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1 Lagrangian mechanics

The Standard Model of particle physics is most conveniently expressed in
terms of a Lagrangian density function L. This is a quantum mechanical
analogue of the classical Lagrangian L, defined in terms of the kinetic (T )
and potential (V ) energies of a system1:

L(x, ẋ) = T − V. (1)

In classical mechanics, the equation of motion for any particular coordinate
x is given by the Euler-Lagrange equation

∂L

∂x
− ∂

∂t

∂L

∂ẋ
= 0. (2)

Equation (2) is derived by considering variations in the action S =
∫
Ldt,

but we will not perform this derivation here. Instead, we will consider the
Lagrangian density L. While L is a function of the coordinate x and its
derivative (in time), L is a function of a wavefunction ψ and its derivative
∂µψ. Unlike the classical coordinates, the wavefunctions depend on all space-
time coordinates, therefore the action is related to the Lagrangian density
by a four-dimensional integral

S =
∫
L(ψ, ∂µψ) d4x. (3)

We can derive the Euler-Lagrange relationship for L by considering a
1For the purpose of clarity, we will assume that the system has just one particle –

conceptually the extension to multi-particle systems is straightforward.
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small variation in S and applying the chain rule:

δS =
∫
δL(ψ, ∂µψ) d4x

=
∫
∂L
∂ψ

δψ +
∂L

∂ (∂µψ)
δ (∂µψ) d4x

=
∫
∂L
∂ψ

δψ − ∂µ
(

∂L
∂ (∂µψ)

)
δψ + ∂µ

(
∂L

∂ (∂µψ)
δψ

)
d4x. (4)

In the last line, we have performed integration by parts. The final term is
a total derivative, and vanishes if we assume that the variation δψ tends to
zero near the boundary of the volume we are considering.

The principle of least action states that δS = 0 along the physical path2.
For this to occur for any variation δψ, then the factor multiplying it in
Equation (4) must vanish, i.e.:

∂L
∂ψ
− ∂µ

(
∂L

∂ (∂µψ)

)
= 0. (5)

This is the quantum version of the Euler-Lagrange equation for a single field.

Exercise: Derive the equations of motion given the following Lagrangian
densities. In each case, it is easiest to take the derivative with respect
to the conjugate field (ψ∗ or ψ̄) to obtain the equation of motion for
the non-conjugate field. The results should be familiar to you.

L = iψ∗ψ̇ − 1
2m
∇ψ∗ · ∇ψ (6)

L = ∂µψ
∗∂µψ −m2ψ∗ψ (7)

L = ψ̄ (iγµ∂µ −m)ψ (8)

2 Gauge transformations and symmetry groups

2.1 Preamble: Classical electromagnetism

The classical Lagrangian for an otherwise free particle of charge Q in an
electromagnetic field is

L =
1
2
mẋ2 +Qẋ ·A−QΦ. (9)

Using this, one finds that the canonical momentum p = ∂L/∂ẋ is no longer
the physical particle’s momentum mẋ, but has an additional contribution
from the electromagnetic field:

p =
∂L

∂ẋ
= mẋ+QA (10)

2This can be understood in terms of contributions to the full amplitude of a process
being proportional to eiS .
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Similarly, the classical Hamiltonian has a contribution from the electric po-
tential QΦ

H = p · ẋ− L

= (mẋ+QA) ·ẋ−1
2
mẋ2 −Qẋ ·A+QΦ

=
1
2
mẋ2 +QΦ. (11)

Formally, we can then recover the particle’s physical energy and momentum
from the canonical variables by subtracting these extra contributions:

pphys. = mẋ = p−QA

Ephys. =
1
2
mẋ2 = H −QΦ. (12)

These substitutions have exact analogues in all forms of quantum mechan-
ics, including field theory, when one wishes to incorporate electromagnetic
effects on a particle’s motion. Naturally, classical variables must be replaced
by appropriate quantum mechanical operators, but the form of the substitu-
tions in Equation (12) is identical. As we will later see, the other forces in the
Standard Model can be introduced using similar modifications of canonical
variables.

Before moving on to considering quantum mechanical operators, one
should remember that the EM potentials Φ and A can be freely modified
by a gauge transformation, with ultimately no physical effects:

Φ→ Φ′ = Φ− ∂χ

∂t
; A→ A′ = A+∇χ. (13)

Here, χ is understood to be an arbitrary function of space and time. Note
that this will change the canonical variables defined in Equations (9), (10)
and (11), but not the physical momentum calculated in Equation (12).

