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1 What is a group?

A group is a set of objects (elements or members), which can be com-
bined by some operation (addition, multiplication, etc.). For a description
of the Standard Model (SM), it is only necessary to consider groups under
multiplication, and therefore the notation of multiplication will be used for
simplicity from the start. When applying this operation, four conditions
must be satisfied:

1. For all elements a, b in the group, the combination ab is also a member
of the group.

2. The operation must be associative, i.e. (ab)c = a(bc).

3. There is an identity element e, such that ae = ea = a for all elements.

4. Every element a has an inverse a−1, such that aa−1 = a−1a = e.

The identity element is commonly written e for generality. For multi-
plicative groups, e is just the number 1, or an appropriate identity matrix.
In contrast, the identity element for addition is 0. From now on, “1” will
replace e as labeling the identity element.

1.1 Examples

The simplest group is the trivial group:

{1}. (1)

This has only one member, and yet satisfies all of the properties required of
a group (under multiplication). We can add one member to this to construct
a simple non-trivial group:

{1,−1}. (2)

Here, each element is its own inverse.
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We can further extend this, to construct a four-element complex group:

{1,−1, i,−i}. (3)

The new elements, i and −i, are inverses of each other. Note that this
contains {1,−1} as a subgroup.

Exercise 1: Show that this set of four matrices forms a group:{(
1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)}
. (4)

Verify that the group structure is identical to the group of Equation (3).

As an example of a continuous group under multiplication, take the set
of complex numbers with modulus 1. This group is denoted U(1), a name
which derives from the fact that this is a unitary group with one dimension.
In the complex plane, the members of this group trace out the unit circle.

Re

Im

This group plays an important role in physics, as it is a part of the gauge
group of the Standard Model. It is combined with other groups via group
multiplication. The product of two groups is a difficult concept to fully
grasp, but can be understood by considering the product U(1)×R>0, where
R>0 denotes the set of all positive real numbers. This yields the set of
nonzero complex numbers Z6=0 with elements z:

z = reiφ, r ∈ R>0, φ ∈ R. (5)

Thus, the group theoretic product of the unit circle and an semi-infinite
radial axis spans the complex plane,1 including elements that are in neither
group individually. Note also that U(1) and R>0 are therefore subgroups of
Z6=0.

All of these continuous groups are of a particular form, called Lie groups,
which we will now examine.

1Except zero, which has no finite multiplicative inverse. With zero included, Z is a
group under addition.
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2 Lie groups

The defining property of a Lie group is that all elements can be reached
by successive infinitesimal steps, usually starting from the identity element.
Consider a member (1 + iε) of U(1) a small distance ε from the identity.
When thought of in terms of transformations, this corresponds to a small
(eventually infinitesimal) rotation in the complex plane. Rewriting ε as α/N ,
where N is a large integer, we can imagine applying this small rotation N
times. Mathematically, we achieve this by multiplying (1 + iα/N) by itself
N times, i.e. by computing (1 + iα/N)N . Taking the limit as N → ∞, we
obtain a generic member of the group:

lim
N→∞

(
1 + i

α

N

)N
= eiα. (6)

This is therefore a Lie group, as only an infinitesimally small region around
the identity element needs to be known in order to characterise the entire
group.

Due to this property, Lie groups are often characterised in terms of their
generators, which in our case can be thought of as unit vectors describing
possible directions in which transformations can be made. The number of
these directions is called the dimension n of the group. With a collection
of generators T , and associated parameters α (again, one for each dimen-
sion), a generic Lie group member is written in exponential notation like
Equation (6):

lim
N→∞

(
1 + i

α · T
N

)N
= eiα·T . (7)

This can be taken to be a definition of what we mean by eiα·T .

Exercise 2: Comparing Equations (6) and (7), what is the generator
for U(1)?

When there is more than one generator, it is important to ask whether
or not different members of the group will commute. The same observation
applies to the generators of a Lie group. The commutators of the group
generators define the algebra of the group:

[Ta, Tb] = TaTb − TbTa = ifabcTc. (8)

Note that the right-hand side is linear in the group generators; this is a
consequence of all products of group members also being in the group.

The numbers fabc are called the group’s structure constants. If all are
zero, then the group’s generators (and elements) all commute; the group is
Abelian. U(1) is an Abelian group, as all complex numbers with modulus one
commute with each other. Multi-dimensional groups may be non-Abelian.
When applied to field theories, these groups lead to self-interacting gauge
fields.
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3 A first look at SU(2)

The name SU(2) refers to the group of special 2× 2 unitary matrices. The
term “special” means that these matrices have determinant 1, thus preserv-
ing the normalisation of state vectors upon which they act. As with any
Lie group, any member of SU(2), G, can be written in terms of the group’s
generators T

G = eiα·T . (9)

The generators of SU(2) are familiar, as they are proportional to the Pauli
spin matrices:

Tx =
1

2

(
0 1
1 0

)
, Ty =

1

2

(
0 −i
i 0

)
, Tz =

1

2

(
1 0
0 −1

)
. (10)

These are Hermitian matrices with zero trace, which ensure that the group
elements in Equation (9) are unitary with unit determinant. Correspond-
ingly, α is a three-component vector in the associated Hilbert space, and
the group has dimension 3. In addition, the generator matrices have the
following important properties:

[Ta, Tb] = iεabcTc, and T 2
a =

1

4
I. (11)

Exercise 3: Express α · T as a 2× 2 matrix. Use the Taylor series ex-
pansion of Equation (9) to find G. Does it have the expected properties?
What value of |α| corresponds to a full rotation?

