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1 Introduction

In this tutorial, we will briefly review the techniques that are most commonly
used for particle detection and energy/momentum measurements in modern
high-energy physics experiments, such at those of LEP, the TeVatron and the
LHC. A detector such as ATLAS (see Figure 1) consists of a large number of
sub-detectors, each optimised for making a particular kind of measurement.
Broadly speaking, these sub-detectors are arranged as follows:

• Tracking detectors, for measuring charged particles, closest to the in-
teraction region.

• Calorimeters, for measuring electrons, photons and hadronic jets, sur-
rounding the tracker.

• Muon detectors surrounding the calorimeters.

In addition to this, certain experiments will have specialised sub-detectors
for other purposes, for example measuring the integrated luminosity, or per-
forming detailed particle identification such as π±/K± separation. These
involve many extensions of the techniques described here, for example to si-
multaneously measure a particle’s momentum and speed to obtain its mass,
often by making use of other particle/material interactions, such as Čerenkov
radiation.

2 Tracking detectors

The purpose of a tracking detector, whether it is close to the interaction
region or part of a muon detector, is to measure the momenta of charged
particles as precisely as possible, with minimal disturbance to their flight.
They are almost invariably located within a magnetic field, so that the radius
of curvature of the particles within the field can be measured. This, coupled
with knowledge of the particle’s direction of motion in 3D space, can be used
to measure its momentum.
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Figure 1: Cut-away view of the ATLAS detector.

Figure 2: Illustration of the energy loss of muons in copper, as a function of
βγ of the muon and its momentum.
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Most often, the presence of a charged particle is detected by the ionisa-
tion it causes when passing through matter. This energy loss is desecribed
by the Bethe-Bloch equation for a particle of charge q and speed βc:
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where Z and A are the atomic and mass numbers of the material, respec-
tively, ρ is its density, I the ionisation potential (typically about 10Z if Z
is large) and δ is a dielectric screening correction that is important when
γ >> 1.

The energy loss from ionisation and other sources for a muon passing
through copper is shown as a cfunction of βγ in Figure 2. Although the
details, including the magnitude of the energy loss, depend on the particle
and material, the qualitative features of the curve as a function of βγ are
similar for most particles and most materials. There is a large region in
particular, for 1 ! βγ ! 1000, where the energy loss is small - for muons in
copper this corresponds to momenta of around 0.1–100 GeV. Particles in this
“minimum ionising” range will liberate enough electric charge to be detected,
but will not be stopped by the material. Still, it is desirable to extract the
greatest number of measurement points (“hits”) with the minimum possible
amount of material, to reduce the effects of multiple scattering, that we will
return to later.

2.1 Drift tube detectors

b

r

Figure 3: Cross-section of a drift tube, where a charged particle is passing
through with an impact parameter of r.

Many tracking detectors are made from arrays of drift tubes, such as the
one illustrated in Figure 3. The wire down the centre of the tube is held
at a positive voltage relative to the tube wall, so that electrons liberated
through ionisation will drift towards it with an average speed proportional
to the local electric field, while ions migrate (more slowly) towards the wall.
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The electric field strength at a radius of r is proportional to 1/r, increasing
rapidly close to the wire. This allows the tube to exhibit several behaviours,
depending on the wire radius a and the applied voltage V , illustrated in
Figure 4. For low voltages (and large a), the ionisation electrons simply
travel to the wire, and the measured response1 is low and constant. When
the voltage is increased, the electron energy near the wire is greater than
the ionisation potential, and therefore secondary ionisation occurs, leading
to an avalanche. Initially, the response is nearly proportional to the applied
voltage, but when the Geiger-Müller region is reached, saturation occurs
but the overall collected charge is very high. Drift tubes for use in tracking
detectors are generally operated within the proportional regime.

Once the pulse has finished, recombination occurs and the tube becomes
ready to accept a new signal. This process may, however, emit UV photons,
which can themselves cause ionisation and another cascade. For this rea-
son, a quencher is usually introduced, usually polyatomic molecules such as
CO2, hydrocarbons or alcohols, that can absorb UV photons without being
ionised.

Question: How might a quencher molecule absorb a photon without being
ionised or immediately re-radiating it?

