Testing the Standard Model of Elementary Particle Physics I

Physics at the LHC

Dr. Dominik Duda

13th Januar 2021

Standard Model of particle physics in a nutshell

- The Standard Model (SM) describes the elementary constituents of nature, and the fundamental forces with which those particles interact with each other
- Over time and through many experiments, the Standard Model has become one of the most extensively tested theories in physics
- After the discovery of the Higgs boson in 2012, the particle content of the SM is finally complete
- Principles of the Standard Model:
 - Unitarity (probabilities are limited to unity)
 - Renormalizability (ensures finite predictions)
 - Gauge principle (introduction of interactions)
 - Symmetries:
 - Lorentz (and Poincaré) symmetry
 - CPT symmetry
 - Three gauge symmetries: $SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y}$

However, the Standard Model leaves some questions unanswered

Physics at the LHC

- Use LHC and its experiments to find answers to these open questions
- Today's lecture will highlight a few aspects of the physics programme of the LHC experiments

• Content:

- Experimental setup
- W & Z boson studies
- Higgs boson studies
- Top quark studies
- Flavour-physics
- Direct searches for new physics

Experimental setup

The Large Hadron Collider

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISDLDE Isotope Separator OnLine Device LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight • Instantaneous luminosity

$$\mathcal{L} = fn \frac{N_1 N_2}{A}$$

- N_{1} , N_{2} = Number of hadrons per bunch
 - n = Number of bunches per beam
 - f = Resolution frequency
 - A = Beam cross section
- Integrated luminosity

$$L = \int \mathcal{L} dt$$

The ATLAS Detector

The CMS Detector

The LHCb Detector

Particle identification

Hadronic particle shower

• Cone shaped jets build from calorimeter clusters or tracks

• Muons

• Combined tracks from Inner Detector and Spectrometer

• Electrons

- Inner Detector (ID) track
- Energy clusters in calorimeter system

• Taus

• Jets with either 1 or 3 ID tracks

• Neutrinos

- Pass through the detector without leaving any trace.
- Estimated from energy balance:

$$E_{\mathrm{X,Y}}^{\mathrm{mis}} = -\sum E_{\mathrm{X,Y}}^{\mathrm{obj.}} + E_{\mathrm{X,Y}}^{\mathrm{soft}}$$

W & Z boson studies at the LHC

W/Z + jets production at the LHC

Charge asymmetry in W boson production

• Parton distribution functions (PDFs) of u and d quarks in the proton differ (mainly due to the fact that protons contain two valence u quarks and one valence d quark)

W boson production

- W boson candidate events are selected by requiring:
 - Exactly one identified electron or muon
 - MET > 25 GeV
 - \circ m_T > 50 GeV
- Roughly 20% of all selected events stemm from background processes:
 - Most dominant contributions:
 - Multijets (10%)
 - $\blacksquare \quad Z \to \ell \ell \ (5\%)$

W/Z production cross sections

From: https://arxiv.org/abs/1603.09222

W & Z boson production cross section measurements are sensitive to the PDF sets \rightarrow Can constrain them

WZ production cross section measurements

Same-sign WW boson pair production

- Insights into the mechanism of electroweak (EW) symmetry breaking can be achieved via vector boson scattering (VBS) processes
 - Via studies of vector boson self interaction
- Sensitive to anomalous quartic gauge couplings (aQGC)
- Same-sign W[±]W[±] channel is promising due to small background yields from SM processes

 σ BR(W[±]W[±] \rightarrow $\ell^{\pm}\ell^{\pm}$) = 3.98 ± 0.37 (stat) ± 0.25 (syst) fb

From https://arxiv.org/pdf/2005.01173.pdf

Higgs boson studies at the LHC

The Higgs boson: Last puzzle piece of the SM

- Particles acquire mass via coupling to Higgs field (spontaneous symmetry breaking)
 - Postulated in 1964
 - Higgs boson (excitation of the Higgs field) was finally discovered in 2012
 - **Spin: 0**

• Higgs-potential:

 $V(\phi) = -\mu^2 |\phi|^2 + \lambda |\phi|^4$

Vacuum expectation value

$$v = \frac{\mu}{\sqrt{\lambda}}$$

Higgs boson production at the LHC

• All main production modes are probed at the LHC

Interplay between theory and experiment

• Experimental results depend strongly on the precision of theoretical predictions !!!

