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Now that we have covered the theoretical and historical background to
the Standard Model, we will digress for a few weeks and discuss experimental
matters. We will begin by examining particle accelerators, in particular what
features determine their performance. To aid the discussion, three of the
highest energy colliders of recent times will be used as examples: the LEP,
Tevatron and LHC (see Figure 1). We will not be discussing accelerators
for fixed target experiments, which have different requirements to collider
experiments.

1 Key collider parameters

Four of the most important parameters of any accelerator are the type(s) of
particle(s) it accelerates, the accelerator configuration (i.e. linear vs. circu-
lar), the final energy of each accelerated particle (the beam energy) and the
luminosity that can be achieved. Example values for these quantites and
others are shown in Table 1 for discussion throughout this tutorial.

To date, the only particles that have been successfully collided are elec-
trons, positrons, protons and antiprotons, as well as nuclei and other ions
(e.g. Pb or Ar). Only these particles are electrically charged and sufficiently
stable to survive the early stages of collimation and acceleration. Positrons
and antiprotons are not present in normal matter and must be made by col-
liding, say, protons into a dense target, followed by filtering and collimation
of the debris. Ultimately, the choice of which particles to collide depends
upon the goals of the experiments.

Exercise: Brainstorm some possible uses for the following combinations of
colliding particles: e"e™, ete™, pp, pp, eTp.

Exercise: What are some of the relative advantages and disadvantages of
linear and circular colliders?

The maximum beam energy that an accelerator can sustain depends
upon several factors. For linear accelerators, it is the length of the acceler-
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Figure 1: Accelerator magnets from LEP, Tevatron and LHC.

ator itself and the electric field gradient (dF/dz) that are most important.
For circular accelerators, synchrotron radiation quickly becomes the domi-
nant factor for electrons and positrons, as the accelerator has to replenish
the energy lost on every turn. Circular (anti)proton accelerators are mainly
limited by the magnetic field strength of the bending or dipole magnets. The
magnetic field required to bend particles with an momentum of p around a
circle of radius r is

_ 3.336 -p/GeV T,

B
r/m

(1)

For the LHC, protons with p = 7 TeV are guided around a ring with a
bending radius of » = 2.8 km. This requires a magnetic field of B ~ 8.3 T,

! Conventionally, the z direction is taken to coincide with the beam axis, locally at each
point along the beam.



Table 1: Key parameter values for LEP, Tevatron and LHC. Values such
as the peak instantaneous luminosity are quoted per experiment. The LHC
parameters refer to pp operation, and the LEP’s normalised emittance e is
quoted for Epeam = mz/2. The symbols are described in the text of this
section, except for € which is the subject of Section 2.

Quantity Unit LEP Tevatron LHC
ete” D pp, pA, AA
1989-2000 1983-2011 2009-present
Fpeam GeV 80.5-104 900-1000 3500-4000
Max. Npunch 12 103 1380
Max. N x 101! 4 2.7 (p), 1.0 (p) 1.7
18 (y) 63 (p)
ve mm mrad 1800 (z) 47 () 2.5
Peak £ 1033 cm 257! 0.1 0.52 7.7

which is produced by superconducting magnets cooled down to liquid helium
temperatures. Acceleration to the final beam energy is rarely achieved in one
step. For example, the accelerator complex at CERN is shown in Figure 2.
This shows particle beams being produced for many experiments besides the
LHC, but even for the LHC no fewer than five storage rings and two linear
accelerators are required. For reasons of brevity, most of the discussion here
will concern the final accelerator stage, e.g. the LHC ring itself in this case.

The instantaneous luminosity of a collider (£) is a measure of how often
particles have the opportunity to collide. It is usually measured in units
of em™2s7!, and is defined so that oy £ is the interaction rate, if oo is
the total interaction cross-section. The integrated luminosity L = [ Ldt is
then a measure of the total data collected by a collider experiment. If two
identical beams with Gaussian profiles collide perfectly head-on, then the
instantaneous luminosity can be written as

_ N2Nbunchfrev
drooy

L : (2)

where N is the number of particles per bunch,? Npunch is the number of
bunches in each beam, frey is the revolution frequency, and o, is the
width of the beam in the z(y) direction. If the beams are not perfectly
aligned, £ also depends exponentially on the square of the offset between
the centres of the two beams.

Exercise: Derive Equation (2).

Particles are typically accelerated in discrete bunches rather than continuous beams.
One of the reasons for this is explored in Section 4.
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Figure 2: Accelerator complex at CERN, including preaccelerators for the
LHC.