The version of G just derived is expressed in the so-called fundamen-
tal representation of SU(2). In other words, the generator matrices have
the minimum possible size (2 × 2) that can possibly express the group al-
gebra of Equation (11). Other, larger, matrices can also satisfy the group
algebra, leading to alternative representations of the group. The adjoint
representation is especially important for our purposes, when the dimension
of the generator matrices matches the dimension of the group. Both of these
representations will be explored in the next section.

3.1 Representations of SU(2)

You are already familiar with the fact that the spin of spin-12 fermions can
be described using the Pauli matrices, i.e. they belong to a fundamental
representation of SU(2). In this case, the eigenvectors of the Tz operator
correspond to the “up” and “down” eigenstates, with eigenvalues of sz = ±1

2 .
Transitions between these eigenstates are obtained via linear combinations
of the Tx and Ty generators, to form the usual raising and lowering operators:

T± = Tx ± iTy. (12)
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Exercise 4: Re-express the result of Exercise 3 using Tz, T± and the
2× 2 unit matrix.

We can construct objects of different spin by combining multiple spin-12
objects into larger mulitplets. For example, we could combine two spin-12
objects to form a state with a z component of −1, 0 or 1, illustrated on a
simple number line as follows:

0 1-1

s ss s
sz

sz1 = −1/2
sz1 = +1/2

In group theory notation, this combination is written 2⊗ 2. In reality, the
middle two states (with sz = 0) are not eigenstates of the total spin s,
instead we must rearrange the states into a spin triplet (s = 1) and a spin
singlet (s = 0):

0 1-1

s ss s
sz

s = 1
s = 0

This is written as 3⊕1. The spin eigenstates with sz = 0 can be written as

|ψ(s = 0)〉 =
1

2
(|ψ1(+1/2)〉|ψ2(−1/2)〉 − |ψ1(−1/2)〉|ψ2(+1/2)〉) ,

|ψ(s = 1)〉 =
1

2
(|ψ1(+1/2)〉|ψ2(−1/2)〉+ |ψ1(−1/2)〉|ψ2(+1/2)〉) , (13)

where |ψn(sz)〉 is the spin eigenstate for fermion n with the given sz eigen-
value.

The singlet s = 0 wavefunction is not affected by the SU(2) group trans-
formations – the generic spin rotation operator for this state is the identity
matrix. The triplet state has three sz eigenstates (−1, 0,+1), and can be
represented by a three-component vector. The generators of SU(2) rotations
for this system are 3×3 matrices, like those used for SO(3) spatial rotations:

Jx =
1√
2

0 1 0
1 0 1
0 1 0

 , Jy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , Jz =

1 0 0
0 0 0
0 0 −1

 .

(14)
These matrices obey the same group algebra as the matrices of Equation (10),
but are clearly not equivalent. They form the adjoint representation of the
SU(2) group, where the number of eigenstates equals the number of gener-
ators, in this case three. The physical interpretation of Jx,y,z is identical to
Tx,y,z in the fundamental representation, including the definition of raising
and lowering operators analogous to Equation (12).
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Exercise 5: (Optional) An alternative definition of the adjoint repre-
sentation is the set of matrices with elements given by

(Ja)bc = −ifabc. (15)

Show that the matrices of Equation (14) can be obtained from this
definition via the following transformations

Jx =
1√
2
U(J3 − J1)U−1,

Jy =
1√
2
U(J3 + J1)U

−1,

Jz = UJ2U
−1, (16)

where

U =
1√
2

1 0 i
0 1− i 0
i 0 1

 . (17)

We have seen how the adjoint representation can be related to the fun-
damental representation for SU(2). This relationship is rather generic: the
adjoint representation can be obtained for any SU(N) from the group-theory
product of two instances of the fundamental representation (in the above,
2⊗2). The N2−1 non-trivial matrices will form the adjoint representation,
while the identity transformation is associated with a group singlet.

In the Standard Model, interacting fundamental matter particles (the
fermions) belong to the fundamental representations of gauge groups.2 Thus,
there are two states of weak isospin (gauge group SU(2)), for example
the electron and electron neutrino. Similarly, there are three colours of
quark, corresponding to the fundamental representation of SU(3). The
gauge bosons, on the other hand, belong to the adjoint representation for
each group. Thus, there are three electroweak gauge bosons (corresponding,
after electroweak symmetry breaking, to the W+, Z0 and W− bosons), and
eight (= 32 − 1) gluons.