Figure 4: Response of a drift tube as a function of the applied voltage.
1Depending on the individual detector, either current or voltage may be measured at

the wire. Here, we will use the words “signal” and “response” to refer to either of these.
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The choice of gas in a drift tube is dictated by a number of factors. No-
ble gases have few non-ionising modes for energy loss, and therefore support
avalanches at low applied voltages. Many (e.g. Ar, Xe, Kr) are massive and
thus yield many ion/electron pairs per unit path length (called specific ioni-
sation). However, argon emits 11.6 eV photons during recombination, which
can lead to permanent discharge unless appropriately quenched. Polyatomic
gases, by contrast, can be self-quenching if the gas is circulated, but inelas-
tic collisions can lead to the formation of free radicals that can damage the
detector.

The measurement of a signal in a drift tube does not indicate an absolute
position. By precisely measuring the time at which the signal first passes
some predefined threshold (time resolution: typically ∼few ns), the radius
of closest approach r can be deduced, if the bunch-crossing time is known.
For very precise measurements, the propagation time of the signal through
the wire must also be known, which depends on how far the particle’s path
is from the read-out end of the tube. This is usually obtained using comple-
mentary measurements of the particle’s trajectory made by another nearby
sub-detector. With drift velocities typically of around 50 mm µs−1, spatial
resolutions of the order of δr ∼ 100 µm can be achieved. To resolve am-
biguities in the path of the track, measurements from many tubes must be
combined - the true particle track should pass tangentially to each measured
drift circle, within the precision of the measurements.

In ATLAS, very narrow drift tubes (“straws”) are used in the transition
radiation tracker, and 14 mm diameter drift tubes are used in the muon
detector.

2.2 Silicon detectors

While relatively cheap and easy to make, drift tubes do not have sufficient
resolution to distinguish hits from different particles very close to a col-
lider’s interaction region. In this region, semiconductor detectors are used,
usually made using silicon. A cross-section of a silicon “strip” detector is
shown in Figure 5. The sensor is essentially a collection of reverse-biased
diodes. In undoped silicon at room temperature and pressure, electrons in
the conduction band and holes in the valence band result in O(1010) charge
carries per cubic centimetre. This is to be compared with about 100 pairs
liberated per µm path length by a minimum ionising particle. Constructing
a diode by combining p- and n-doped silicon creates a depletion zone at the
join, with no free carriers. Applying a reverse-baised voltage causes the en-
tire volume to be depleted, while simultaneously producing an electric field
within the sensor, allowing efficient charge collection from ionisation. Cool-
ing the detector, for example with liquid nitrogen, also reduces the charge
carrier density and the resulting leakage current. With modules typically a
few hundred micrometres thick, many thousand electron/hole pairs can be
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Figure 5: Schematic diagram of a p-in-n silicon strip detector. In a typical
detector, the strip pitch would be of the order of µm, and the sensor thickness
would be a few hundred µm. Individual strips can be several cm long.

formed, creating a clear signal even without further amplification.
In ATLAS, an extensive semiconductor tracker operating along these

lines is used to reconstruct charged particle trajectories with a resolution
of ∼ 17 µm in the direction perpendicular to the strips. Modules are ar-
ranged in back-to-back pairs, with strips aligned with a small angle (40 µm)
between them, to allow measurement of the hit position along the strip.
The measurement in this direction is relatively coarse, with a resolution of
∼ 580 µm. The modules are aligned with respect to the magnetic field to
give the best possible momentum resolution.

Question: In an environment with high charged particle densities, what
problems might there be if the strips on neighbouring modules were
aligned at right angles to each other?

At radii of less than 250 mm, an even more precise tracking technology is
used. Still based on silicon, a pixel detector has full two-dimensional gran-
ularity on a single chip, with pixel elements of dimension 50 µm×400 µm.
These give improved resolution of about 10 µm×100 µm. Using pixels,
rather than strips, not only improves the spatial resolution with less material
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(as back-to-back modules are not necessary), but they are also intrinsically
more radiation-tolerant, suffer from lower noise levels and have fewer hit
ambiguities. They are, however, significantly more complex and expensive
to make.

All silicon detectors degrade over time. Radiation damage can lead to
vacancies and other lattice defects that decrease the charge carrier mobility
and create new interstitial energy levels within the band gap. These inter-
stitial levels allow charge carriers through the otherwise depleted material,
increasing the leakage current. Over time, type-inversion can also occur,
meaning that the n-type bulk becomes more like p-type silicon. This effect
can be temporarily offset by increasing the applied bias voltage, at the cost
of greater leakage currents (and therefore increased power consumption).
The bias voltage cannot be increased indefinitely however, as eventually the
risk of discharge (sparking) will become too great.

2.3 Momentum resolution

y

x0

Figure 6: Sketch of a curved path fit, with contributions from one precision
detector at x ∼ 0 and five other measurements at higher x.

