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1 What is a group?

A group is a set of objects (elements or members), which can be com-
bined by some operation (addition, multiplication, etc.). For a description
of the Standard Model (SM), it is only necessary to consider groups under
multiplication, and therefore the notation of multiplication will be used for
simplicity from the start. When applying this operation, four conditions
must be satisfied:

1. For all elements a, b in the group, the combination ab is also a member
of the group.

2. The operation must be associative, i.e. (ab)c = a(bc).

3. There is an identity element e, such that ae = ea = a for all elements.

4. Every element a has an inverse a−1, such that aa−1 = a−1a = e.

The identity element is commonly written e for generality. For multi-
plicative groups, e is just the number 1, or an appropriate identity matrix.
Under addition, for example, the identity element is 0. From now on, “1”
will replace e as labeling the identity element.

1.1 Examples

The simplest group is the trivial group:

{1}. (1)

This has only one member, and yet satisfies all of the properties required of
a group (under multiplication). We can add one member to this to construct
a simple non-trivial group:

{1,−1}. (2)

Here, each element is its own inverse.
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We can further extend this, to construct a four-element complex group:

{1,−1, i,−i}. (3)

The new elements, i and −i, are inverses of each other. Note that this
contains {1,−1} as a subgroup.

As an example of a continuous group under multiplication, take the set
of complex numbers with modulus 1. This group is denoted U(1), a name
which derives from the fact that this is a unitary group with one dimension.
In the complex plane, the members of this group trace out the unit circle.
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This group plays an important role in physics, as it is a part of the gauge
group of the Standard Model U(1) × SU(2) × SU(3)1. The meaning of a
group product can be visualised by considering the product U(1) × R>0,
where R>0 denotes the set of all positive real numbers. This yields the set
of nonzero complex numbers Z "=0 with elements z:

z = reiφ, r ∈ R>0, φ ∈ R. (4)

Thus, the group theoretic product of the unit circle and an semi-infinite
radial axis spans the complex plane2, including elements that are in neither
group individually. Note also that U(1) and R>0 are therefore subgroups of
Z "=0.

All of these continuous groups are of a particular form, called Lie groups,
which we will now examine.

2 Lie groups

The defining property of a Lie group is that all elements can be reached
by successive infinitesimal steps, usually starting from the identity element.
Consider a member (1 + iε) of U(1) a small distance ε from the identity.
When thought of in terms of transformations, this corresponds to a small
(eventually, infinitesimal) rotation of the complex plane. Rewriting ε as
α/N , where N is a large integer, we can imagine applying this small rotation
N times. Mathematically, we achieve this by multiplying (1+iα/N) by itself

1we will return to the precice meaning of SU(N) later
2Except zero, which has no finite multiplicative inverse. With zero included, Z is a

group under addition.
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N times, i.e. by computing (1 + iα/N)N . Taking the limit as N → ∞, we
obtain a generic member of the group:

lim
N→∞

(
1 + i

α

N

)N
= eiα. (5)

This is therefore a Lie group, as only an infinitesimally small region around
the identity element needs to be known in order to characterise the entire
group.

Due to this property, Lie groups are often characterised in terms of their
generators, which in our case can be thought of as unit vectors describing
possible directions in which transformations can be made. The number of
these directions is called the dimension n of the group. With a collection
of generators T , and associated parameters α (again, one for each dimen-
sion), a generic Lie group member is written in exponential notation like
Equation (5):

lim
N→∞

(
1 + i

α · T

N

)N

= eiα·T . (6)

U(1) has only one dimension, and also only one generator. Comparing
Equations (5) and (6), it is clear that the generator for U(1) is simply the
number 1. When there is more than one generator, it should be remembered
that the properties of groups say nothing about whether or not different
members of the group will commute. The same observation applies to the
generators of a Lie group. The commutators of the group generators define
the algebra of the group:

[Ta, Tb] = TaTb − TbTa = ifabcTc. (7)

Note that the right-hand side is linear in the group generators; this is a
consequence of all products of group members also being in the group.

The numbers fabc are called the group’s structure constants. If all are
zero, then the group’s generators (and elements) all commute; the group is
Abelian. U(1) is an Abelian group, as all complex numbers with modulus one
commute with each other. Multi-dimensional groups may be non-Abelian.
When applied to field theories, these groups lead to self-interacting gauge
fields.

2.1 A first look at SU(2)

The name SU(2) refers to the group of special unitary matrices with two
dimensions. The term “special” means that these matrices have determinant
1, thus preserving the normalisation of state vectors upon which they act.
As with any Lie group, any member of SU(2), G, can be written in terms
of the group’s generators T

G = eiα·T . (8)
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The generators of SU(2) are familiar, as they are proportional to the Pauli
spin matrices:

Tx =
1
2

(
0 1
1 0

)
, Ty =

1
2

(
0 −i
i 0

)
, Tz =

1
2

(
1 0
0 −1

)
. (9)

These are Hermitian matrices with zero trace, which ensure that the group
elements in Equation (8) are unitary with unit determinant. Correspond-
ingly, α is a three-component vector in the associated Hilbert space. In
addition, the generator matrices have the following important properties:

[Ta, Tb] = iεabcTc, and T 2
a =

1
4
I. (10)

Exercise: Express α · T as a 2×2 matrix. Use the Taylor series expansion
of (8) to find G. Does it have the expected properties? What value of
|α| corresponds to a full rotation?

