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1 Gauge transformations and symmetry groups

1.1 Preamble: Classical electromagnetism

The classical Lagrangian for an otherwise free particle of charge ) in an
electromagnetic field is

1
L:§m¢2+Q¢-A—Q¢. (1)
Using this, one finds that the canonical momentum p = 9L /0% is no longer
the physical particle’s momentum ma, but has an additional contribution

from the electromagnetic field:

oL

P=5r = mt + QA (2)
Similarly, the classical Hamiltonian has a contribution from the electric po-
tential Q@

H=p-&#—-L
1
= (ma + QA) & —§m¢2 — Qi A+Qd
1

= §ma'32 + Q. (3)

Formally, we can then recover the particle’s physical energy and momentum
from the canonical variables by subtracting these extra contributions:

Pphys. = M& =p — QA
[
Ephys. = ime =H - Q2. (4)

These substitutions have exact analogues in all forms of quantum mechan-
ics, including field theory, when one wishes to incorporate electromagnetic
effects on a particle’s motion. Naturally, classical variables must be replaced
by appropriate quantum mechanical operators, but the form of the substitu-
tions in Equation (4) is identical. As we will later see, the other forces in the



Standard Model can be introduced using similar modifications of canonical
variables.

Before moving on to considering quantum mechanical operators, one
should remember that the EM potentials ® and A can be freely modified
by a gauge transformation, with ultimately no physical effects:

0
o — P = —8—);; A— A=A+ Vy. (5)
Here, yx is understood to be an arbitrary function of space and time. Note
that this will change the canonical variables defined in Equations (1), (2)
and (3), but not the physical momentum calculated in Equation (4).

1.2 Electromagnetism in quantum mechanics

In the quantum mechanical context, canonical energy and momentum vari-
ables are replaced by differential operators in the usual way:

E= za and p = —iV; or, in covariant notation p, = i0,. (6)
Equations of motion inevitably involve these operators acting on wavefunc-
tions or fields, here referred to generically with the symbol . In addition,
covariant notation will be used for simplicity; the separation into energy and
momentum components (e.g. for application in the Schrodinger equation)
is straightforward.

When electromagnetic interactions are included, physical four-momentum
operators can be extracted by modifying the canonical operators in a way
analagous to Equation (4):

~

Pu — ]3# - QAM
=i(0 +1QA,)
= 1Dy (7)

In the last line, the covariant derivative D, = 0, + 1QA, is introduced,
which replaces 9, when calculating physically measurables for interacting
particles or fields.

One immediate issue is that the covariant derivative varies under a gauge
transformation (5) to

D, — D, = 8, +iQA, — iQd,x (8)

Thus, it appears that the physical measurable expectation values <1ME [v)
and (|ply) change, violating gauge invariance. This apparent problem can
be elegantly solved by additionally transforming the wavefunction v, which
has no classical analogue, according to

P — 1) = X, (9)



Then, the combination D,1) transforms as follows:

Dytp — Dy’ = 0u(€' D) + i€’ XQAup — Q9" x)e' Py
= €D +iQ(uX)e" N +ie PN QA P — iQ(0" X)€" Ny
= 'Oy +iQ ALY
= 'XD,y, (10)

modified only by an overall (space-time-dependent) phase. Any physical
expectation value will be pre-multiplied by the conjugate of a wave function
which transforms according to * — ¥* = 1p*e QX and will therefore be
left unchanged by the combined transformation described by Equations (8)
and (9).

Exercise: Prove that this also works for the second derivative D,DH1), as
in the Klein-Gordan equation, for example.