2.2 Electromagnetism in quantum mechanics

In the quantum mechanical context, canonical energy and momentum vari-
ables are replaced by differential operators in the usual way:

Ê = i
∂

∂t
and p̂ = −i∇; or, in covariant notation p̂µ = i∂µ. (14)

Equations of motion inevitably involve these operators acting on wavefunc-
tions or fields, here referred to generically with the symbol ψ. In addition,
covariant notation will be used for simplicity, as the separation into energy
and momentum components (e.g. for application in the Schrödinger equa-
tion) is straightforward.
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When electromagnetic interactions are included, physical four-momentum
operators can be extracted by modifying the canonical operators in a way
analagous to Equation (12):

p̂µ → p̂µ −QAµ
= i(∂µ + iQAµ)
= iDµ (15)

In the last line, the covariant derivative Dµ = ∂µ+iQAµ is introduced, which
replaces ∂µ when calculating physical measurables for interacting particles
or fields.

One immediate issue is that the covariant derivative varies under a gauge
transformation (13) to

Dµ → D′µ = ∂µ + iQAµ − iQ∂µχ (16)

Thus, it appears that the physical measurable expectation values 〈ψ|Ê|ψ〉
and 〈ψ|p̂|ψ〉 change, violating gauge invariance. This apparent problem can
be elegantly solved by additionally transforming the wavefunction ψ, which
has no classical analogue, according to

ψ → ψ′ = eiQχψ. (17)

Then, the combination Dµψ transforms as follows:

Dµψ → D′µψ′ = ∂µ(eiQχψ) + ieiQχQAµψ − iQ(∂µχ)eiQχψ

= eiQχ∂µψ + iQ(∂µχ)eiQχψ + ieiQχQAµψ − iQ(∂µχ)eiQχψ

= eiQχ(∂µ + iQAµ)ψ

= eiQχDµψ, (18)

modified only by an overall (space-time-dependent) phase. Any physical
expectation value will be pre-multiplied by the conjugate of a wave function
which transforms according to ψ∗ → ψ∗′ = ψ∗e−iQχ, and will therefore be
left unchanged by the combined transformation described by Equations (16)
and (17).

Exercise: Prove that this also works for the second derivative DµDµψ, as
in the Klein-Gordon equation, for example.

Exercise: Beginning with a free particle (Aµ = 0), consider the gauge
transformation given by χ = − arg(ψ)/Q. What are the resulting
potentials and new wavefunction? Interpret the result in terms of
physical quantities.

Exercise: (more tricky) Repeat the previous exercise for χ = − arg(ψ)
Q(1+e−t)

.
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2.3 Relation to the U(1) symmetry group

It is well known that all observable quantites are invariant under a global
phase transformation of a wave function or field

ψ → ψ′ = eiφψ, (19)

where the phase angle φ does not depend on space-time coordinates. The
prefactor eiφ can be recognised as a member of the U(1) group discussed
in the last tutorial. The transformation (19) is referred to as a global U(1)
transformation. Note that it alters an internal space of the wavefunction,
distinct from external space-time.

When electromagnetic interactions are introduced, we find that now a
much more stringent symmetry exists, that of a local U(1) transformation,
of Equation (17) (recall that χ is an arbitrary function of space-time). Thus,
it appears that internal symmetries of a wavefunction or field are somehow
related to their gauge interactions. If we began with a non-interacting (free)
particle, we could “derive” the electromagnetic interaction by requiring that
the transformation in Equation (17) has no effect on measurable quantities.
We would then be forced to introduce a new field Aµ that simultaneously
transforms as Equation (13), and to form a covariant derivative like (15) to
represent the particle’s physical four-momentum.

In the Standard Model, all gauge interactions are derived in this way,
starting from Lie group operators applied to an internal space (called a
Hilbert space), and demanding symmetry in the physical equations upon ar-
bitrary local rotations within this space. However, unlike electromagnetism,
the other gauge groups of the SM are non-Abelian.

3 Non-Abelian groups in gauge theories

When we considered U(1), the analysis of the gauge transformation was
considerably simplified by the fact that the group was Abelian. In fact,
there is only one U(1) generator, which trivially commutes with itself. The
generators of the other symmetries involved in Standard Model forces do not
commute. In other words, not all structure constants fabc are zero, where
fabc is defined by

[Ta, Tb] = TaTb − TbTa = ifabcTc. (20)

For SU(2), the structure constants are equal to the completely antisymmet-
ric Levi-Civita symbol εabc. In the case of SU(3), the constants are more
complex, and given in the lecture notes.

