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1 SU(3) generators and symmetry examples

In the last tutorial, we essentially completed the description of the La-
grangian terms for non-Abelian gauge fields. Although the discussion mostly
referred to SU(2), the mathematics is identical for any non-Abelian group,
in particular SU(3) associated with the strong nuclear force. Only the num-
ber of generators and the self-couplings described by the structure constants
are different.

The fundamental representation of SU(3) (corresponding, e.g., to quark
charges) has the same number of elements as the group’s dimension, three.
These can be illustrated on a two-dimensional plane, analagous to the line
drawing of the SU(2) charges in the last tutorial:

!
! !

In group theory notation, this is 3. In contrast to SU(2), there is also a
fundamental 3̄ representation, distinct from 3:

!
! !

The adjoint representation can be obtained via the group product 3⊗ 3̄.
This produces a singlet state (we will see this again later) and an octet, in
other words 3 ⊗ 3̄ = 8 ⊕ 1. The charges of these states can be seen by
imagining the 3̄ charges centered on each point of the 3 graph in turn. The
resulting charge diagram is as follows:
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Neglecting the singlet, there are therefore 8 members of the adjoint rep-
resentation, 8 SU(3) generators and 8 types of gluon. The group generators
can be represented by eight 3× 3 traceless Hermitian matrices1:

T1 =
1
2




0 1 0
1 0 0
0 0 0



 , T2 =
1
2




0 −i 0
i 0 0
0 0 0



 , T3 =
1
2




1 0 0
0 −1 0
0 0 0



 ,

T4 =
1
2




0 0 1
0 0 0
1 0 0



 , T5 =
1
2




0 0 −i
0 0 0
i 0 0



 , (1)

T6 =
1
2




0 0 0
0 0 1
0 1 0



 , T7 =
1
2




0 0 0
0 0 −i
0 i 0



 , T8 =
1

2
√

3




1 0 0
0 1 0
0 0 −2



 .

These act on 3 × 1 column vectors of the fundamental representation, i.e.
quark states. Note that there is one more independent Hermitian 3 × 3
matrix, proportional to the identity matrix. As this corresponds to a null
operation, this belongs to the SU(3) singlet state.

These matrices have a few other interesting properties. One is that T1,
T2 and T3 together look very similar to the SU(2) generator matrices. In
fact, they satisfy all the SU(2) properties and themselves form a group,
acting only on the first two colours. Thus SU(2) is actually a subgroup of
SU(3).

Finally, it should be remembered that these matrices are usually rearran-
ged into raising and lowering operators that more elegantly describe tran-
sitions between the various states. These operators are usually denoted I±

(corresponding to the SU(2) subgroup, presumably named from the analogy
with isospin), V ± and U±, defined as follows:

I± = T1 ± iT2,

V ± = T4 ∓ iT5, (2)
U± = T6 ± iT7.

1The normalisation here is chosen such that Tr(T 2
a ) = 1

2 . The matrices used here are
related to the λa matrices of the lecture notes by Ta = 1

2λa.
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The diagonal operators T3 and T8 remain unchanged. Also note the relative
sign change in the definition of V ±, this ensures that the raising opera-
tors operate in a circular fashion. More details, and the full interaction
Lagrangian for strongly interacting particles, are given in the lecture notes.

1.1 SU(3) symmetry in baryonic systems

In the Standard Model, the SU(3) symmetry associated with the strong nu-
clear force is unbroken. This is in sharp contrast to the broken electroweak
symmetries that will be discussed next. It also means that the structure of
the group symmetry is more apparent in low-energy physics, albeit compli-
cated significantly by the very large coupling constant associated with the
strong force.

Due to the strength of this force, only colour singlets are observed in
nature, meaning that we cannot directly observe isolated quarks or gluons.
Relationships between the lowest-mass baryon states however strongly point
to a force based on the SU(3) symmetry group, which we will review here.

The wave function for a baryon approximately factorises into four com-
ponents, describing colour (C), spin (S), position (X) and flavour (F ):

ψ = ψCψSψXψF . (3)

The constituent quarks must have half-integer spin, or else the proton and
neutron could not be fermionic. Therefore, the overall wavefunction must be
fully antisymmetric under exchange of any two quarks, by the spin-statistics
theorem.

First, consider ψX . If we consider only ground-state baryons, all quarks
will be in s-wave orbitals, fully symmetric under exchange of quarks.

There is a nearly perfect SU(3) flavour symmetry for the lowest mass
baryon (and meson) states, only broken slightly for states of different ab-
solute strangeness. Ultimately, this comes about from the low mass of the
up, down and strange quarks (all less than 100 MeV), much less than the
baryon mass scale of ∼ 1 GeV.

With this approximate symmetry in mind, it was found that the least
massive baryons could be arranged into an octet of spin-12 particles (includ-
ing the nucleons) and decuplet of spin-3

2 particles. The simplest way to
obtain a decuplet of states is by the composition of three quarks, denoted
by 3 ⊗ 3 ⊗ 3.2 Without going into details, this yields a fully symmetric
decuplet, two octets with mixed exchange symmetries, and a flavour singlet:

3 ⊗ 3⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1. (4)

It is the decuplet that most concerns us here. Its layout in flavour space
is especially striking:

2The discussion applies equally to anti-baryons, where the flavour representation be-
comes 3̄ ⊗ 3̄ ⊗ 3̄.
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! ! ! !
! ! !

! !
!

The states at the corners correspond to the obviously symmetric uuu, ddd
and sss combinations, and by construction the entire multiplet is symmetric
under quark exchange.