Exercise: Beginning with a free particle (A* = 0), consider the gauge
transformation given by x = —arg(¢)/Q. What are the resulting
potentials and new wavefunction? Interpret the result in terms of
physical quantities.

arg (i)

Exercise: (more tricky) Repeat the previous exercise for y = — 00D

1.3 Relation to the U(1) symmetry group

It is well known that all observable quantites are invariant under a global
phase transformation of a wave function or field

¥ — ) =€, (11)

where the phase angle ¢ does not depend on space-time coordinates. The
prefactor €*® can be recognised as a member of the U(1) group discussed
in the last tutorial. The transformation (11) is referred to as a global U(1)
transformation. Note that it alters an internal space of the wavefunction,
distinct from external space-time.

When electromagnetic interactions are introduced, we find that now a
much more stringent symmetry exists, that of a local U(1) transformation,
of Equation (9) (recall that x is an arbitrary function of space-time). Thus,
it appears that internal symmetries of a wavefunction or field are deeply
related to their gauge interactions. If we began with a non-interacting (free)
particle, we could “derive” the electromagnetic interaction by requiring that
the transformation in Equation (9) has no effect on measurable quantities.
We would then be forced to introduce a new field A* that simultaneously
transforms as Equation (5), and to form a covariant derivative like (7) to
represent the particle’s physical four-momentum.



In the Standard Model, all gauge interactions are derived in this way,
starting from Lie group operators applied to an internal space (called a
Hilbert space), and demanding symmetry in the physical equations upon
arbitrary local rotations within this space. Unlike electromagnetism, the
other gauge groups of the SM are non-Abelian.

2 Non-Abelian groups in gauge theories

When we considered U(1), the analysis of the gauge transformation was
considerably simplified by the fact that the group was Abelian. In fact,
there is only one U(1) generator, which trivially commutes with itself. The
generators of the other symmetries involved in Standard Model forces do not
commute. In other words, not all structure constants f,;. are zero, where

fabe is defined by
[Taa Tb] = TaTb - TbTa - Z.fabcTc' (12)

For SU(2), the structure constants are equal to the completely antisymmet-
ric Levi-Civita symbol €g.. In the case of SU(3), the constants are more
complex, and given in the lecture notes.

We will start by generalising the transformations derived in the previous
section, without assuming that the group elements commute. In general, a
state ¥ will transforms as follows:

b= =Gy =Ty, (13)

where G is a local Hilbert space transformation. We introduce a covariant
derivative to absorb changes to the Lagrangian resulting from this transfor-
mation:

D, =0, +igW, =0, +igT - W . (14)

W, is a vector of three new gauge fields, corresponding to the number of
group generators, while g is an associated coupling strength, analagous to the
electric charge. Under the gauge transformation G, the field W, transforms
as follows:

W, — W, = GW,G™" + 2(9,G)G . (15)
g

Exercise: Show that under this transformation D9 = GD,1).
Equation (15) is the general form for the transformation of a gauge field
derived through symmetry principles. For Abelian groups, Equation (15)
reduces to the same form as given in Equation (5) for the U(1) transforma-
tion. For non-Abelian groups, G and W), do not commute, which complicates
further analysis but also yields a rich structure for the gauge fields.



It is useful to consider Equation (15) written in terms of the component
fields

T W, = T W e T  —(9,e*T)e T

. Q| .

or TaW;W = em"TbWuyaTae_iO‘cTC + g(ﬁueia“T“)e_mbTb (16)
In the second version, the Einstein summation convention for indices has
been assumed. This describes a general transformation, but often we will be
interested in the perturbative regime, when the transformation G is close to
the identity. In this case, |a| is small, and ¢*T ~ 1 +ic - T. Under this
infinitesimal transformation, Equation (16) becomes the following (dropping
any second-order terms in o and 9, a):
TW/ o = (1 +icpTy) W oTu(l — ia.T,)

ma —

1 .
- 5(8uaa)Ta(1 - 'LabTb)
. 1
= Wu,aTa - ZWu,a(acTaTc - abTbTa) - E(auaa)Ta + O(OF) (17)
Here, we note that the indices b and ¢ on the right hand side are arbitrary,
so we can rewrite a.1,T, as apT, T, to obtain

‘ 1
Tan’w = WyaTo — icayW,, o[T,, Tp] — 5(8Hoza)Ta

= Wu,aTa + fabcabWu,aTc - (auaa)Ta (18)

1

)

Exercise: Find an expression for W), , that will always satisfy Equation (18).
Make sure it reduces to the electromagnetic gauge transformation in
the case of a U(1) symmetry.