Di-Higgs boson production at the LHC

- Probing the Di-Higgs production modes will further our understanding of the SM
 - Parameter of interests:
 - **Self-coupling** κ_{λ}
 - Quartic VVHH coupling κ_{2V}
 - Probing the self-coupling of the Higgs boson allows us to verify the form of the Higgs potential
 - Sensitive to contribution from BSM physics 22

Higgs boson decay

Some channels with low BRs have a clean signature in the detector
 o e.g. H → ZZ and H → yy

(Precision) measurements of Higgs boson properties

- So far all measurements of the Higgs boson properties are consistent with the SM
 - Spin and CP state of the Higgs-boson are determined probing angular distribution of decay products
 - ATLAS data hints very strongly to a Spin^{CP} state of 0⁺
 - Alternative models are rejected with a CL of more than 99.9%
- Higgs-boson mass measured by ATLAS and CMS: m_H = 125.09 ± 0.21(stat) ± 0.11(syst) GeV

(Precision) measurements of Higgs boson properties

- So far all measurements of the Higgs boson properties are consistent with the SM
 - Spin and CP state of the Higgs-boson are determined probing angular distribution of decay products
 - ATLAS data hints very strongly to a Spin^{CP} state of 0⁺
 - Alternative models are rejected with a CL of more than 99.9%
- Higgs-boson mass measured by ATLAS and CMS:
 m_H = 125.09 ± 0.21(stat) ± 0.11(syst) GeV
- With the large statistics of the full Run-II data set, we can probe differential distributions with high precision
 - Makes the Higgs boson to a tool to search for new physics

Ge,

Events /

Data-Background

$H \to \ ZZ^* \to \text{effe}$

- - Good channel to measure properties of the Higgs boson precisely
 - Analyses are based on finding two pairs of isolated leptons with same flavor and opposite electric charges

 $H \rightarrow ZZ^* \rightarrow eeee$

$VH \hspace{0.1in} H \rightarrow bb$

- ggF H \rightarrow bb has a large $\sigma \times$ BR, but can not be separated from huge dijet backgrounds and is difficult to trigger
 - Instead, probe H→ bb in Higgs-Strahlungs events (bb-pair is produced in addition to charged leptons)
- Observation of H → bb decays and VH production mode in 2018

VH $H \rightarrow cc$

- Study of Yukawa coupling of the Higgs boson to 2nd generation quarks is challenging at hadron colliders, due to small branching fractions and large backgrounds
- Charm tagging is crucial for eventual $H \rightarrow cc$ observation
- Upper limit on $\sigma(pp \rightarrow ZH) \times B(H \rightarrow cc)$ at the 95% CL:
 - **Observed:** 2.7 pb (104 times the SM predictions)
 - **Expected:** 3.9 +2.1/-1.1 pb

Source	$\sigma/\sigma_{\rm tot}$
Statistical	49%
Floating Z + jets normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

Taken from https://arxiv.org/pdf/1802.04329.pdf

VH $H \rightarrow cc$

Taken from https://inspirehep.net/files/8f40463278676edecdd49e0d89fb861e

Combinations

Top quark studies at the LHC

The top quark

- Predicted in 1973 by Kobayashi and Maskawa
- Weak-isospin partner of the b-quark.
- Charge: +2/3 e
- Spin: 1/2
- The by far heaviest elementary particle:
 - m, = 172.7 ± 0.5 GeV
- Coupling to the Higgs boson: y_t ≈ 1
- No bound states:

$$au_{
m top} \propto \left(rac{M_W}{M_{
m top}}
ight)^3$$

 $au_{
m top} \approx 4.7 \cdot 10^{-25} \, {
m s}$

 \rightarrow Top quark decays as a quasi free particle

\rightarrow Spin information and polarisation are accessible

since spin decorrelation time (~ 10^{-21} s) is much larger than the hadronisation time (~ 10^{-23} s)