3 Group theory representations

To examine the different represenations of SU(2), we will use the familiar
language of spin3. The eigenstates of a spin-1

2 particle with spin “up” or
“down” (sz = ±1

2) constitute the so-called fundamental representation of
the group, where the number of eigenstates equals the dimension of the
group, in this case, two. We can construct objects of different spin by
combining multiple spin-1

2 objects into larger mulitplets. For example, we
could combine two spin-1

2 objects to form a state with a z component of -1,
0 or 1, illustrated on a simple number line as follows:

0 1-1

% %% %
sz

sz1 = −1/2
sz1 = +1/2

In group theory notation, this combination is written 2 ⊗ 2. In reality, the
middle two states (with sz = 0) are not spin eigenstates, and instead we
rearrange the states into a spin triplet (s = 1) and a spin singlet (s = 0):

0 1-1

% %% %
sz

s = 1
s = 0

This is written as 3 ⊕ 1.
The triplet state has three sz eigenstates (-1, 0, +1), and can be repre-

sented by a three-component vector. The generators of SU(2) rotations for
3In this section, the word “spin” will be used, but this should be understood to apply

equally to isospin, weak isospin, etc.
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this system are 3 × 3 matrices, like those used for SO(3) spatial rotations:

Jx =
1√
2




0 1 0
1 0 1
0 1 0



 , Jy =
1√
2




0 −i 0
i 0 −i
0 i 0



 , Jz =




1 0 0
0 0 0
0 0 −1



 .

(11)
These matrices obey the same group algebra as the matrices of Equation (9),
but are clearly not equivalent. In fact, these form the adjoint representation
of the SU(2) group4, where the number of eigenstates equals the number of
generators, in this case three.

For SU(N), the adjoint representation can always be formed from an N⊗
N combination. A singlet will always be produced, with a group generator
equal to the identity matrix. The remaining N2−1 matrices form the adjoint
representation.

In the Standard Model, interacting fundamental matter particles (the
fermions) belong to the fundamental representations of gauge groups5. Thus,
there are two states of weak isospin (gauge group SU(2)), for example the
electron and electron neutrino. Similarly, there are three colours of quark,
corresponding to the dimensionality of SU(3). The gauge bosons, on the
other hand, belong to the adjoint representation for each group. Thus,
there are three electroweak gauge bosons (corresponding, after electroweak
symmetry breaking, to the W+, Z0 and W− bosons), and eight (= 32 − 1)
gluons.

4 SU(3) generators and baryonic systems

Much of the above discussion of SU(2) applies directly to SU(3), the symme-
try associated with the strong nuclear force. Only the number of generators
and the self-couplings described by the structure constants are different.

The fundamental representation of SU(3) (corresponding, e.g., to quark
charges) has the same number of elements as the group’s dimension, three.
These can be illustrated on a two-dimensional plane, analagous to the line
drawing of the SU(2) charges above:

4They are related to the matrices with elements (Ja)bc = fabc by Jx = 1√
2
U(J3 −

J1)U
−1, Jy = 1√

2
U(J3 + J1)U

−1, Jz = 1√
2
UJ2U

−1, where U = 1√
2

0

@
1 0 i
0 1 − i 0
i 0 1

1

A.

5Non-interacting fermions are gauge group singlets. For example, the electron is an
SU(3) singlet, and does not interact with gluon fields as a result.
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%
% %

In group theory notation, this is 3. In contrast to SU(2), there is also a
fundamental 3̄ representation, distinct from 3:

%
% %

The adjoint representation can be obtained via the group product 3⊗ 3̄.
This produces a singlet state (we will see this again later) and an octet, in
other words 3 ⊗ 3̄ = 8 ⊕ 1. The charges of these states can be seen by
imagining the 3̄ charges centered on each point of the 3 graph in turn. The
resulting charge diagram is as follows:

%
% %

⊗

%
% % = %% %%

%

%

%

%
⊕ %

Neglecting the singlet, there are therefore 8 members of the adjoint rep-
resentation, 8 SU(3) generators and 8 types of gluon. The group generators

6



can be represented by eight 3 × 3 traceless Hermitian matrices6:

T1 =
1
2




0 1 0
1 0 0
0 0 0



 , T2 =
1
2




0 −i 0
i 0 0
0 0 0



 , T3 =
1
2




1 0 0
0 −1 0
0 0 0



 ,

T4 =
1
2




0 0 1
0 0 0
1 0 0



 , T5 =
1
2




0 0 −i
0 0 0
i 0 0



 , (12)

T6 =
1
2




0 0 0
0 0 1
0 1 0



 , T7 =
1
2




0 0 0
0 0 −i
0 i 0



 , T8 =
1

2
√

3




1 0 0
0 1 0
0 0 −2



 .