Equation (18) shows how W, transforms under an infinitesimal gauge
transformation, but we have not yet shown that physical observables are
unchanged. By analogy with the U(1) case, it is enough to show that 'Dl/ﬂ,bl =
GD,, as the conjugate part of any expectation value will always cancel the
G on the right hand side. This condition can be easily verified, again to
O(a):

Dfﬂﬂ/ = (au + igWu,aTa - i(auaa)Ta + igfabcabWu,aTc)(l + iatﬂ)w

- i(auat)ﬂw + (1 + iatﬂ)(auw)
+ (1 + iatﬂ)(igwu,aTQ) - gW ,aat(ifathb)
- i(auaa)Tad) + igfabcabWu,aTc + O(a2)
~ (1 +i0T3)(0y + igWyaTa), (19)
where the commutator (12) has been used to obtain the third and fourth
term on the second line.

Thus, the principal equations and expectation values will be invariant
under the gauge transformations being discussed.



3 Building an interacting Lagrangian

The Dirac equation for a free fermion field y can be obtained from the
following Lagrangian density

£ = §(ir"dy, — m)e. (20)

A gauge interaction for this fermion may be introduced by replacing 9d,, by
the covariant derivative from Equation (14):

L= %(i’y“Du —m)y i
=Yy 0 — m)Yp — g T - W . (21)

The final term of Equation (21) represents interactions between the
fermion and the gauge field. These modify the propagation of the free
fermion field, described in the first two terms. However, there is another
class of terms involving just the fields W . It turns out that the only
Lorentz covariant object allowed by gauge symmetry that we can form from
the gauge field alone is the commutator of the covariant derivative, [D,, D, ].
This can be evaluated as follows:

[DH,D,,] = [8“ + 19T - W,L,ay + 19T - W,,]
=[0,,0,) +1ig[0,, T - W]+ ig[T - W, 0,]
~¢*T-W,,T-W,). (22)

The first commutator is evidently zero. The commutator in the second
term can be found by considering what happens when this operates on a
wavefunction:

[0, T - Wlp = Ou(T - Woo) =T - W, (91))
= (0,T - W, )¢ (23)

Note that the end result does not depend in any way on the wavefunction we
temporarily introduced. Similarly, [T'- W ,,,0,] = —0,T - W, in the third
term of Equation (22). The final term is evaluated using the group algebra,
giving the following result

[D;Lapu] =g T- (alLWV - 8I/W[L) - ig2fach;L,aW1/,ch
= [ig(auWV,c - 81/WM,C) - ig2fachu,aWy,b]Tc- (24)

In the U(1) case, the structure constants vanish, and Equation (24) is pro-
portional to the field tensor F), = 9,W, — 0,W,,, familiar from electro-
magnetism. In the non-Abelian case, the first terms of Equation (24) also
describe free fields that propagate in the vacuum much like the photon, but
the final term will not vanish.



The only Lorentz scalar field propagation term that we can construct
using F),, « [D,,D,| is F,, F*. The final term of Equation (24) will yield
terms proportional to (0,W,)WHW" and W, W, WHW?", where the group
generator indices have been suppressed. These terms ultimately correspond
to interactions between the various components of the W, field, something
that will be explored further later in the course.

Finally, note that Equation (24) (and therefore the Lagrangian density)
does not contain any terms proportional to W# - W . These would give
the W, field a mass (c.f. the Klein-Gordan equation for a massive boson),
but such terms are forbidden as they break the gauge symmetry. Thus,
gauge boson fields produced via the symmetry principle are massless by
construction.