QUARK MASSES

Fermilab 01-XXX

Top quark production at the LHC

Top-quark mass measurements

- Measurement of the top quark mass in the lepton+jets channel:
 - Exploiting a three-dimensional template technique
 - Fitting m_{top}, m_W, R_{ba} (heavy to light-flavour momentum ratio)
 - Use likelihood approach to reconstruct events
 - Reject combinatorial background using a BDT

• Fit yields:

Top-quark mass measurements

- Systematic uncertainties in m_{top} given together with the statistical and systematic uncertainties in GeV
 - For the standard and BDT selections.
 - For comparison, results corresponding to \sqrt{s} =7 TeV are also listed.
- Dominant uncertainties:
 - Jet energy scale
 - b-tagging

\rightarrow top-quark mass can be measured with high precision

	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} =$	8 TeV
Event selection	Standard	Standard	BDT
$m_{\rm top}$ result [GeV]	172.33	171.90	172.08
Statistics	0.75	0.38	0.39
- Stat. comp. (m_{top})	0.23	0.12	0.11
- Stat. comp. (JSF)	0.25	0.11	0.11
– Stat. comp. (bJSF)	0.67	0.34	0.35
Method	0.11 ± 0.10	0.04 ± 0.11	0.13 ± 0.11
Signal Monte Carlo generator	0.22 ± 0.21	0.50 ± 0.17	0.16 ± 0.17
Hadronization	0.18 ± 0.12	0.05 ± 0.10	0.15 ± 0.10
Initial- and final-state QCD radiation	0.32 ± 0.06	0.28 ± 0.11	0.08 ± 0.11
Underlying event	0.15 ± 0.07	0.08 ± 0.15	0.08 ± 0.15
Colour reconnection	0.11 ± 0.07	0.37 ± 0.15	0.19 ± 0.15
Parton distribution function	0.25 ± 0.00	0.08 ± 0.00	0.09 ± 0.00
Background normalization	0.10 ± 0.00	0.04 ± 0.00	0.08 ± 0.00
W+jets shape	0.29 ± 0.00	0.05 ± 0.00	0.11 ± 0.00
Fake leptons shape	0.05 ± 0.00	0	0
Jet energy scale	0.58 ± 0.11	0.63 ± 0.02	0.54 ± 0.02
Relative <i>b</i> -to-light-jet energy scale	0.06 ± 0.03	0.05 ± 0.01	0.03 ± 0.01
Jet energy resolution	0.22 ± 0.11	0.23 ± 0.03	0.20 ± 0.04
Jet reconstruction efficiency	0.12 ± 0.00	0.04 ± 0.01	0.02 ± 0.01
Jet vertex fraction	0.01 ± 0.00	0.13 ± 0.01	0.09 ± 0.01
b-tagging	0.50 ± 0.00	0.37 ± 0.00	0.38 ± 0.00
Leptons	0.04 ± 0.00	0.16 ± 0.01	0.16 ± 0.01
Missing transverse momentum	0.15 ± 0.04	0.08 ± 0.01	0.05 ± 0.01
Pile-up	0.02 ± 0.01	0.14 ± 0.01	0.15 ± 0.01
Total systematic uncertainty	1.04 ± 0.08	1.07 ± 0.10	0.82 ± 0.06
Total	1.28 ± 0.08	1.13 ± 0.10	0.91 ± 0.06

Top-quark pairs as standard candles

- Top-quark pair events (in particular dilepton decays) lead to a clear signatures in the detector

 Purities of > 90% can easily be reached
- Use top-quark pair events to calibrate e.g. b-tagging or top/W tagging algorithms