Figure 6 shows a sketch of a set of two-dimensional tracking detector
measurements of a charged particle moving within a magnetic field B. In
the absence of scattering effects (see later), the particle follows a circular
path. The radius of curvature of the particle, if its momentum2 in the x− y
plane is pT, is

r =
pT

qB
. (2)

The radius of curvature can be estimated by measuring the sagitta of the
curve, in this case the difference in y between the highest and lowest points of
the curve. Suppose that, while traversing the detector, the particle changes
angle by a small amount φ ≈ L/r. In this case, the sagitta s can be expressed

2Here pT is used, referring to transverse momentum, as the momentum in the z direc-
tion is not directly measured.

7



Figure 7: Illustration of multiple scattering of a particle (incident from the
left) in material.

as follows:

s = r − r cos
φ

2

≈ rφ2

8
≈ qBL2

8qpT
. (3)

The resolution with which s can be determined, σs, depends on the number
of x− y measurements and their intrinsic resolution. If the y measurements
all have the same resolution σy, then σs will be proportinal to σy, with a
constant of proportionality depending on the geometry of the detector. As s
is proportional to 1/pT, we can then work out how the momentum resolution
σpT depends on the principal parameters:

σpT

pT
=

σs

s
∝ σypT

BL2
. (4)

This suggests the following design principles to obtain precise momentum
measurements for particles with large pT:

• a strong magnetic field B;

• a physically large detector (large L);

• good intrinsic detector resolution σy;

• many detector layers (not shown in Equation (4)).

The other main factor affecting the momentum resolution of a track-
ing detector is so-called multiple scattering. This, illustrated in Figure 7,
describes the changes in position and direction (also energy loss) that a
charged particle undergoes as it traverses material. Upon passing a distance
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x through a material, a particle will emerge with a displacement yplane and
angle θplane relative to its original trajectory.3 In the absence of large-angle
scattering, these can be described by Gaussian probability distributions with
the following width parameters:

θrms
plane = θ0 and yrms

plane =
1√
3
xθ0,

where θ0 =
13.6 MeV

βcp

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
. (5)

Here, X0 is the radiation length, a property of the material which will be
further described in the section on calorimetery (see especially Equation (8)),
and a unit charge for the incident particle is assumed. Multiple scattering
represents a fundamental limit on the position and angular resolution of a
given detector. Recalling that the bending angle in the magnetic field, φ, is
given by L/r = qBL/pT, we can deduce the dependence of this contribution
to the resolution as a function of pT:

σpT

pT
=

σφ

φ
∝ pT

BL

√
L

pT
=

1
B
√

L
, (6)

if we neglect the ln(x/X0) term from Equation (5).

Exercise: Consider a muon passing through 1m of magnetised iron (B =
2 T, X0 = 1.8 cm). If the muon’s direction of travel is measured before
and after it traverses the iron, what is the best pT resolution that can
be expected, based on multiple scattering effects alone?

Combining Equations 4 and 6, we can write the total pT resolution in
the following way:

σpT

pT
= ApT ⊕ B. (7)

The first term arises from the intrinsic measurement resolution of the de-
tector elements, while the second arises from multiple scattering, and the
⊕ indicates that the terms should be added in quadrature. As the form of
Equation (7) suggests, multiple scattering is usually most important when
pT is small.

3 Calorimetry

The purpose of a calorimeter is to measure the energy of incoming particles
by completely absorbing them. Coupled with a measurement of the direc-
tion of motion, this allows the 3D momentum of relativistic particles to be

3In both cases, “plane” indicates that we are using a 2D projection. When the RMS
deviations are considered, the corresponding values in 3D space are a factor of

√
2 larger

than those quoted.

9



reconstructed. In contrast with tracking detectors, calorimeters can detect
both charged and neutral particles, through a number of different processes,
depending on the particle. Modern high-energy experiments take advan-
tage of this, with separate sub-detectors optimised for electromagnetic and
hadronic interactions.

3.1 Electromagnetic calorimetry

In Figure 2, it can be seen that extremely relativistic particles4 (βγ " 1000)
lose energy mainly through radiation. For currently accessible energies, this
is only relevant for the electron5, given its small mass. The critical energy,
Ec, for electrons, where radiative losses are greater than ionisation losses, is
approximately 0.6 GeV/Z, where Z is the atomic number of the material.

