of 4.2σ

Direct Searches for new physics at the LHC

• Broad range of searches for BSM physics at ATLAS/CMS

- Supersymmetry
- Excited leptons [1]
- Leptoquarks [2]
- Dark matter (e.g. invisible Higgs) [3]
- Vector-like quarks [4]
- Highly ionizing particles (i.e. monopoles) [5]
- Heavy neutrinos [6]
- Lepton-flavour violation [7]
- Extended Higgs sector
 - The Two Higgs Doublet Model (2HDM) [8]
 - Singlet extensions [9], [10]
 - Scalar triplet Models [11], [12]
 - Composite Higgs
- Technicolour (dynamically breaking of EW symmetry) [13]

Leptoquarks

- Leptoquarks are hypothetical particles carrying both baryon number (B) and lepton number (L)
- The spin of a leptoquark state can be either 1 (vector leptoquark) or 0 (scalar leptoquark)
- Leptoquark states are expected to exist in various extensions of the SM
 - The Pati-Salam model [1] is an example predicting the existence of a leptoquark state
 - Scalar leptoquarks are expected to exist at the TeV scale in extended technicolor models
 - Leptoquark states exist in grand unification theories based on SU(5) or SO(10) groups
 - Scalar quarks in supersymmetric models with R-parity violation may also have leptoquark-type Yukawa couplings
 - Compositeness of quarks and leptons also provides examples of models which may have light leptoquark states
- Leptoquarks are an attractive explanation for violation of lepton flavor universalites

More information can be found via: <u>https://pdg.lbl.gov/2021/reviews/rpp2020-rev-leptoquark-quantum-numbers.pdf</u>

Leptoquarks

Possible leptoquarks and their quantum numbers

If leptoquark states are not required to couple directly with SM fermions, different assignments of quantum numbers become possible

Spin	3B + L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\overline{3}$	1	4/3	$\bar{d}_R^c e_R$
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c \ell_L$
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$ar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$ar{d}_R\ell_L$
1	0	3	1	2/3	$ar{q}_L \gamma^\mu \ell_L$ or $ar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$ar{u}_R \gamma^\mu e_R$
1	0	3	3	2/3	$ar{q}_L \gamma^\mu \ell_L$

Taken from: https://pdg.lbl.gov/2021/reviews/rpp2020-rev-leptoquark-quantum-numbers.pdf

Leptoquark production

- At the LHC, Leptoquarks are dominantly produced in pairs or in association with a single lepton/quark
- Rare (resonant) s-channel production due to non-zero lepton parton distribution functions
- Potential contribution to flavour physics (via loop-diagrams)
 - Significant enhancement of rates for rare decays

pair production

single production

s-channel

Leptoquark searches

b, t

 $\nu.\tau$

 ν, τ

b, t

1200

m(LQ₃^u) [GeV]

1300

Leptoquark searches

Limits on single and double production of 1st, 2nd and 3rd generation LQs

Leptoquark searches

Future Leptoquark searches

- Non-zero lepton parton distribution functions allow for resonant LQ production @LHC
- Search for lepton + jet final state

LHC, $\sqrt{s} = 13 \text{ TeV}$

Taken from <u>here</u> and <u>here</u>

5.3.2 Searches for an extended scalar sector

- The 2-Higgs Doublet Model (2HDM) with 2 complex Higgs doublets is (together with the singlet extension) the simplest possible extension
 - Motivated by e.g. supersymmetric model
 - Introduces additional sources for explicit or spontaneous CP violation
- The scalar potential of the two Higgs doublets Φ_1 and Φ_2 can have CP-conserving, CP-violating or charge-violating minima
- Assuming **CP conservation**, the most general scalar potential for two doublets Φ_1 and Φ_2 with hypercharge +1 is given via:

$$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right]$$

• In the minimum of the Higgs potential, the real components of the Higgs doublets have the **VEVs**:

$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{v_1}{\sqrt{2}} \end{pmatrix}$$
 and $\langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ \frac{v_2}{\sqrt{2}} \end{pmatrix}$

• The two complex Higgs doublets contain eight real fields,

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{pmatrix} , \qquad a = 1, 2$$

- Three out of them provide the longitudinal degrees of freedom for the massive W and Z bosons.
- After EWSB we are hence left with five Higgs fields.
 - Assuming CP conservation: h, H (two neutral scalars), A (one neutral pseudoscalar), and H^+ , H^- (two charged Higgs bosons).