Flavour-physics at the LHC

Lepton flavour universality tests

- In the SM couplings of gauge bosons to leptons are independent of lepton flavour
 - Branching fractions differ only by phase space and helicity-suppressed contributions
- LHCb is performing LFU tests in B hadron decays:

$$R_{\mathcal{K}^{(*)}} = rac{\mathcal{B}\left(B
ightarrow \mathcal{K}^{(*)} \mu^+ \mu^-
ight)}{\mathcal{B}\left(B
ightarrow \mathcal{K}^{(*)} e^+ e^-
ight)} \stackrel{ ext{sm}}{\cong} 1$$

\rightarrow Any significant deviation would be a smoking gun for New Physics.

Lepton flavour universality tests

 $R_{K} = 0.846 \stackrel{+0.042}{_{-0.039}} (\text{stat}) \stackrel{+0.013}{_{-0.012}} (\text{syst})$

\rightarrow Evidence of LFU violation at 3.1 σ

Pentaquarks

Pentaquarks = hadrons composed of **four quarks and one antiquark**

Observation of pentaquark states by LHCb in 2015 and 2019

Illustration of the possible layout of the quarks in a pentaquark particle such as those discovered at LHCb. The five quarks might be assembled into a meson (one quark and one antiquark) and a baryon (three quarks), weakly bound together

The five quarks might be tightly bonded

Pentaquarks

- The prospect of hadrons with more than the minimal quark content (qq or qqq) was proposed by Gell-Mann in 1964 [1] and Zweig [2]
 - Followed by a quantitative model for two quarks plus two antiquarks (Tetraquarks) [3].
 - The idea was expanded [4] to include hadrons composed of **four quarks plus one antiquark**
- Large yields of $\Lambda_{b}^{0} \rightarrow J/\psi \text{ K}^{-}p$ decays are available at LHCb
 - Expected to be dominated by $\Lambda^* \to K^- p$
 - It could also have exotic decays via: $\Lambda_b^0 \to K^- P_c^+$
 - P_c^+ mainly decays via: $P_c^+ \rightarrow J/\psi p$

44

Direct searches for new physics

Supersymmetry (SUSY)

Search for Supersymmetry (SUSY)

• Search for stop quark pair production

• Search for multi-jet final state incl. large amount of missing E_T

Probe phase space regions sensitive to contributions from SUSY signal

Search for Supersymmetry (SUSY)