We will start by generalising the transformations derived in the previous
section, without assuming that the group elements commute. In general, a
state ψ will transform as follows:

ψ → ψ′ = Gψ = eiα·Tψ, (21)
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where G is a local Hilbert space transformation. We introduce a covariant
derivative to absorb changes to the Lagrangian resulting from this transfor-
mation:

Dµ = ∂µ + igWµ = ∂µ + igT ·W µ. (22)

Here, W µ is a vector of new gauge fields, with a size corresponding to
the number of group generators, while g is an associated coupling strength,
analagous to the electric charge. Under the gauge transformation, the field
Wµ transforms as follows:

Wµ →W ′µ = GWµG
−1 +

i

g
(∂µG)G−1. (23)

Exercise: Show that under this transformation D′µψ′ = GDµψ.

Equation (23) is the general form for the transformation of a gauge field
derived through symmetry principles. For U(1), Equation (23) reduces to
the same form as given in Equation (13). For non-Abelian groups, G and
Wµ do not commute, which complicates further analysis but also yields a
rich structure for the gauge fields.

It is useful to consider Equation (23) written in terms of the component
fields

T ·W ′
µ = eiα·TT ·W µe

−iα·T +
i

g

(
∂µe

iα·T ) e−iα·T ,
or TaW

′
µ,a = eiαbTbTaWµ,ae

−iαcTc +
i

g

(
∂µe

iαaTa
)
e−iαbTb , (24)

where the Einstein summation convention for indices has been assumed.
This describes a general transformation, but often we will be interested in
the perturbative regime, when the transformation G is close to the identity.
In this case, |α| is small, and eiα·T ≈ 1 + iα · T . Under this infinitesimal
transformation, Equation (24) becomes the following (dropping any second-
order terms in α and ∂µα):

TaW
′
µ,a ' (1 + iαbTb)TaWµ,a(1− iαcTc)−

1
g

(∂µαa)Ta(1− iαbTb)

= TaWµ,a − i(αcTaTc − αbTbTa)Wµ,a −
1
g

(∂µαa)Ta +O(α2) (25)

Here, we note that the indices b and c on the right hand side are arbitrary,
so we can rewrite αcTaTc as αbTaTb to obtain

TaW
′
µ,a = TaWµ,a − iαb[Ta, Tb]Wµ,a −

1
g

(∂µαa)Ta

= TaWµ,a + fabcαbTcWµ,a −
1
g

(∂µαa)Ta (26)
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Exercise: Find an expression forW ′µ,a that will always satisfy Equation (26).
Make sure it reduces to the electromagnetic gauge transformation in
the case of a U(1) symmetry.

Equation (26) shows how Wµ transforms under an infinitesimal gauge
transformation, but we have not yet shown that physical observables are
unchanged. By analogy with the U(1) case, it is enough to show that D′µψ′ =
GDµψ, as the conjugate part of any expectation value will always cancel the
G on the right hand side. This condition can be easily verified, again to
O(α):

D′µψ′ = (∂µ + igTaWµ,a − i(∂µαa)Ta + igfabcαbTcWµ,a)(1 + iαtTt)ψ

= i(∂µαt)Ttψ + (1 + iαtTt)(∂µψ)
+ (1 + iαtTt)(igTaWµ,a)ψ − gαt(ifatbTb)Wµ,aψ

− i(∂µαa)Taψ + igfabcαbTcWµ,aψ +O(α2)
' (1 + iαtTt)(∂µ + igTaWµ,a)ψ, (27)

where the commutator (20) has been used to obtain the terms on the third
line.

Thus, the principal equations and expectation values will be invariant
under the gauge transformations being discussed.