The radiation of a photon by an electron in a material is illustrated in
Figure 8 (a). The electron can interact coherently with an entire nucleus,
giving a contribution Z

√
α to the amplitude. The cross section for this

process is therefore proportional to Z2α3. The electron can also scatter
from atomic electrons, but as this is not coherent the contribution is much
smaller, proportional to Zα3. The electron loses energy exponentially, with
a rate parameterised by the radiation length X0:

dE

dx
= − E

X0
,

where
1

X0[cm]
≈ 4

(
!

mc

)2

Z(Z + 1)α3nA ln
(

184
Z1/3

)
. (8)

Here, nA is the number density in cm−3. Note that X0 is often quoted in
g·cm−2, which is related to this definition by the density ρ. The radiation
length depends strongly on the material involved, decreasing rapidly for
denser elements. Radiation lengths for some elementary materials follow, at
a temperature of 20◦C and 1 atm pressure:

Element X0 [cm]
air 30,400

graphite 18.8
Al 8.9
Fe 1.8
Pb 0.6

High energy photons interact with matter in a similar way to electrons,
creating electron-positron pairs (see Figure 8 (b)). This is related to the
diagram in Figure 8 (a) by an exchange of ingoing and outgoing particles.

4Recall that, while Figure 2 refers specifically to muons, the qualitative features are
valid for all particles, if only EM interactions are considered.

5and, of course, the positron.
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Figure 8: Diagrams for (a) Bremsstrahlung and (b) photon conversions in
matter.

The cross section is therefore similar, and the characteristic length for this
process is 9

7X0.
Combining these two processes allows us to build up a simple picture of

what happens when a high-energy electron (or, with minor modifications,
a photon) enters a dense material. After a distance O(X0), it will undergo
Bremsstrahlung, producing a high-energy photon. The electron (after inter-
action) and the photon can be expected to have comparable energies. They
will both propagate more or less freely for a further distance O(X0), with
the electron only losing a small fraction of its energy to ionisation of the
material. Then, the electron will undergo Bremsstrahlung again, and the
photon will convert into an e+e− pair. Again, it is reasonable to assume
that all four particles (two electrons, one positron and one photon) will
have comparable energies, and they will each travel a distance ∼ X0 before
undergoing further significant interactions. This process will continue un-
til the particles have energies below the critical energy for Bremsstrahlung,
at which point all of the charged particles will lose their remaining energy
through ionisation. This simple model of an electromagnetic (EM) shower
is illustrated in Figure 9.

This model is highly simplified, and yet it illustrates certain key features
of EM showers very well. Consider the shower at the nth step, i.e. at a
distance of nX0 into the material. At this step, there will be 2n particles
in the shower, each with an energy of En = E0/2n (if the original incident
particle had an energy E0). The shower ends at some step N when EN

equals the critical energy Ec. Solving for N gives

N =
ln(E0/Ec)

ln 2
. (9)

As each step requires a distance X0, this means that the total shower depth
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Figure 9: The Rossi model of an electromagnetic calorimeter shower.

increases logarithmically with E0. Although we will not prove it, the shower
width is also proportional to X0; for a shower of depth 20X0, the width is
given approximately by X0 × (21.2 MeV/Ec).

The total number of particles inside the shower is the sum of the number
of particles at each step:

Ntotal =
N∑

n=0

2n = 2N+1 − 1 ≈ 2
E0

Ec
, (10)

where the final equality is true if N is large. Ntotal is proportional to E0,
therefore, to measure the original particle’s energy, it is sufficient just to
count the number of particles in the shower! In addition, the charged particle
fraction asymptotically approaches 2/3 as N grows, so it is enough just to
count the number of charged particles produced.

Lead tungstate (PbWO4) is a common EM calorimeter material. It has
a high density and constituent atoms with high atomic numbers, and there-
fore a short radiation length of just 0.89 cm. In addition, it scintillates and
is itself transparent to the light produced, allowing this to be collected by
a photodiode or similar photodetector. However, it is brittle and can be
difficult to work with. Another approach is to separate the tasks of pro-
ducing and detecting the shower, by interleaving layers of a dense absorber
(such as lead or steel) with ionisation or scintillation detectors. This design
is referred to as a sampling calorimeter, because the shower is sampled at
intervals as it evolves. The EM calorimeter in ATLAS uses this latter ap-
proach, with liquid argon (LAr) being used as the ionisation medium, while
CMS has an EM calorimeter based on lead tungstate.

