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1 Groups
Question: What is a group?

A group is a set of objects (elements or members), which can be com-
bined by some operation (addition, multiplication, etc.). For a description
of the Standard Model (SM), it is only necessary to consider groups under
multiplication, and therefore the notation of multiplication will be used for
simplicity from the start. When applying this operation, four conditions
must be satisfied:

1. For all elements a, b in the group, the combination ab is also a member
of the group.

2. The operation must be associative, i.e. (ab)c = a(bc).

3. There is an identity element e, such that ae = ea = a for all elements.
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4. Every element a has an inverse a™*, such that aa™ =a " "a =e.

The identity element is commonly written e for generality. For multi-
plicative groups, e is just the number 1, or an appropriate identity matrix.
Under addition, for example, the identity element is 0. From now on, “1”
will replace e as labeling the identity element.

1.1 Examples

The simplest group is the trivial group:

{1}. (1)

This has only one member, and yet satisfies all of the properties required of
a group (under multiplication). We can add one member to this to construct
a simple non-trivial group:

{1, -1} (2)



Here, each element is its own inverse.
We can further extend this, to construct a four-element complex group:

{1,-1,i,—i}. (3)

The new elements, i and —i, are inverses of each other. Although still a
very simple group to analyse, it is instructive to write out the multiplication
table for this group.

The top-left section of this table involves only the elements 1 and —1. In
fact, the group of Equation (2) is a subgroup of Equation (3). The bottom-
right corner is not equivalent - the ¢ and —¢ elements do not form a subgroup.
However, if they did, then this group would factorise into a product of groups.
In the Standard Model, this is exactly what happens; the final symmetry
group of the SM is a product of three simpler groups, U(1) x SU(2) x SU(3).
These component subgroups are, however, more complex than the simple
discrete groups considered so far. In fact, they all belong to a category of
continuous groups, known as Lie groups.

1.2 Lie groups

The defining property of a Lie group is that all elements can be reached
by successive infinitesimal steps, usually starting from the identity element.
Here we introduce the group U(1) to serve as an example. The name U(1)
derives from the fact that this is a unitary group with one dimension. All
numbers on the complex plane with modulus 1 are members of this group.

Im

Consider a member (1 + i€) of this group a small distance e from the
identity. When thought of in terms of transformations, this corresponds to
a small (eventually, infinitesimal) rotation of the complex plane. Rewriting
€ as /N, where N is a large integer, we can imagine applying this small
rotation N times. Mathematically, we achieve this by multiplying (14+ia/N)



by itself N times, i.e. by computing (1 + ia/N). Taking the limit as
N — 00, we obtain a generic member of the group:

lim (1 n zﬂ)N _ o (4)
N—oo N '

This is therefore a Lie group, as only an infinitesimally small region around
the identity element needs to be known in order to characterise the entire
group.

Due to this property, Lie groups are often characterised in terms of their
generators, which in our case can be thought of as unit vectors describing
possible directions in which transformations can be made. The number of
these directions is called the dimension n of the group. With a collection
of generators T, and associated parameters a (again, one for each dimen-
sion), a generic Lie group member is written in exponential notation like
Equation (4):

a-T\Y
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U(1) has only one dimension, and also only one generator. Comparing
Equations (4) and (5), it is clear that the generator for U(1) is simply the
number 1. When there is more than one generator, it should be remembered
that the properties of groups say nothing about whether or not different
members of the group will commute. The same observation applies to the
generators of a Lie group. The commutators of the group generators define
the algebra of the group:

[Taa Tb] = TaTb - TbTa = ifabcTc' (6)

Note that the right-hand side is linear in the group generators; this is a
consequence of all products of group members also being in the group.

The numbers fu. are called the group’s structure constants. If all are
zero, then the group’s generators (and elements) all commute; the group is
Abelian. U(1) is an Abelian group, as all complex numbers with modulus one
commute with each other. Multi-dimensional groups may be non-Abelian.
When applied to field theories, these groups lead to self-interacting gauge
fields.

2 Gauge transformations and symmetry groups

2.1 Preamble: Classical electromagnetism

The classical Lagrangian for an otherwise free particle of charge @) in an
electromagnetic field is
1

L:§m¢2+Q:b-A—Q<I>. (7)



Using this, one finds that the canonical momentum p = 9L /0% is no longer
the physical particle’s momentum ma, but has an additional contribution
from the electromagnetic field:

oL
= —— = T A
p=o =md +Q (8)

Similarly, the classical Hamiltonian has a contribution from the electric po-
tential Q@

H = p-i#—1L
_ (ma’z+QA)-a‘3—%md:2—Q:‘c-A+Q<I>

= %mﬁ + Q. (9)

Formally, we can then recover the particle’s physical energy and momentum
from the canonical variables by subtracting these extra contributions:

Dphys. = mE=p-—QA
[
Eppys. = ime =H - Q2. (10)

These substitutions have exact analogues in all forms of quantum mechan-
ics, including field theory, when one wishes to incorporate electromagnetic
effects on a particle’s motion. Naturally, classical variables must be replaced
by appropriate quantum mechanical operators, but the form of the substitu-
tions in Equation (10) is identical. As we will later see, the other forces in the
Standard Model can be introduced using similar modifications of canonical
variables.

Before moving on to considering quantum mechanical operators, one
should remember that the EM potentials & and A can be freely modified
by a gauge transformation, with ultimately no physical effects:

b — = —%; A—>A’:A+VX. (11)

Here, x is understood to be an arbitrary function of space and time. Note
that this will change the canonical variables defined in Equations (7), (8)
and (9), but not the physical momenta calculated in Equation (10).