• In order to reproduce the W and Z boson masses as in the SM we have to set:

$$v_1^2 + v_2^2 = v$$
 with $v^2 = \frac{1}{\sqrt{2}G_F} \approx 246^2 \,(\text{GeV})^2$

• Important model parameters are the **mixing angle** α **and the ratio of VEVs:**

$$\tan\beta = \frac{v_2}{v_1}$$

- The CP-even mass eigenstates h and H are defined via
- $H = \rho_1 \cos \alpha + \rho_2 \sin \alpha$

$$h = -\rho_1 \sin \alpha + \rho_2 \cos \alpha$$

• The SM Higgs boson can be reproduced via:

$$H^{\rm SM} = \rho_1 \cos\beta + \rho_2 \sin\beta$$

$$= H\cos(\alpha - \beta) - h\sin(\alpha - \beta)$$

- Distinguish several 2HDM scenarios:
 - **Type I 2HDM:** All quarks couple to just one of the Higgs doublets (conventionally chosen to be Φ_2)
 - **Type II 2HDM:** The Q = 2/3 right-handed (RH) quarks couple to one Higgs doublet (conventionally chosen to be Φ_2) and the Q = -1/3 RH quarks couple to the other (Φ_1)
 - Lepton-specific model: The RH quarks all couple to Φ_2 and the RH leptons couple to Φ_1
 - **Flipped model:** The RH up-type quarks couple to Φ_2 , the RH down-type quarks couple to Φ_1 , as in type II, but now the RH leptons couple to Φ_2

• Yukawa-coupling:

$$\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = -\sum_{f=u,d,l} \frac{m_f}{v} \left(\xi_h^f \bar{f} f h + \xi_H^f \bar{f} f H - i\xi_A \bar{f} \gamma_5 f A \right) \\ - \left\{ \frac{\sqrt{2}V_{ud}}{v} \bar{u} (m_u \xi_A^u P_L + m_d \xi_A^d P_R) dH^+ + \frac{\sqrt{2}m_l \xi_A^l}{v} \bar{\nu}_L l_R H^+ + h.c. \right\}$$

Couplings to vector-bosons:

 $g_{hWW} = \sin(\beta - \alpha)g_{H^{SM}WW}$ $g_{HWW} = \cos(\beta - \alpha)g_{H^{SM}WW}$ $g_{AWW} = g_{AZZ} = 0$ $g_{hZZ} = \sin(\beta - \alpha)g_{H^{SM}ZZ}$ $g_{HZZ} = \cos(\beta - \alpha)g_{H^{SM}ZZ}$

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$
ξ_h^l	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin lpha / \cos eta$	$\cos lpha / \sin eta$
ξ_{H}^{u}	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\sin lpha / \sin eta$
ξ^d_H	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos lpha / \cos eta$
ξ_{H}^{l}	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos lpha / \cos eta$	$\sin lpha / \sin eta$
ξ^u_A	\coteta	\coteta	\coteta	\coteta
ξ^d_A	$-\cot eta$	aneta	$-\cot eta$	aneta
ξ_A^l	$-\cot eta$	aneta	aneta	$-\coteta$

Charged Higgs boson

- Dominant production modes: 0
 - $t \rightarrow bH (m_H < m_t)$ $pp \rightarrow tbH^+ (m_H > m_t)$
- Yukawa couplings of charged Higgs:

$$\mathcal{L}_{H^{\pm}} = -H^{+} \left(\frac{\sqrt{2} V_{ud}}{v} \bar{u} \left(m_u X P_L + m_d Y P_R \right) d + \frac{\sqrt{2} m_\ell}{v} Z \bar{\nu_L} \ell_R \right) + \text{H.c.}$$

	Type I	Type II	Lepton-specific	Flipped
X	$\cot \beta$	$\cot \beta$	\coteta	$\cot \beta$
Y	$\cot \beta$	$-\tan\beta$	\coteta	$-\tan\beta$
Z	$\cot eta$	$-\tan\beta$	- aneta	$\cot eta$

- Charged Higgs boson decays
 - \circ In alignment limit cos(β α) → 0, the H⁺ decays dominantly via H⁺→ tb (for m_H > m_t)
 - For light charged Higgs bosons, the decay $H^+ \rightarrow H^+_{\text{https://arxiv.org/pdf}} bc_df projected 4.pdf$

Direct searches for an extended Higgs sector

Interpretations

• Combine

Direct searches for an extended Higgs sector

- Search for doubly-charged Higgs bosons
 - Predicted in models that contains a Higgs triplet.
 - Leading to same-sign dilepton events

Direct searches for an extended Higgs sector

- Search for doubly-charged Higgs bosons
 - Predicted in models that contains a Higgs triplet.
 - Leading to final states with 4 leptons

 $m_{\mu^{\pm\pm}}$ [GeV]

Searches for other BSM models

Direct Search for Dark Matter

Direct Search for excited electrons

- Excited leptons appear in composite models [1]
 - Introduce new constituent particles called **presons**
 - Binding at high energy scales to form the SM fermions and their excited states
 - Explain the existence of the three generations of quarks and leptons