4 Building an interacting Lagrangian

The Dirac equation for a free fermion field ψ can be obtained from the
following Lagrangian density (see the earlier Exercise):

L = ψ̄(iγµ∂µ −m)ψ. (28)

A gauge interaction for this fermion may be introduced by replacing ∂µ by
the covariant derivative from Equation (22):

L = ψ̄(iγµDµ −m)ψ
= ψ̄(iγµ∂µ −m)ψ − gψ̄γµT ·W µψ. (29)

The final term of Equation (29) represents interactions between the
fermion and the gauge field. These modify the propagation of the free
fermion field, described in the first two terms. However, there is another
class of terms that can be added to the Lagrangian density involving just
the fields W µ. It turns out that the only Lorentz covariant object allowed
by gauge symmetry that we can form from the gauge fields alone is the
commutator of the covariant derivative, [Dµ,Dν ]. This can be evaluated as
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follows:

[Dµ,Dν ] = [∂µ + igT ·W µ, ∂ν + igT ·W ν ]
= [∂µ, ∂ν ] + ig[∂µ,T ·W ν ] + ig[T ·W µ, ∂ν ]

− g2[T ·W µ,T ·W ν ]. (30)

The first commutator is evidently zero. The commutator in the second
term can be found by considering what happens when this operates on a
wavefunction:

[∂µ,T ·W ν ]ψ = ∂µ(T ·W νψ)− T ·W ν(∂µψ)
= (∂µT ·W ν)ψ. (31)

Note that the end result does not depend in any way on the wavefunction we
temporarily introduced. Similarly, [T ·W µ, ∂ν ] = −∂νT ·W µ in the third
term of Equation (30). The final term is evaluated using the group algebra,
giving the following result

[Dµ,Dν ] = ig T · (∂µW ν − ∂νW µ)− ig2fabcTaWµ,bWν,c

= Ta[ig(∂µWν,a − ∂νWµ,a)− ig2fabcWµ,bWν,c]. (32)

In the U(1) case, the structure constants vanish, and Equation (32) is pro-
portional to the field tensor Fµν = ∂µWν − ∂νWµ, familiar from electro-
magnetism. In the non-Abelian case, the first terms of Equation (32) also
describe free fields that propagate in the vacuum much like the photon, but
the final term will not vanish.

The only Lorentz scalar field propagation term that we can construct
using Fµν ∝ [Dµ,Dν ] is FµνFµν . The final term of Equation (32) will yield
terms proportional to (∂µWν)WµW ν and WµWνW

µW ν , where the group
generator indices have been suppressed. These terms ultimately correspond
to interactions between the various components of the W µ field, something
that will be explored further later in the course.

5 Gauge theories and particle masses

While gauge theory looks on the surface to be an elegant way to describe
natural forces, it suffers from one important problem: it requires all (non-
singlet) particles to be massless, in order to work.

In the case of gauge bosons, to give a mass to the W µ field would require
a term in the Lagrangian density proportional toW µ·W µ. This is analagous
to the final terms in Equations (7) and (8), which are also quadratic in the
associated fields. However, the terms available in Equation (32) do not allow
any quadratic terms the Lagrangian density, because these would break the
gauge symmetry. This is a problem when it comes to describing the weak
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nuclear force, as the W and Z bosons that mediate it has substantial masses
of about 80 and 90 GeV, respectively, which has the effect of setting a short
range ∼ 1/MW/Z for weak interactions in the low energy limit.

What is perhaps less obvious is that, due to the peculiar nature of the
weak interaction, all weakly interacting fermions must also be massless.
It might naively be thought that a fermionic mass term mψ̄ψ (c.f. Equa-
tion (28)) would always remain invariant under any transformation ψ → Gψ.
It turns out that this is not the case for the weak nuclear force, which acts
differently on the left- and right-handed components of ψ. This can be seen
more clearly if we rewrite ψ as a sum of these components:

ψ = ψL + ψR

=
1
2

(1− γ5)ψ +
1
2

(1 + γ5)ψ. (33)

The mass term mψ̄ψ therefore has four components, as follows:

mψ̄ψ = m(ψ̄LψL + ψ̄LψR + ψ̄RψL + ψ̄RψR). (34)

The matrix γ5 is Hermitian, which allows us to evaluate ψ̄L as ψ†(1−γ5)γ0 =
ψ̄(1+γ5), and similarly ψ̄R = ψ̄(1−γ5). Recalling that (γ5)2 = 1, the terms
mψ̄LψL and mψ̄RψR are seen to vanish, leaving just the cross terms:

mψ̄ψ = m(ψ̄LψR + ψ̄RψL). (35)

This is clearly variant under an SU(2) symmetry operation, as ψL is an
SU(2) doublet, while ψR is a singlet. Therefore, the terms in Equation (35)
are not allowed in the Standard Model Lagrangian, in strong conflict with
experimental measurements of fermion masses.

It is this question of mass in the Standard Model that we will turn to in
the next tutorial.
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