The proportionality between the energy and the number of shower par-
ticles is, of course, only true on average. If a particle of energy E would
produce ν charged particles on average, the number observed in any partic-
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ular shower will be described by Poisson statistics:

P (nobs) = e−ν ν
nobs

nobs!
. (11)

This distribution has the property that both the mean and the variance of
nobs are equal to ν. Variations in the energy measured will vary as δ(nobs) =√

var(x) =
√
ν. As ν is proportional to the particle’s energy, the statistical

uncertainty on the energy measured will vary as
√

E. Equivalently, the
fractional resolution σE/E varies as 1/

√
E, improving as E increases.

The total energy resolution for most calorimeters can be written in the
following way:

σE

E
=

A√
E

⊕ B ⊕ C

E
. (12)

The first term is the stochastic term just discussed. The second, constant,
term arises from inhomogeneities in the calorimeter response and its cali-
bration. The final term arises from electronic noise, and can be important
for low energy particles. For the ATLAS EM calorimeter, A = 10% if E is
in GeV, and B = 0.7%. As before, these numbers are added in quadrature
to obtain the total resolution function.

3.2 Hadronic calorimetry

Due to their higher mass6, high-energy hadrons do not lose significant amounts
of energy through electromagnetic processes (see again Figure 2). Their
hadronic interactions consist of three components:

• elastic scattering from nuclei;

• quasi-elastic scattering, i.e. elastic scattering from nucleons;

• inelastic scattering.

The last of these is responsible for producing a hadronic shower, with each
inelastic scatter producing more hadrons that may each then undergo an
inelastic collision, and so on. As with an EM calorimeter, measuring the
energy of the original hadron then reduces to counting the total number of
particles produced via this process.

The hadron-nucleus inelastic cross section scales with the nuclear cross-
sectional area:

σinel ≈ σppA
2
3 . (13)

The proton-proton cross section σpp is about 30 mb, much smaller than for
EM interactions. Therefore, the so-called interaction length λ is much longer
than the EM equivalent X0. The interaction length is defined as

λ =
1

nσinel
. (14)

6The lightest hadron, the pion, has a mass similar to that of the muon.
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Figure 10: Part of the ATLAS hadronic calorimeter during construction.

Typical values for some materials, which may be compared with the values
for X0 shown previously, are:

Element λ [cm]
air 75,000

graphite 38.1
Al 39.4
Fe 16.8
Pb 17.1

Thus, even a calorimeter made out of lead or steel will need to be very
large in order to guarantee the capture of an entire hadronic shower - typ-
ically a depth of 20λ would be required. Due to the resulting size require-
ments, most hadronic calorimeters are of the sampling variety, with very
dense, high-A absorbers. Scintillators are often used to measure the shower,
where several scintillating sheets can be connected to a single photomulti-
plier tube via optical fibres. Such an arrangement can be seen in Figure 10,
for example. Other possibilities include collecting charge on electrode plates
on either side of an ionising medium, or inserting small multi-wire propor-
tional chambers (MWPCs) between the absorber layers.

The resolution of a hadronic calorimeter is also described by Equa-
tion (12), however the absolute values of the coefficients are usually much
larger than for EM calorimeters. This is due partly to the large interac-
tion lengths involved, and the greater probability of lateral or longitudinal
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shower leakage, but also due to the energy lost in elastic and quasi-elastic
scattering, which does not increase the number of particles in the shower.
In the ATLAS hadronic calorimeter, A = 50% and B = 3%.

One other factor affecting the hadronic energy resolution is that there
may be EM showers contained within the hadronic shower, for example from
π0 → γγ decays. The response of most calorimeters to these EM components
is substantially different to the hadronic component, and the EM energy
fraction is a significant source of uncertainty in the energy measurement.
Usually, the response to EM showers is greater, due to the nuclear binding
energy in hadronic interactions, losses from neutrinos in hadron decays, and
other effects. It is possible to tune the calorimeter design to offset these
effects, for example by:

• increasing the absorber thickness (which suppresses detection of EM
showers);

• using a radioactive absorber, which can undergo fission in the presence
of slow neutrons, increasing the overall response to hadrons;

• using light nuclei in the absorber, which can also give sensitivity to
slow neutrons.

This kind of design is called a compensating calorimeter. A recent example
of this kind of design is the ZEUS calorimeter, which used depleted uranium
to increase the hadronic response. Its stochastic resolution term was indeed
good, at A = 35% (compared with 50% for ATLAS). This comes with a cost
however, which is the reduced response to EM showers; ZEUS’ stochastic
term coefficient for these was 18%, compared to 10% for ATLAS. However,
precise measurements of jets for the measurement of parton density functions
was a key aspect of the design of ZEUS, explaining why this trade-off was
made.
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