• Search for stop quark pair production

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	S	ignatur	e ∫	` <i>L dt</i> [fb⁻	1]		Mass limit					Reference
S	$\tilde{q}\tilde{q},\tilde{q}\! ightarrow\!q\tilde{\chi}_{1}^{0}$	0 e, μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	 <i>q</i> [10× De <i>q</i> [1×, 8× 	egen.] Degen.]	0.43	0.71	1	1.9	m(𝔅˜1)<400 GeV m(𝔅̄)-m(𝔅˜1)=5 GeV	ATLAS-CONF-2019-040 1711.03301
Inclusive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	ğ ğ			Forbidden		2.35 1.15-1.95	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\chi}_1^0)=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell\tilde{\chi}_{1}^{0})$	1 e, μ ee, μμ	2-6 jets 2 jets	E_T^{miss}	139 36.1	ĝ ĝ				1.2	2.2	m(x̄ ⁰ ₁)<600 GeV m(x̄)-m(x̄ ⁰ ₁)=50 GeV	ATLAS-CONF-2020-047 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	$E_T^{\rm miss}$	139 139	ĩg ĩg				1.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	$E_T^{\rm miss}$	79.8 139	ĩg ĩg				1.25	2.25	m($ ilde{\chi}_1^0$)<200 GeV m($ ilde{g}$)-m($ ilde{\chi}_1^0$)=300 GeV	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1 {\rightarrow} b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$		Multiple Multiple		36.1 139	${ar b_1\ {ar b_1}}$	Forbi	dden Forbidden	0.9 0.74		$m(\tilde{\chi}_{1}^{0})=20$	$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ 00 GeV, $m(\tilde{\chi}_{1}^{+})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{+})=1$	1708.09266, 1711.03301 1909.08457
ks on	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e, μ 2 τ	6 b 2 b	$E_T^{\rm miss}$ $E_T^{\rm miss}$	139 139	\tilde{b}_1 \tilde{b}_1	Forbidden		0.13-0.85	0.23-1.35	Δι	$n(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 ATLAS-CONF-2020-031
luar	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	E_T^{miss}	139	ĩ ₁				1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
. sq	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	E_T^{miss}	139	<i>ĩ</i> ₁		0.44-0	.59	1.10		m(X ₁ ⁰)=400 GeV	ATLAS-CONF-2019-017
gen ct p	$t_1 t_1, t_1 \rightarrow \tau_1 b \nu, \tau_1 \rightarrow \tau G$	$1\tau + 1e, \mu, \tau$	2 jets/1 b	Emiss	36.1	<i>l</i> ₁			0.85	1.16		$m(\tau_1)=800 \text{ GeV}$	1803.10178
3rd dire	$I_1I_1, I_1 \rightarrow c X_1 / c c, c \rightarrow c X_1$	0 e, μ	mono-jet	E_T E_T^{miss}	36.1	\tilde{t}_1 \tilde{t}_1		0.46 0.43	0.05			$m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV}$ $m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1805.01649 1711.03301
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 е, µ 3 е, µ	1-4 b 1 b	E_T^{miss} E_T^{miss}	139 139	Ĩ1 Ĩ2		Forbidden	0.067 0.86	-1.18	m($m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$ $\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{\mu}_{1})-m(\tilde{\chi}_{2}^{0})=40 \text{ GeV}$	SUSY-2018-09 SUSY-2018-09
	${ ilde \chi}_1^\pm { ilde \chi}_2^0$ via WZ	3 е, µ ее, µµ	≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	$ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 $ $ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 $	0.205		0.64			$m(\tilde{\chi}_{\pm}^{0})=0$ $m(\tilde{\chi}_{\pm}^{\pm})-m(\tilde{\chi}_{\pm}^{0})=5 \text{ GeV}$	ATLAS-CONF-2020-015 1911.12606