These act on 3 × 1 column vectors of the fundamental representation, i.e.
quark states. Note that there is one more independent Hermitian 3 × 3
matrix, proportional to the identity matrix. As this corresponds to a null
operation, this belongs to the SU(3) singlet state.

These matrices have a few other interesting properties. One is that T1,
T2 and T3 together look very similar to the SU(2) generator matrices. In
fact, they satisfy all the SU(2) properties and themselves form a group,
acting only on the first two colours. Thus SU(2) is actually a subgroup of
SU(3).

Exercise: Compare the pairs (T1, T2), (T4, T5) and(T6, T7). Are other SU(2)
subgroups of SU(3) possible? Can SU(3) be written as a product of
SU(2) groups? Why/why not?

Finally, it should be remembered that these matrices are usually rearran-
ged into raising and lowering operators that more elegantly describe tran-
sitions between the various states. These operators are usually denoted I±

(corresponding to the SU(2) subgroup, presumably named from the analogy
with isospin), V ± and U±, defined as follows:

I± = T1 ± iT2,

V ± = T4 ∓ iT5, (13)
U± = T6 ± iT7.

The diagonal operators T3 and T8 remain unchanged. Also note the relative
sign change in the definition of V ±, this ensures that the raising operators
operate in a circular fashion. More details are given in the lecture notes.

4.1 Evidence for SU(3) colour

In the Standard Model, the SU(3) symmetry associated with the strong nu-
clear force is unbroken. This is in sharp contrast to the broken electroweak

6The normalisation here is chosen such that Tr(T 2
a ) = 1

2 . The matrices used here are
related to the λa matrices of the lecture notes by Ta = 1

2λa.
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symmetries that will be discussed next. It also means that the structure of
the group symmetry is more apparent in low-energy physics, albeit compli-
cated significantly by the very large coupling constant associated with the
strong force.

Due to the strength of this force, only colour singlets are observed in
nature, meaning that we cannot directly observe isolated quarks or gluons.
Relationships between the lowest-mass baryon states however strongly point
to a force based on the SU(3) symmetry group, which we will review here.

The wave function for a baryon approximately factorises into four com-
ponents, describing colour (C), spin (S), position (X) and flavour (F ):

ψ = ψCψSψXψF . (14)

The constituent quarks must have half-integer spin, or else the proton and
neutron could not be fermionic. Therefore, the overall wavefunction must be
fully antisymmetric under exchange of any two quarks, by the spin-statistics
theorem.

First, consider ψX . If we consider only ground-state baryons, all quarks
will be in s-wave orbitals, fully symmetric under exchange of quarks.

There is a nearly perfect SU(3) flavour symmetry7 for the lowest mass
baryon (and meson) states, only broken slightly for states of different ab-
solute strangeness. Ultimately, this comes about from the low mass of the
up, down and strange quarks (all less than 100 MeV), much less than the
baryon mass scale of ∼ 1 GeV.

With this approximate symmetry in mind, it was found that the least
massive baryons could be arranged into an octet of spin-1

2 particles (includ-
ing the nucleons) and decuplet of spin-3

2 particles. The simplest way to
obtain a decuplet of states is by the composition of three quarks, denoted
by 3 ⊗ 3 ⊗ 3.8 Without going into details, this yields a fully symmetric
decuplet, two octets with mixed exchange symmetries, and a flavour singlet:

3 ⊗ 3⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1. (15)

It is the decuplet that most concerns us here. Its layout in flavour space
is especially striking: % % % %

% % %
% %

%
7Not to be confused with the SU(3) colour symmetry.
8The discussion applies equally to anti-baryons, where the flavour representation be-

comes 3̄ ⊗ 3̄ ⊗ 3̄.
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The states at the corners correspond to the obviously symmetric uuu, ddd
and sss combinations, and by construction the entire multiplet is flavour
symmetric under quark exchange.

If we have three spin-1
2 quarks, then the spin wavefunction ψS belongs to

the 2 ⊗ 2 ⊗ 2 representation of SU(2). This reduces to two spin-1
2 doublets

with mixed exchange symmetry and a spin-3
2 quartet. Note that spin-3

2
quarks would have a substantially more complex structure. Experimentally,
the baryons in the decuplet are found to have spins of 3

2 , and so ψS must
correspond to this quartet. This quartet includes the states ↑↑↑ and ↓↓↓,
obviously symmetric under particle exchange.

Thus, so far, the spatial, flavour and spin parts of the wavefunction for
the baryon decuplet are fully symmetric under quark exchange, prompting
the proposal of colour as a possible way to introduce antisymmetry into the
system. If the force binding the quarks together is to be described using an
SU(N) symmetry, then the three-quark structure strongly suggests trying
N = 3. This immediately restricts us to the singlet that results from the
3 ⊗ 3 ⊗ 3 representation. This state is, in fact, completely antisymmetric
with respect to particle exchange:

ψC =
1√
6

(RGB + GBR + BRG − RBG − BGR − GRB) , (16)

and therefore the product of all four wavefunction components is antisym-
metric, as required.
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