2.2 Electromagnetism in quantum mechanics
In the quantum mechanical context, canonical energy and momentum vari-

ables are replaced by differential operators in the usual way:

E =i— and p = —iV; or, in covariant notation Pu=10,.  (12)
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Equations of motion inevitably involve these operators acting on wavefunc-
tions or fields, here referred to generically with the symbol ¢. In addition,
covariant notation will be used for simplicity, although the separation into
energy and momentum components (e.g. for application in the Schrédinger
equation) is straightforward.

When electromagnetic interactions are included, physical four-momentum
operators can be extracted by modifying the canonical operators in a way
analagous to Equation (10):

ﬁu - ]3# - QAu
= (0, +1QA,)
- D, (13)

In the last line, the covariant derivative D,, = 0,,4+1QA,, is introduced, which
replaces 0, when calculating physical measurables for interacting particles
or fields.

One immediate issue is that the covariant derivative varies under a gauge
transformation (11) to

D, — D, = 8, +iQA, — iQd,x (14)

Thus, it appears that the physical measurable expectation values <1/)|E’|1/)>
and (¢|p|y) change, violating gauge invariance. This apparent problem can
be elegantly solved by additionally transforming the wavefunction v, which
has no classical analogue, according to

P — Y = 'Y (15)
Then, the combination D, transforms as follows:

Dy — Dy = 9,(e"9Xep) + i€’ XQA, 1 — iQ (0" x)e"Xep
= "G +iQ(Iux)e" XY + ie" QA1 — iQ (9 X)e' WXy
= eiQX(au + iQAu)¢
= XD, (16)

modified only by an overall (space-time-dependent) phase. Any physical
expectation value will be pre-multiplied by the conjugate of a wave function
which transforms according to * — ¢* = e~"@X¢)* and will therefore be
left unchanged by the combined transformation described by Equations (14)
and (15).

Exercise: Prove that this also works for the second derivative D, D", as
in the Klein-Gordan equation, for example.



Exercise: Beginning with a free particle (A* = 0), consider the gauge
transformation given by x = —arg(¢)/Q. What are the resulting
potentials and new wavefunction? Interpret the result in terms of
physical quantities.

arg (i)

Exercise: (more tricky) Repeat the previous exercise for y = — Qe

2.3 Relation to the U(1l) symmetry group

It is well known that all observable quantites are invariant under a global
phase transformation of a wave function or field

¥ — ) =€y, (17)

where the phase ange ¢ does not depend on space-time coordinates. The
prefactor ¢’ can be recognised as a member of the U(1) group considered in
Section 1.2. The transformation (17) is referred to as a global U(1) transfor-
mation. Note that it alters an internal space of the wavefunction, distinct
from external space-time.

When electromagnetic interactions are introduced, we find that now a
much more stringent symmetry exists, that of a local U(1) transformation, of
Equation (15) (recall that x is an arbitrary function of space-time). Thus,
it appears that internal symmetries of a wavefunction or field are deeply
related to their gauge interactions. If we began with a non-interacting (free)
particle, we could “derive” the electromagnetic interaction by requiring that
the transformation in Equation (15) has no effect on measurable quantities.
We would then be forced to introduce a new field A* that simultaneously
transforms as Equation (11), and to form a covariant derivative like (13) to
represent the particle’s physical four-momentum.

In the Standard Model, all gauge interactions are derived in this way,
starting from Lie group operators applied to an internal space (called a
Hilbert space), and demanding symmetry in the physical equations upon
arbitrary local rotations within this space. Unlike electromagnetism, the
other gauge groups of the SM are non-Abelian, a feature we will begin to
explore in the next section.

2.4 A first look at SU(2)

The name SU(2) refers to the group of special unitary matrices with two
dimensions. The term “special” means that these matrices have determinant
1, thus preserving the normalisation of state vectors upon which they act.
As with any Lie group, any member of SU(2), G, can be written in terms
of the group’s generators T’

G =c>T, (18)



The generators of SU(2) are familiar, as they are proportional to the Pauli
spin matrices:

1/0 1 1 /0 —i 1/1 0
T. == T,=-1{. T, == . 1
’ 2(1 0)’ v 2(@ 0)’ ? 2(0 —1) (19)
These are Hermitian matrices with zero trace, which ensure that the group
elements in Equation (18) are unitary with unit determinant. Correspond-
ingly, ¢ is a three-component vector in the associated Hilbert space. In
addition, the generator matrices have the following important properties:

1
[To, Ty] = i€qpeTr, and T2 = 5I. (20)
Exercise: Express o - T as a 2 x 2 matrix. Use the Taylor series expansion
of (18) to find G. Does it have the expected properties? What value
of |a| corresponds to a full rotation?

Assuming that these matrices can operate on a wavefunction 1, we can
begin to deduce the form of the associated gauge fields by insisting on a local
symmetry based on this group. That is, we are allowed to vary a arbitrarily
in space and time. The state ¢ transforms as follows:

P — P = G, (21)

and we introduce a covariant derivative to account for the interactions with
this field:
D, =0,+1i9B, =0, +1igT - b,,. (22)

b, is a vector of three new gauge fields, corresponding to the number of
group generators. ¢ is an associated coupling strength, analagous to the
electric charge. Under the gauge transformation G, the field B, transforms
as follows:

B, — B, =GB,G ™" + é(auG)G_l. (23)

Exercise: Show that under this transformation D},1)" = GD,1).

Equation (23) is the general form for the transformation of a gauge field
derived through symmetry principles. For Abelian groups, Equation (23)
reduces to the same form as given in Equation (11) for the U(1) transforma-
tion. As SU(2) is a non-Abelian group, G' and B,, do not commute, which
complicates further analysis but also yields a rich structure for the gauge
fields. This will be examined further in the next tutorial.