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 e, µ		E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}$		0.42				$m(\tilde{\chi}_1^0)=0$	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	0-1 e, µ	$2 b/2 \gamma$	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Fo	orbidden		0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	2004.10894, 1909.09226
W	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_L / \tilde{\nu}$	$2 e, \mu$		E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}$			1.0			$m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$	1908.08215
Шi	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2 τ		E_T^{miss}	139	$\tilde{\tau} [\tilde{\tau}_L, \tilde{\tau}_R$,L] 0.10	6-0.3 0.12-0.39				$m(\tilde{\chi}_1^0)=0$	1911.06660
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, μ ee, μμ	0 jets ≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	ĩ ĩ	0.256		0.7			$m(\tilde{\ell}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1908.08215 1911.12606
	ĤĤ, Ĥ→hĜ/ZĜ	0 e, μ 4 e, μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 139	Η̈́ Ĥ	0.13-0.23	0.5	0.29-0.88 5			$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 ATLAS-CONF-2020-040
-lived cles	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} = 0.15 $		0.46				Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
arti	Stable g R-hadron		Multiple		36.1	ğ					2.0		1902.01636,1808.04095
P	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) =$	10 ns, 0.2 ns]			_	2.05 2.4	m(X10)=100 GeV	1710.04901,1808.04095
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ			139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [B]	$R(Z\tau)=1$, $BR(Ze)=1$] (0.625 1.0	5		Pure Wino	ATLAS-CONF-2020-009
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu, e\tau, \mu\tau$			3.2	ν _τ					1.9	$\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e,μ	0 jets	E_T^{miss}	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 = [\lambda_i]$	$\lambda_{33} \neq 0, \lambda_{12k} \neq 0$		0.82	1.33		$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
PV	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-	5 large-R je Multiple	ets	36.1 36.1	$\tilde{g} = [m(\tilde{\chi}_1^0)]$ $\tilde{g} = [\chi'_{112}=2)$	200 GeV, 1100 Ge e-4, 2e-5]	V]	1.0	1.3	1.9 2.0	Large \mathcal{X}_{112}^{0} m $(\tilde{\chi}_{1}^{0})$ =200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
Ξ	$t\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		Multiple		36.1	$t [\lambda''_{323}=26]$	e-4, 1e-2]	0.5	5 1.0	5		m(X1)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$t\bar{t}, t \rightarrow b\chi_1^-, \chi_1^- \rightarrow bbs$		$\geq 4b$		139	1		Forbidden	0.95			m(X₁)=500 GeV	ATLAS-CONF-2020-016
	$i_1i_1, i_1 \rightarrow DS$ $\tilde{i}_1\tilde{i}_1, \tilde{i}_1 \rightarrow a\ell$	2011	2 jets + 2 b		36.7	[1] [qq, bs]		0.42	0.01	0.4-1.4	15	$BB(\tilde{t}, \rightarrow be/bu) > 20\%$	1/10.0/1/1 1710.05544
	sisti si she	1μ	DV		136	i₁ [1e-10-	< X' <1e-8, 3e-10	0< λ'_{23k} <3e-9]	1.0	0.4-1.4	1.6	$BR(\tilde{t}_1 \to q\mu) = 100\%, \ cos\theta_t = 1$	2003.11956
*Only	a selection of the available mas	s limits on r	new state	s or	1	0 ⁻¹				1		Mass scale [TeV]	,