Increasing the instantaneous luminosity allows processes with smaller
cross-sections to be explored. Higher luminosities can be achieved by in-
creasing the rate of bunch-bunch collisions Npupen frev- Having a large num-
ber of bunches in a single beam is technically complex, and a relatively
recent development (see Table 1). The number of particles per bunch is dif-
ficult to increase much beyond O(10%), due to electromagnetic interactions
of the bunches (10''e = 16 nC) and also the total beam current is limited
by the power required to accelerate and bend the beam. The final factor in
Equation (2) is the beam area A = 4wo,0,, which should be small to achieve
a high instantaneous luminosity. For this reason, beams are usually heavily
focussed close to the collision point, however this is practically limited by
considerations of the beam optics. This is what we consider next.

2 Emittance and focussing

The emittance of a beam describes the range of deviations from the ideal
path that the particles take, and is a key parameter in determining the final
focussing of a beam at an interaction point. If we consider just one direction
perpendicular to the beam, say x, then the emittance €, is the volume of
phase space occupied by some specified fraction of the beam, say 68%. The
phase space is parameterised by z and 2/ = dx/ds = %dx/dt, where s
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Figure 3: Sketch of a beam envelope in x — z’ space for a beam that freely
propagates over a distance L. It is assumed that x and 2’ are uncorrelated
at s = 0, for simplicity.

parameterises the distance along the ideal beam line. Due to Liouville’s
theorem, this volume is conserved as it propagates through the accelerator.

At the point of production, the position and direction of the particles are
essentially uncorrelated, meaning that the volume defining the emittance is
an ellipse (as in Figure 3 (left)). Even though individual particles have com-
plicated paths through the accelerator, we can understand the propagation
of the beam as a whole by considering just this envelope. This is because
particles in the beam that start inside the envelope cannot cross it — two
particles with the same position and velocity will experience the same force,
and their future paths must be identical.

We begin by considering the free propagation of the particles within
this initial ellipse. The regions of the ellipse with positive 2’ will migrate
to higher values of z over time, and regions with negative 2’ will migrate
to negative values of x. This is illustrated in Figure 3 (right). This is an
intuitive result: the beam spreads out in x over time due to the initial spread
in x velocities.

This effect can of course be reversed by focussing. If a magnetic field is
arranged such that its magnitude in the y direction varies as —gx, where
g is a constant, then the force experienced in the x direction by a particle
with velocity v =~ (0,0, ¢) will be —gcz, i.e. a restoring force. This field acts
like a lens with a focal length of p/egl, where p is the beam energy, and [ is
the length of the focussing magnet, reducing x’ for parts of the ellipse with
positive z, and vice versa for negative x. Figure 4 shows an example where
the focussing exactly compensates for the increased beam width, effectively
reversing the sign of 2/ with respect to the beam before focussing. After
propagating for another distance L, the original shape of the beam from
Figure 3 (left) can be recovered. Thus, with repeated focussing, the overall
beam size in x can be maintained.

The field required to focus in the z direction can be achieved with a
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Figure 4: Sketch of a beam envelope in « — 2’ space before (left) and after
(right) focussing in the x direction. It is assumed that the focussing is
perfectly tuned to the beam, i.e. that 2 — —2’ for all particles in the beam.

quadrupole magnet (for an example, see Figure 1 (a)). However, the full
quadrupole field in the z — y plane has components B = (—gy, —gz,0),
giving a total force on the particle of F' = v x B = (—gvz, gvy,0). This will
defocus the beam in the y direction, increasing its divergence. Fortunately, it
is possible to achieve focussing in both directions by alternating quadrupole
magnets that focus in x and y. To see why this works, recall that the focal
length f of two lenses with focal lengths f; and fo and separated by a

distance d is given by
1 1 1 d

TR TR AR )
If fi and fy have opposite sign, then f can always be made positive (and
therefore focussing) as long as d is sufficiently large. In particular, if fo =
— f1, then f is always positive.

Now consider strong focussing close to an interaction point, necessary to
increase the instantaneous luminosity (Equation (2)). The emittance ellipse
of the right-hand part of Figure 4 would stretch up and down to more
extreme values of /. Due to Liouville’s theorem, the width of the ellipse
would shrink, and after a short propagation time the beam size in x would
be much smaller than it started. This is where the interaction point should
be located. However, high values of 2’ correspond to particles travelling at
large angles with respect to the ideal beam line, and so the beam will quickly
diverge again, requiring more focussing to avoid losses from collisions with
the beam pipe wall. Therefore, the final focussing magnets should be as
close to the interaction point as possible, to increase the maximum tolerable
beam divergence. In addition, it is desirable to have the overall emittance
as low as possible, which allows for a smaller beam size for a given maximal
divergence. This is achieved through beam cooling.