4 SU(3) generators and baryonic systems

Much of the above discussion of SU(2) applies directly to SU(3), the symme-
try associated with the strong nuclear force. Only the number of generators
and the self-couplings described by the structure constants are different. We
will use the concept of colour to explore the properties of SU(3), much as
we used spin to explore SU(2).

2Non-interacting fermions are gauge group singlets. For example, electrons do not
interact with the strong nuclear force, and are singlets of the corresponding gauge group.
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The fundamental representation of SU(3) (corresponding, e.g., to quark
charges) has three elements, that can be illustrated on a two-dimensional
plane, analagous to the line drawing of the SU(2) charges above:

s
s s

In group theory notation, this is 3. In contrast to SU(2), there is also a
fundamental 3̄ representation, distinct from 3:

s
s s

The adjoint representation can be obtained via the group product 3⊗ 3̄.
This produces a singlet state and an octet, in other words 3 ⊗ 3̄ = 8 ⊕ 1.
The charges of these states can be seen by imagining the 3̄ charges centered
on each point of the 3 graph in turn. The resulting charge diagram is as
follows:

s
s s

⊗

s
s s = ss ss

s

s

s

s
⊕ s

Neglecting the singlet, there are therefore 8 members of the adjoint rep-
resentation, 8 SU(3) generators and 8 types of gluon. From this picture, it
can be easily understood that the gluon states around the edge of the octet
correspond to the mixed colour states rḡ, gb̄ and so on. The two states at
the origin are more complicated. The octet states, both orthogonal to the
singlet state, can for example be written as

1√
2

(rr̄ − gḡ), and
1√
6

(rr̄ + gḡ − 2bb̄). (18)

The assignment of the colours red, green and blue to these states is clearly
arbitrary.
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These gluon states are related to the SU(3) generator matrices in the
fundamental representation:3

T1 =
1

2

0 1 0
1 0 0
0 0 0

 , T2 =
1

2

0 −i 0
i 0 0
0 0 0

 , T3 =
1

2

1 0 0
0 −1 0
0 0 0

 ,

T4 =
1

2

0 0 1
0 0 0
1 0 0

 , T5 =
1

2

0 0 −i
0 0 0
i 0 0

 , (19)

T6 =
1

2

0 0 0
0 0 1
0 1 0

 , T7 =
1

2

0 0 0
0 0 −i
0 i 0

 , T8 =
1

2
√

3

1 0 0
0 1 0
0 0 −2

 .

These (or rather the transform G defined in Equation (9)) act on 3 × 1
column vectors of the fundamental representation, i.e. quark states.

These matrices have a few other interesting properties. One is that T1,
T2 and T3 together look very similar to the SU(2) generator matrices. In
fact, they satisfy all the SU(2) properties and themselves form a group,
acting only on the first two colours. Thus SU(2) is actually a subgroup of
SU(3).

Exercise 6: Compare the pairs (T1, T2), (T4, T5) and(T6, T7). Are other
SU(2) subgroups of SU(3) possible? Can SU(3) be written as a product
of SU(2) groups? Why/why not?

As with SU(2), the non-diagonal matrices are more usefully expressed as
raising and lowering operators, capable of describing transitions between the
three colour states. These operators are usually denoted I± (corresponding
to the SU(2) subgroup just discussed, presumably named from the analogy
with isospin), V ± and U±, defined as follows:

I± = T1 ± iT2,
V ± = T4 ∓ iT5, (20)

U± = T6 ± iT7.

Also note the relative sign change in the definition of V ±, this ensures that
the raising operators operate in a circular fashion. More details are given in
the lecture notes.

Exercise 7: The low-mass hadrons are also found to exhibit an approx-
imate SU(3) symmetry, now understood to be due to the equivalence
(with respect to the strong nuclear force) between the nearly massless
up, down and strange quarks. Consider the elements of the baryon decu-

3The normalisation here is chosen such that Tr(T 2
a ) = 1

2
, compare Equation (11). The

matrices used here are related to the λa matrices of the lecture notes by Ta = 1
2
λa.
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plet, with the hypothesis that these are made up of constituent fermionic
quarks. The baryon wavefunction must be antisymmetric with respect
to the exchange of any two quarks. Show that this supports the hy-
pothesis of quark colour by considering the exchange symmetry of the
total baryonic wavefunction

ψ = ψFψXψSψC , (21)

where F stands for the quark flavour, X for the spatial wavefunction,
S for spin and C for colour. Particular things to bear in mind include:

ψF : A flavour decouplet can be obtained from three constituent quarks
via the following group-theoretic product:

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 (22)

if the quarks are described by the fundamental representation of
SU(3) flavour.

ψX : It must be possible for all quarks to be in s-wave orbitals in the
ground state, if the spin-12 octet is to exist.

ψS : The total spin of three spin-12 quarks would form some multiplet
of the 2 ⊗ 2 ⊗ 2 group theory product. Experimentally, baryons
in the decuplet have spin s = 3

2 .

ψC : All observed hadrons are colour singlets. You should obtain an
expression for the 3 ⊗ 3 ⊗ 3 colour singlet state, and from this
deduce its properties under the exchange of two quarks. Hint:
There is a useful analogy with the singlet state in Equation (13).
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