4 A first look at the Higgs field

Massless gauge fields describe the electromagnetic and strong forces well, but
are insufficient for the weak nuclear force. The W and Z gauge bosons that
mediate the weak force have substantial masses of about 80 and 90 GeV,
respectively, which has the effect of setting a short range ~ 1/My,, for
weak interactions in the low energy limit.

What is perhaps less obvious is that, due to the peculiar nature of the
weak interaction, all weakly interacting fermions must also be massless. It
might naively be thought that a fermionic mass term man) (c.f. Equa-
tion (20)) would always remain invariant under any transformation ¢» — Gb.
It turns out that this is not the case for the weak nuclear force, which acts
differently on the left- and right-handed components of 1. We can always
rewrite @ as a sum of these components:

Y=L+ Yr
= S0 PW S+ (25)

The mass term ma)1p therefore has four components, as follows:

mipp = m(Pror + YR + YRYL + YRYUR). (26)

The matrix 7P is Hermitian, which allows us to evaluate Y, as Pi(1—~2)0 =
(1 4+ ~°), and similarly g = (1 — 7%). Recalling that (vy°)? = 1, the
straight terms map¢y1, and miygryg are seen to vanish, leaving just the cross
terms:

mipp = m(PLyr + YrYL). (27)

This is clearly variant under an SU(2) symmetry operation, as r, is an
SU(2) doublet, while 1R is a singlet. Therefore, the terms in Equation (27)
are not allowed in the Standard Model Lagrangian.



The Higgs field was postulated to overcome these apparent difficulties.
Instead of changing the basic symmetry principles or the particle content
of the Standard Model, the nature of the stable vacuum state is altered
instead. In all the fields considered so far, it has been implicitly assumed
that the vacuum state corresponds to (/) = 0, up to zero-point fluctuations.
This arises naturally if the potential for a particle has a minumum at zero,
as in the left-hand image in Figure 1. The x-axis here corresponds to the
field strength |¢|, and the potential to a regular mass term mn). Adding
more energy to the field! increases the maximum possible value for |¢)|.

Figure 1: Left: A quadratic potential function for a massive particle. Right:
The Higgs field potential, with quadratic and quartic terms.

The Higgs field ¢, on the other hand, has a quartic potential, illustrated
on the right-hand side of Figure 1. At very high energies (the upper dotted
line), this is difficult to distinguish from the quadratic case, but at low
energies (lower dotted line), it is clear that the “bump” at ¢ ~ 0 will affect
the ground state significantly. In the simple one-dimensional case, there will
be two degenerate vacuum states, each centered on one of the two minima
illustrated, with the same average magnitude (|¢|) = v.

The physical Higgs field is a complex SU(2) doublet, with four real com-
ponents. Despite this, the vacuum expectation value, v, and real fluctuations
around it, H(x), can be written with full generality as

0= 75 (o) 2

where v > 0 is a real constant. This amounts to a specific choice of

1Strictly speaking, this means adding quanta to the particular mode described by
V(E, p).



(spacetime-dependent) SU(2) gauge, fixing three of the four free parame-
ters of ¢.

In this new vacuum, previously massless particles now appear to have
mass. To see how this might work, at least for fermions, consider the La-
grangian interaction term A¢'ri1, where \ is an (at this point) arbitrary
coupling constant between 1) and ¢. This, unlike Equation (27), is a gauge-
invariant scalar quantity, and is thus allowed in the Lagrangian. With the
specific choice of Equation (28), and supposing that we are concerned with

electron-like fields 1, = (61/ , we have
L

T hpabr, = % (0 v+ H(z))er (eVL>

= %véReL + \H (x)eger. (29)
Now, the first term has an identical form to the second term of Equation (27),
while the second term describes an interaction between the electron field
and excitations of the Higgs field H(z). Adding on the Hermitian conjugate
NYr,r¢ gives a term proportional to érer. The two together therefore
give the appearance that the fermion field e has mass.