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Direct Search for heavy Resonances

- Most searches for resonances in ATLAS and CMS follow the same principle:
 - Perform (quasi) model-independent search for a bump in a smoothly falling mass spectrum

Direct Search for heavy Resonances

Direct Search for heavy Resonances

In the absence of a signal:

- Derive model dependent exclusion contours
- Set "model independent" limits on the production cross section times branching ratio

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$

ATLAS Preliminary $\sqrt{s} = 8, 13$ TeV

	Reference
n a	$\sqrt{s} = 8$, 13 lev

	Model	<i>ℓ</i> , γ	Jets†	E ^{miss}	∫£ dt[fb	⁻¹] Limit	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD } \text{non-resonant } \gamma\gamma \\ \text{ADD } \text{Do non-resonant } \gamma\gamma \\ \text{ADD } \text{BH } \text{high } \Sigma p_T \\ \text{ADD } \text{BH } \text{high } \Sigma p_T \\ \text{ADD } \text{BH } \text{multijet} \\ \text{RSI } G_{KK} \rightarrow WW / ZZ \\ \text{Bulk } \text{RS } G_{KK} \rightarrow WW \rightarrow qqqq \\ \text{Bulk } \text{RS } G_{KK} \rightarrow tt \\ \text{2UED } / \text{RPP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ \hline \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ - \\ 2 \ j \\ \geq 2 \ j \\ 3 \ j \\ - \\ el \\ 2 \ J \\ \geq 1 \ b, \geq 1 \\ J \\ \geq 2 \ b, \geq 3 \end{array}$	Yes - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp 7.7 TeV n = 2 Ms 8.6 TeV n = 3 HLZ NLO Mm 8.9 TeV n = 6 Mm 8.9 TeV n = 6, Mp = 3 TeV, rot BH Mm 9.55 TeV n = 6, Mp = 3 TeV, rot BH Msx 9.55 TeV n = 6, Mp = 3 TeV, rot BH Msx 9.55 TeV n = 6, Mp = 3 TeV, rot BH Msx 9.55 TeV N/Mp = 0.1 Grax mass 1.6 TeV k/Mp = 1.0 Bex mass 3.8 TeV Ter (1,1), g/A ^(1,1) → tt) = 1	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02280 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \tau \\ \mathrm{SSM}\; W' \to \nabla \\ \mathrm{VT}\; V' \to WZ \to qaqq \; \mathrm{model}\; \mathrm{B} \\ \mathrm{HVT}\; V' \to WH/ZH\; \mathrm{model}\; \mathrm{B} \\ \mathrm{LRSM}\; W_R \to tb \\ \mathrm{LRSM}\; W_R \to th \\ \mathrm{LRSM}\; W_R \to th \\ \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ \tau, \mu \\ 1 \ \tau \\ \end{array}$ $\begin{array}{c} 0 \ e, \mu \\ multi-channel \\ 2 \ \mu \end{array}$	- 2 b $\geq 1 b, \geq 1 J/$ - 2 J el el 1 J	- - Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Zr mass 5.1 TeV Zr mass 2.4 TeV Zr mass 2.1 TeV Wr mass 3.0 TeV Wr mass 6.0 TeV Wr mass 3.7 TeV Wr mass 3.6 TeV Wr mass 3.6 TeV Wr mass 3.5 TeV Wr mass 5.0 TeV Wr mass 5.0 TeV Wr mass 5.0 TeV Wr mass 5.0 TeV	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ 21.8 TeV η _{LL} Λ 40.0 TeV η _L Λ 2.57 TeV C _{tt} = 4π	1703.09127 1707.02424 1811.02305
MD	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ Μ) 0 e, μ 0 e, μ 0-1 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$ 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	mmmed 1.55 TeV g_q=0.25, g_g=1.0, m(\chi) = 1 GeV mmmed 1.67 TeV g=1.0, m(\chi) = 1 GeV MA 700 GeV m(\chi) < 150 GeV	1711.03301 1711.03301 1608.02372 V 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;BF_{5/3}\;T_{5/3}; J_{5/3} \rightarrow Wt + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe $2(SS)/\geq 3 e_{,}$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el µ ≥1 b, ≥1 j ≥ 1 b, ≥ 1j ≥ 1 b, ≥ 1j ≥ 4 j	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV SU(2) doublet B mass 1.34 TeV SU(2) doublet T mass 1.34 TeV SU(2) doublet T mass 1.64 TeV SU(2) doublet Y mass 1.64 TeV SU(2) doublet B mass 1.85 TeV SU(2) doublet B mass 1.21 TeV SU(2) doublet Q mass 690 GeV SU(2) doublet	1808.02343 1808.02343 1 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	- 1γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV only u* and d*, A = m(q*) q* mass 5.3 TeV only u* and d*, A = m(q*) b* mass 2.6 TeV only u* and d*, A = m(q*) * mass 2.6 TeV r * mass 1.6 TeV A = 3.0 TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \frac{1 \ e, \mu}{2 \ \mu} $ 2,3,4 e, μ (S: 3 e, μ, τ - - = 13 TeV	2j 2j S)	Yes 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV m(W _R) = 4.1 TeV, g _L = g _R N _R mass 3.2 TeV m(W _R) = 4.1 TeV, g _L = g _R H ^{±±} mass 870 GeV DY production H ^{±±} mass 400 GeV DY production, 8(H [±] ₁ → tr) = molti-charged particle mass 1.22 TeV DY production, 8(H [±] ₁ → tr) = monopole mass 2.37 TeV DY production, g = 5e 10 C ⁻¹ 10 10	ATLAS-CONF-2018-020 1809.11105 1710.09748 1 1411.2921 1812.03673 /2 1905.10130
	pa	rual uala	Tuil a	ata		Mass scale [Te	V]

*Only a selection of the available mass limits on new states or phenomena is shown. +Small-radius (large-radius) jets are denoted by the letter j (J).

Concluding remarks

- The standard Model of particle physics leaves some questions unanswered
 - Use LHC experiments to find answer to these questions
- LHC experiments have a diverse physics programme
 - SM high precision measurements (W, Z, top-quark)
 - Higgs boson property measurements
 - Searches for BSM physics (SUSY, heavy vector bosons, exrta-dimensions, ...)
 - Flavour-physics
 - o
- New round of data-taking with increased center-of-mass energy to be started.
 - Exciting times ahead of us !!!