3 Beam cooling

The restrictions of Liouville’s theorem only apply to a closed system that
does not exchange energy with its surroundings. If this assumption is broken,
then it is possible to alter the emittance of the beam. Even the act of
accelerating the beam (see Section 4) reduces the transverse emittance as
defined, because p. increases while p, and p, remain the same. Therefore,
' = p;/p. is reduced, and similarly for y’. However, cooling is usually
understood to mean a reduction in the normalised emittance e, ,.>
One of the simplest ways to reduce the (normalised) emittance of a beam
is to wait until it is spatially extended (as in Figure 3) and insert a beam stop
restricting its width. Due to the correlation between x and 2’ in that case,
this will also reduce a substantial fraction of the particles that contribute
most to the beam divergence. This technique is most useful in the early
stages of beam production, where the energy per particle is relatively small.
The primary method for cooling high-energy beams is in a damping ring.
For a circular collider, the collider ring itself can act as a damping ring, while
for a linear collider the damping ring would be a separate component away
from the main accelerator. As the particles circulate around the damping
ring, they lose energy to synchrotron radiation. This reduces all components
of the particles’ momenta, while acceleration to maintain a constant beam
energy only increases p,. Thus, over time, the beam divergence decreases.
The energy lost per particle per revolution due to synchrotron radiation
scales as v*/r, where r is the radius of curvature, assuming § ~ 1. Thus,
electron and positron beams can be cooled very effectively with very low
beam energies. At high energies the discrete nature of the photon emission
process adds noise to ' and puts a limit on the lowest achievable emittance
that depends on the beam energy. This is the main reason for the relatively
poor value of e, quoted for LEP in Table 1. Synchrotron radiation also
ultimately limits the beam energy that a circular eTe™ collider can sustain.
The radiative damping time for (anti)protons is much longer than for
eT for the same accelerator parameters. For this reason stochastic cooling is
often used to accelerate the cooling process. This uses readings taken of the
beam in one part of the ring to correct the beam profile in another part of
the ring, which is possible because the straight-line distance between the two
points is shorter than the path taken by the beam. It is best if corrections
can be applied to parts of a bunch, rather than the whole bunch, and so
typically the beam is stretched in z before the corrections are applied. Over
time, the average deviations from the ideal beam line can be reduced, thus
cooling the beam. The invention of this procedure led to the discovery of
the W and Z bosons and the awarding of the 1984 Nobel Prize to Simon
van der Meer (together with Carlo Rubbia).

3Actually Bves .y, but we are assuming that 8 =~ 1.



Figure 5: Example RF cavity proposed for a future linear e™e™ collider.

4 RF cavity acceleration

To accelerate particles to energies of tens to thousands of GeV, alternating
electric and magnetic fields must be used (Question: why not static electric
fields?). This is normally achieved using radio-frequency (RF) cavities like
the one illustrated in Figure 5. Each cell of the RF cavity oscillates in anti-
phase to its neighbours, at a characteristic frequency determined by the
geometry of the cavity. If the particle bunches are timed correctly, they will
pass through two cavities in the oscillation period, and thus be accelerated
by every cell.

Realistic cavities, such as the one in Figure 5, are highly optimised to
produce the best field properties for acceleration. We will now consider a
simpler variation called a pill-box cavity, shown in Figure 6. In this case,
the resonant volume is a simple cylinder. There are solutions of Maxwell’s
equations for this geometry where the electric field points purely along z,
while the magnetic field is circular in ¢, as shown. The boundary conditions
at the cavity walls mean that the electric field must vanish at p = a, where
p is the radius variable in cylindrical coordinates. In this case, both electric
and magnetic fields are described by Bessel functions, and for the lowest
frequency mode the maximum electric field strength is found along the axis
of the cylinder. The resonant frequency is fixed by the cavity’s radius, and
is f = 2.405¢/2ma. This in turn determines the ideal distance between
adjacent cavities, d = 7a,/2.405,% such that successive cavities accelerate the
particles constructively.

Counter-intuitively, RF cavities are usually designed so that the bunches
arrive just before the maximum of the oscillation in the electric field, rather
than at the maximum. This is to allow longitudinal focussing, which can be
understood using Figure 7. Point S is defined as the ideal time of arrival
for a bunch to be accelerated, where it will just reach the next cavity at the
same point in its oscillation. A particle travelling slightly faster than the
average will arrive early, perhaps at point P. In this case, it experiences
a lower electric field, and will be accelerated less in this cycle. Conversely,
a late particle (at P") will be accelerated more than average. These lead
to small oscillations around S as particles gain and lose energy in different
RF cavities. For very late particles, point U marks the divide between two

4 Assuming v = c.



successive stable equilibria. Particles arriving later than U will eventually
end up in the next bunch, after a period of deceleration.
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Figure 6: Schematic of a simple “pill box” RF accelerator cavity. Projections
parallel and perpendicular to the beam are shown, together with arrows
indicating the directions of the electric and magnetic field inside the cavity.
With the electric field in this configuration, the particle bunch should be in
the right-hand cavity.
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Figure 7: Sketch of the electric field at the centre of an RF cavity, as a
function of time. The points indicate different times at which particles to
be accelerated may pass through the cavity. S and U show stable and
unstable equilibrium positions, respectively, while particles passing through
at P and P’ are both pushed towards S.