If we have three spin-1
2 quarks, then the spin wavefunction ψS belongs to

the 2 ⊗ 2 ⊗ 2 representation of SU(2). This reduces to two spin-12 doublets
with mixed exchange symmetry and a spin-3

2 quartet. Note that spin-3
2

quarks would have a substantially more complex structure. Experimentally,
the baryons in the decuplet are found to have spins of 3

2 , and so ψS must
correspond to this quartet. This quartet includes the states ↑↑↑ and ↓↓↓,
obviously symmetric under particle exchange.

Thus, so far, the spatial, flavour and spin parts of the wavefunction for
the baryon decuplet are fully symmetric under quark exchange, prompting
the proposal of colour as a possible way to introduce antisymmetry into the
system. If the force binding the quarks together is to be described using an
SU(N) symmetry, then the three-quark structure strongly suggests trying
N = 3. This immediately restricts us to the singlet that results from the
3 ⊗ 3 ⊗ 3 representation3. This state is, in fact, completely antisymmetric
with respect to particle exchange:

ψC =
1√
6

(RGB + GBR + BRG − RBG − BGR − GRB) , (5)

and therefore the product of all four wavefunction components is antisym-
metric, as required.

2 A first look at the Higgs field

It was noted at the end of the second tutorial that gauge fields obtained via
a symmetry principle must be massless. This describes the electromagnetic
and strong forces well, but is insufficient for the weak nuclear force. The W
and Z gauge bosons that mediate the weak force have substantial masses of
80 and 90 GeV, respectively, which has the effect of setting a short range
∼ 1/MW/Z for weak interactions in the low energy limit.

3This refers now to colour, and should not to be confused with the previous discussion
of SU(3) flavour symmetry.
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What is perhaps less obvious is that, due to the peculiar nature of the
weak interaction, all weakly interacting fermions must also be massless. It
might naively be thought that a fermionic mass term mψ̄ψ would always
remain invariant under any transformation ψ → Gψ. It turns out that this
is not the case for the weak nuclear force, which acts differently on the left-
and right-handed components of ψ. We can always rewrite ψ as a sum of
these components:

ψ = ψL + ψR

=
1
2
(1 − γ5)ψ +

1
2
(1 + γ5)ψ. (6)

The mass term mψ̄ψ therefore has four components, as follows:

mψ̄ψ = m(ψ̄LψL + ψ̄LψR + ψ̄RψL + ψ̄RψR). (7)

The matrix γ5 is Hermitian, which allows us to evaluate ψ̄L as ψ†(1−γ5)γ0 =
ψ̄(1 + γ5), and similarly ψ̄R = ψ̄(1 − γ5). Recalling that (γ5)2 = 1, the
straight terms mψ̄LψL and mψ̄RψR are seen to vanish, leaving just the cross
terms:

mψ̄ψ = m(ψ̄LψR + ψ̄RψL). (8)

This is clearly variant under an SU(2) symmetry operation, as ψL is an
SU(2) doublet, while ψR is a singlet. Therefore, the terms in Equation (8)
are not allowed in the Standard Model Lagrangian.

The Higgs field was postulated to overcome these apparent difficulties.
Instead of changing the basic symmetry principles or the particle content
of the Standard Model, the nature of the stable vacuum state is altered
instead. In all the fields considered so far, it has been implicitly assumed
that the vacuum state corresponds to 〈ψ〉 = 0, up to zero-point fluctuations.
This arises naturally if the potential for a particle has a minumum at zero,
as in the left-hand image in Figure 1. The x-axis here corresponds to the
field strength |ψ|, and the potential to a regular mass term mψ̄ψ. Adding
more energy to the field4 increases the maximum possible value for |ψ|.

The Higgs field φ, on the other hand, has a quartic potential, illustrated
on the right-hand side of Figure 1. At very high energies (the upper dotted
line), this is difficult to distinguish from the quadratic case, but at low
energies (lower dotted line), it is clear that the “bump” at ψ ∼ 0 will affect
the ground state significantly. In the simple one-dimensional case, there will
be two (degenerate) vacuum states, each centered on one of the two minima
illustrated, with the same average magnitude 〈|φ|〉 = v.

The physical Higgs field is a complex SU(2) doublet, with four real com-
ponents. Despite this, the vacuum expectation value, v, and real fluctuations

4Strictly speaking, this means adding quanta to the particular mode described by
ψ(E,p).
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Figure 1: Left: A quadratic potential function for a massive particle. Right:
The Higgs field potential, with quadratic and quartic terms.

around it, H(x), can be written with full generality as

φ =
1√
2

(
0

v + H(x)

)
, (9)

where v > 0 is a real constant. This amounts to a specific choice of
(spacetime-dependent) SU(2) gauge, fixing three of the four free parame-
ters of φ.

In this new vacuum, previously massless particles now appear to have
mass. To see how this might work, at least for fermions, consider the La-
grangian interaction term λφTψ̄RψL, where λ is an (at this point) arbitrary
coupling constant between ψ and φ. This, unlike Equation (8), is a gauge-
invariant scalar quantity, and is thus allowed in the Lagrangian. With the
specific choice of Equation (9), and supposing that we are concerned with

electron-like fields ψL =
(
ν
eL

)
, we have

λφTψ̄RψL =
λ√
2

(
0 v + H(x)

)
ēR

(
ν
eL

)

=
λ√
2
vēReL + λH(x)ēReL. (10)

Now, the first term has an identical form to the second term of Equation (8),
while the second term describes an interaction between the electron field
and excitations of the Higgs field H(x). Adding on the Hermitian conjugate
λ∗ψ̄LψRφ gives a term proportional to ēReL. The two together therefore
give the appearance that the fermion field e has mass.
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